
VOLUME: 2 | ISSUE: 3 | 2018 | September

An R Code for Implementing

Non-hierarchical Algorithm for Clustering

of Probability Density Functions

Ngoc Diem TRAN 2, Tom VINANT 3, Théo Marc COLOMBANI 3,

Kieu Diem HO 1,2,∗

1 Division of Computational Mathematics and Engineering, Institute for Computational Science,
Ton Duc Thang University, Ho Chi Minh City, Vietnam

2 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3 Statistics and Computer Science, Polytech Lille, University of Lille, Lille, France

*Corresponding Author: Kieu Diem HO (email: hokieudiem@tdtu.edu.vn)
(Received: 28-June-2018; accepted: 22-September-2018; published: 31-October-2018)

DOI: http://dx.doi.org/10.25073/jaec.201823.194

Abstract. This paper aims to present a code for
implementation of non-hierarchical algorithm to
cluster probability density functions in one di-
mension for the �rst time in R environment.
The structure of code consists of 2 primary
steps: executing the main clustering algorithm
and evaluating the clustering quality. The code
is validated on one simulated data set and two
applications. The numerical results obtained are
highly compatible with that on MATLAB soft-
ware regarding computational time. Notably, the
code mainly serves for educational purpose and
desires to extend the availability of algorithm
in several environments so as having multiple
choices for whom interested in clustering.

Keywords

Crisp Clustering, Non-Hierarchical Algo-

rithm, Probability Density Problem, R

Code.

1. INTRODUCTION

R is a free, open-source implementation of the
S programming language and computing envi-
ronment for users. It is �rstly developed in
1996 by professors Ross Ihaka and Robert Gen-
tleman of the University of Auckland in New
Zealand [1]. From time to time, a lot of up-
graded versions are made in order to enhance
its user library, more detail can be found at
https://cran.r-project.org/. Due to aforemen-
tioned features, R does not require any pur-
chased fee unlike other commercial software such
as MATLAB or STATA. Moreover, it is also
supported graphical presentation of data sets,
built-in mechanisms for organizing data together
with numerous available packages for users [2].
Therefore, it is extremely easy to use without
good programming skills and it has been at-
tracted a lot of attentions of experts in di�erent
�elds, especially in statistics. To the best of our
knowledge, R is currently one of the most well-
known statistical software around the world as
well as more and more packages are built to in-
crease the diversity of R library [3]. Needless to
say, R is an ideal environment for who want to
contribute their humble work to other users to
serve various purposes, educating and research-

174 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 2 | ISSUE: 3 | 2018 | September

ing in particular.
Clustering is usually considered as grouping

objects such that objects in the same cluster
are similar as much as possible and di�ers from
objects in other clusters. These days, it has
been popular as an unsupervised recognition al-
gorithm to explore the internal structure of data
[4]. Therefore, more researchers are devoted to
this �eld as a result. Concerning R packages re-
lated to clustering, a lot of works can be consid-
ered as follows. For instance, in 2006, Chris Fra-
ley and Adrian E. Raftery made an enhancement
for "MCLUST" package to serve for normal mix-
ture modeling and model-based clustering. Si-
multaneously, Ryota Suzuki and Hidetoshi Shi-
modaira also contributed an R package so-called
"Pvclust" to measure the uncertainty in hierar-
chical clustering analysis using the bootstrap re-
sampling methods [5]. In 2007, Lokesh Kumar
and Matthias Futschik o�ered a package called
"Mfuzz" for fuzzy clustering of microarray data
aiming at overcoming drawbacks of hard clus-
tering in gene area [6]. Then, in 2011, another
clustering-related package called "clValid" was
released by Guy Brock at el. in order to evaluate
the clustering result, concerning internal, stabil-
ity and biological measures, respectively [7]. Be-
sides, the work of Daniel Mullner in 2013 with
a package so-called "fastcluster" based on C++

language boost performance of current cluster-
ing algorithms in R and Python both [8]. Fur-
ther, in 2015, Tal Galili contributed a package to
visualize, adjust and compare trees of hierarchi-
cal method [9]. Therefore, it can be noticed that
the clustering �eld has gained a lot of attention
from programmers year on year.
Nevertheless, one common point for these

works is that they just consider the discrete
object regardless probability density functions
(PDFs). Meanwhile, there are two primary ob-
jects in clustering, discrete element and proba-
bility density function (PDF). Although the for-
mer one is more simple and convenient to handle
due to less complex preprocessing data required,
it still has the drawback that it could not repre-
sent the whole data by only one point. In con-
trast, in spite of few initial preprocessing, the
later one is more advantageous since it is able to
fully demonstrate character of the whole data
[4]. Especially, this bene�t is even more crucial
in such a digital era nowadays. Thus, to ful-

�ll the aforementioned research gaps as well as
contributing more work in the �eld of clustering
for PDFs, this paper will take into account of
probability density functions in crisp clustering
problem with number of clusters known in ad-
vance.
From what has been stated above in this pa-

per, we propose an optimized code for non-
hierarchical algorithm-based clustering of PDFs
in R environment. Some interesting points can
be enumerated as follows. Firstly, a code con-
cerning the performance of clustering for PDFs is
suggested in R software for the �rst time. In ad-
dition, one more extra function are also supple-
mented to validate the clustering quality. Next,
we applied the code to execute some simulated
data sets to con�rm the accuracy of the code
prior to giving an excited real example as an ap-
plication. Finally, we extended the code for the
input which is the object image instead of digital
data. The achieved numerical result reveals a su-
perior performance compared with that in MAT-
LAB software in terms of computational time.
More importantly, the code is always available
for whom interested in clustering of PDFs or us-
ing this to serve education purpose.
The remaining structure of the paper is or-

ganized as follows. Section 2 brie�y intro-
duces some related basic knowledge. Section 3
outlines the main algorithm in the paper-non-
hierarchical algorithm. Next, section 4 presents
how to implement main functions of the code.
Section 5 then performs some numerical exam-
ples to check the code in addition to compar-
ing performance in MATLAB. Finally, Section
6 summarizes few conclusions of the whole work
along with the future direction.

2. PRELIMINARY

2.1. Estimating PDFs from

discrete elements

In reality, almost data are presented under forms
of discrete elements, hence, we need to estimate
the PDFs before making applications. There are
many non-parametric methods, as also paramet-
ric ones to estimate PDFs. Among them, kernel
method is one of the most popular ones in real-

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 175

VOLUME: 2 | ISSUE: 3 | 2018 | September

ity [10]. Its concept is shown brie�y as follows.
Let x1, x2, ..., xN is N discrete elements (N

observations) including n dimensions (n vari-
ables) which are employed to estimate PDFs.
The kernel formula is presented as follows:

f̂(x) =
1

Nh1h2...hn

N∑
i=1

n∏
j=1

Kj

(
x− xj
hj

)
, (1)

where hj =
(

4
N(n+2)

) 1
n+4 × σj is a bandwidth

parameter for the jth variable; Kj(·) is a ker-
nel function of the jth variable, which is usually
Gaussian, Epanechnikov, Biweight, etc.
Bandwidth parameter and the type of ker-

nel function have important roles in the esti-
mation. There are many opinions to select a
bandwidth parameter, but the optimal selection
has not been found. In this paper, the band-
width parameter is chosen based on the concept
of Scott [11] and the kernel function is the Gaus-

sian, where σj =

√
N∑

i=1
(xij−x̄j)2

N−1 is sample stan-

dard deviation for the jth variable.
It is noticed that estimating PDFs in one di-

mension is considered in this paper.
The clustering problem of probability density

functions is de�ned as follows:

De�nition 1. Let F be a set of PDFs, F =
{f1 (x) , f2 (x) , ..., fn (x)} , n > 2 and k be the
number of clusters given in advance. The re-
quirement of the crisp clustering problem is to
separate these PDFs according to value of k into
clusters C1, · · · , Ck such that

i)
k∑

i=1

#Ci = n, where #Ci is the number of

PDFs in cluster i.

ii) Ci ∩ Cj = ∅, i 6= j, i = 1, k, j = 1, k.

2.2. Evaluating similarity

between PDFs

In clustering problem, how to determine the sim-
ilarity between PDFs is extremely crucial since
it partly decides the clustering result [12]. Al-
though numerous similarity measures are pro-
posed for discrete elements, there is a restricted

number for PDFs. To the best of our knowl-
edge, L1 distance and cluster width are one of
the most popular. Thus, in this paper, we select
the cluster width to measure the similarity be-
tween PDFs. Its de�nition is brie�y expressed
as follows [13].

De�nition 2. Given n PDFs
f1 (x) , f2 (x) , . . . , fn (x) , (n > 2) de-
�ned on Rm, let fmax (x) =
max {f(x)1, f2 (x) , . . . , fn (x)}, the cluster
width is de�ned as

i) n = 2

w (f1, f2) ≡
‖f1 − f2‖1

2
=

∫
Rm

fmax (x) dx− 1

(2)

ii) n > 2

w(f1, f2, . . . , fn) ≡ ‖f1, f2, . . . , fn‖1

=

∫
Rm

fmax (x) dx− 1. (3)

De�nition 3. Let
g, (g1, g2, ..., gn), (f1, f2, ..., fm) are proba-
bility of density functions, we de�ne the cluster
width between a PDF and a set of PDFs
(cluster) is w[g ∪ {(f1, f2, ..., fm)}] and the
cluster width between two sets of PDFs (two
clusters) is w[{g1, g2, ..., gn} ∪ {f1, f2, ..., fm}].

2.3. SF index- an internal

validity measure index

After a partition is deduced from a clustering al-
gorithm, one needs to evaluate the goodness of
partition. Normally, the internal validity mea-
sure indexes intend to perform that purpose. For
internal measure index, the SF stated in [14] is
employed to assess the internal structure of clus-
ter. In detail, this measure is de�ned below.

SF =

k∑
i=1

∑
f∈Ci

‖f − fvi‖2

nmini 6=j

(
‖fvi − fvj‖2

) , (4)

where ‖fvi − fvj‖ is the L1 distance between
representing PDFs of the clusters Ci and Cj ;

176 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 2 | ISSUE: 3 | 2018 | September

fvj =

∑
fi∈Cj

fi

nj
is the representing probability

density function for each cluster with nj being
the number of PDFs in the cluster Cj .
From Eq. (4), we see that SF considers not

only the compactness among PDFs in one cluster
but also concerns the separation between clus-
ters. Therefore, it is reasonable to employ SF
in this paper as an internal measure index. The
smallest value of SF, the most valid optimal par-
tition indicates [14].

2.4. Extracting image features

In this section, we will present shortly how to
cluster for image objects based on their features.
Initially, we will read color feature from image
pixels into R software. From the pixel distribu-
tion of Grayscale or RGB scale, we can construct
one-dimensional or multi-dimensional PDF rep-
resenting for each image. These PDFs will be
the input for the employed algorithm to tackle
subsequent works. Besides, all processing steps
like reading image and presenting an image in
one-dimensional or multi-dimensional spaces are
performed in R software by some available pack-
ages.

3. NON-

HIERARCHICAL

ALGORITHM

The non-hierarchical algorithm �rstly proposed
by T.V.Van and Pham-Gia [13] presents a new
approach for clustering of PDFs with prior
number of clusters. The original idea is inspired
from the well-known k-means algorithm in
clustering of discrete elements. That is, from a
known number of clusters, an arbitrarily initial
partition is created to assign each probability
density function (PDF) into each cluster. These
PDFs will then reallocate to cluster such that
cluster width is the minimum.
Given n PDFs f1, f2, . . . , fn (n > 2) being

separated into k clusters C1, C2, . . . , Ck such

that
k∑

i=1

#Ci = n, denoting that C
(t)
i is the

cluster Ci, i = 1, k at iteration tth, the non-
hierarchical algorithm is shown as follows.

Step 1. Partitioning n PDFs into k random
clusters, we have initial clusters at the 1st

iteration C
(1)
1 , C

(1)
2 , . . . , C

(1)
k .

Step 2. For a speci�c fj , denoting

w
(
fj ∪ C(1)

i

)
=
∥∥∥fj ∪ C(1)

i

∥∥∥
1
, i = 1, k, j = 1, n

is the cluster width of set obtained by assigning

fj to clusters C
(1)
1 , computed according to Eq.

(2).

Consider just fj ∈ C(1)
h , there are two possible

cases as follows:
a) If w

(
fj ∪ C(1)

h

)
=

mini=1,...,k

{
w
(
fj ∪ C(1)

i

)}
, keep fj in

cluster C
(1)
h .

b) If there exist another C
(1)
s such that

w
(
fj ∪ C(1)

s

)
= mini=1,...,k

{
w
(
fj ∪ C(1)

i

)}
,

the fj will move to the cluster C
(1)
s to establish

new cluster in the 2nd iteration: C
(2)
s . Simulta-

neously, the old cluster C
(1)
h will detached fj to

form the new one C
(2)
h in next step.

Now, the new partition is formed:

C
(2)
1 , C

(2)
2 , . . . , C

(2)
k where fj has been moved

to the right cluster with the minimum cluster
width.
Step 3. Repeat Step 2 m times until no
more change for each PDF in each clus-
ter, that means all k clusters at the mth

iteration C
(m)
1 , C

(m)
2 , . . . , C

(m)
k satisfying

w
(
fj ∪ C(m)

s

)
= mini=1,...,k

{
w
(
fj ∪ C(m)

i

)}
.

Figure 1 is the diagram demonstrating for the
mentioned process.

4. IMPLEMENTATION

IN R SOFTWARE

4.1. Main program

The main program starting from line 1 to 149
aims to perform the non-hierarchical algorithm
in clustering for PDFs. It is called from com-
mand window of R by the line

cluster(f, k, x) (5)

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 177

VOLUME: 2 | ISSUE: 3 | 2018 | September

Fig. 1: Flowchart demonstrates process of non-

hierarchical algorithm.

where

f is the one-dimension PDFs to be grouped.
Normally, f is saved under the form of ma-
trix with each column representing for each
PDF;

k is the number of clusters known in ad-
vance. Usually, the value of k ranges from
2 to square root of number of PDFs;

x is value used for evaluating f on a de�ne
domain.

The non-hierarchical algorithm starts by cre-
ating and printing the initial partition matrix
(lines 7-9). Herein, we build a subroutine called
"createU" to perform this task. After the par-
tition is established, the next step assigns the
input PDFs into clusters in which PDFs belong
to (lines 12-17). Subsequently, computing clus-
ter width between each PDF with all clusters is
executed (lines 20-28). This step intends to cal-
culate the similarity level of PDF in each cluster
to be reference for later changes. Before going
to the while loop for updating the clusters, some
variables are created �rstly. For example, m and
d are respectively used to count the number of
elements and record the minimum cluster width
when observed PDF does not satisfy minimum
cluster width between it and cluster it belonging
to. Unew is employed to update the initial par-
tition matrix. Then, checking initial partition

matrix U, if U satis�es the condition, the al-
gorithm will stop and output the U as the �nal
partition (lines 49-51). Otherwise, updating ma-
trix U is performed starting from line 52. The
while loop for updating partition matrix will sus-
pend if m is equal to 0 meaning all PDFs satisfy
condition that the cluster width of a PDF to
cluster, which it is belonging to, is minimum.

4.2. Creating initial partition

matrix

The initial partition matrix is created by subrou-
tine so-called "createU" (lines 151-173) to ran-
domly make a partition before performing the
non-hierarchical algorithm. This function can
be used by following command

createU(k, npdf)

where k is the number of clusters and npdf is the
total number of PDFs initially.
Firstly, variable comp is created to record the

number of PDFs in each cluster (line 153). The
while loop then will generate a partition matrix
until none of cluster is empty. The variable B
is used to create a row column where each el-
ement represents the label of cluster each PDF
belonging to (lines 157-158). Next, lines 159-163
establish the matrix U based on vector B. Note
that here runif (1∗npdf, .5, k+.5) intends to gen-
erate a row vector with uniform distribution so
that each PDF is able to assign to one cluster
with equal probability.

4.3. Computing cluster width

The cluster width is calculated numerically
based on Monte-Carlo method. The sub-
routine WidthCluster(f, x) is responsible for
this task from lines 174-180. It is noticed
that f in command ((sum(rowMaxs(f, na.rm =
FALSE))/length(x))*(x[length(x)] - x[1])) must
contain two PDFs or more.

178 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 2 | ISSUE: 3 | 2018 | September

4.4. Validate clustering result

by SF-internal validity

measure index

After clustering PDFs, one needs to evaluate
these established clusters. The SF function will
perform this task by subroutine SF (f, U, x),
where inputs already mentioned (lines 181-227).
Note that variable id is a list to record PDFs of
each cluster and variable ni is a vector storing
number of PDFs of each cluster. After comput-
ing all these main variables, calculating repre-
senting PDFs is considered (lines 193-206). One
subroutine called L1 (lines 228-233) is employed
to compute distance between PDFs.

5. NUMERICAL

EXAMPLE

In this section, we employ the code written in
R to perform one simulated data set and two
applications. The �rst one is seven PDFs hav-
ing normal distribution separated into 3 clus-
ters. The numerical result of this data set will
be compared with that in MATLAB to have
some evaluations, especially the computational
time. Then, two applications are executed, one
is data about satisfaction level of student at Ton
Duc thang University, another is tra�c image.
For real data, the nominal partition is not de-
termined yet so that we just assess in terms of
computational time, SF and not comparing with
other software. Moreover, for each data set, the
performance is repeated 30 independent times to
assure the stability and accuracy. The �nal nu-
merical results are computed by average of these
30 times. The detail of each numerical result will
be presented later.

5.1. Simulated data

For this case, we consider a Benchmark dataset
in order to validate the accuracy of the code.
That is seven univariate normal probability den-
sity functions (PDFs) �rstly proposed in [13].
The structure of data is well-separated and less
overlapping leading to reducing the complexity
for clustering mission. Therefore, it is used to

test performance of a novel algorithm or algo-
rithm recoded in other programming environ-
ment like R. The detail of estimated parameters
can be referred to [13]. From these parameters,
seven PDFs are estimated and demonstrated in
Fig. 1. Clearly, from Figs. 2-3 clusters could be
de�ned as

C1 = {f1, f4} , C2 = {f2, f5, f7} , C3 = {f3, f6} .

The numerical result is shown in Table 1 and
Fig. 2. It is clear that both R and MATLAB
produce precise results compared with the nom-
inal partition with lowest SF 0.050. Neverthe-
less, the code written on R is more rapid than
in MATLAB since it just takes 0.016 seconds
in average in R instead of 0.038 in MATLAB.
Therefore, writing code on R not only provides
a new environment for users to experience but
also boosts the performance of non-hierarchical
algorithm in this case.

Fig. 2: Seven PDFs having univariate normal distribu-

tion in example 1 before clustering.

Table 1. Comparison of performance of
non-hierarchical algorithm for seven normal
PDFs in R and MATLAB software.
Software SF Computational

Time (seconds)

R 0.050 0.016

MATLAB 0.050 0.038

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 179

VOLUME: 2 | ISSUE: 3 | 2018 | September

Fig. 3: The clustering result of seven PDFs in example

1 by non-hierarchical algorithm in R.

5.2. Application to clustering

student satisfaction level at

Ton Duc Thang University

In this example, we take a real data to run by
R code. The data considers statistics of student
satisfaction levels at Ton Duc Thang University
(TDTU) toward lecture's teaching performance.
The data consists of 16 departments as follows.

1. Faculty of Foreign Languages

2. Faculty of Industrial Fine Arts

3. Faculty of Accounting

4. Faculty of Drupal Social Sciences and Hu-
manities

5. Faculty of Electrical Electronics Engineer-
ing

6. Faculty of Information Technology

7. Faculty of Applied Sciences

8. Faculty of Business Administration

9. Faculty of Civil Engineering

10. Faculty of Environment and Labor Safety

11. Faculty of Labor Relations and Trade
Unions

12. Faculty of Finance and Banking

13. Faculty of Mathematics and Statistics

14. Faculty of Sport Science

15. Faculty of Law

16. Faculty of Pharmacy

Herein, the data is preprocessed to remain valid
values and then computing the average satisfac-
tion score of each student to serve for estimating
the PDFs.
PDFs estimated from data are illustrated in

Fig. 4. One can see that the PDFs are pretty
overlapping so that hardly can algorithm clus-
ter correctly all PDFs. Furthermore, since the
number of clusters is undetermined, hence some
numbers are suggested to survey, including 2, 3
and 4 clusters. The most appropriate result is
measured in terms of SF index. If the SF value
is smaller, it means that the partition is better,
and the number of clusters will be taken based
on that.

Fig. 4: Sixteen PDFs estimated by sixteen faculties in

example 2 before clustering.

All numerical results corresponding to sug-
gested number of clusters are listed in Table 2.

Table 2. The result for three cases of k uses
non - hierarchical algorithm for sixteen PDFs

in R software.
k =2 k =3 k =4

Min of SF

Index 0.154 0.332 0.347

Mean of

Time (seconds) 0.112 0.285 0.295

180 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 2 | ISSUE: 3 | 2018 | September

From the Table 2, it can be said that the case
k = 2 has the smallest SF Index, so that we will
divide sixteen faculties into two clusters:

C1 = {f5, f11, f16} ,

C2 =

{
f1, f2, f3, f4, f6, f7,

f8, f9, f10, f12, f13, f14, f15

}
.

Based on the clustering result and comments
from the students on the lecturer during the sur-
vey, some main discussions are listed as follows:

- The Cluster 1 (C1) includes faculties: Elec-
trical Electronics Engineering, Labor Rela-
tions and Trade Unions, Pharmacy have av-
erage satisfaction scores from 3 to below
5 (it means from �slightly dissatisfaction�
level to �quite satisfaction� one) more than
the rest of the faculties. That is because
students have a lot of dissatis�ed opinions
with faculty members from teaching meth-
ods, teaching materials, student interac-
tion, enthusiasm, activity more than the
rest of the faculties.

- The Cluster 2 (C2) consisting of remaining
faculties has an average satisfaction score
from 5 to 6 (it means from �satisfaction�
level to �very satisfaction� one) higher than
Cluster 1. Although faculty members be-
longing to C2 received some unexpected
comments, almost comments are positive
such as good and speed teaching method,
enthusiastic lectures. As a result, students
give a pretty high level of satisfaction for
this group (C2).

From the above comments, it points out that
each department needs to take measures to im-
prove the bad points, promote the strengths of
lecturers to be better teaching so that students
is getting more and more satisfaction.

5.3. Application to clustering

tra�c images

In this example, we would like to demonstrate
an example for image object in implementation
section. Speci�cally, there are 121 real images
size 1920 × 1080 pixels extracted from a short

Fig. 5: The clustering result of sixteen PDFs in example

2 by non-hierarchical algorithm in R.

video in front of TDTU-Nguyen Huu Tho street
at night. Some sample images are represented in
Fig. 6. Firstly, these images are digitized to es-
timate corresponding PDFs. Then, these PDFs
are considered to be the input of the main algo-
rithm for clustering. Based on some prior knowl-
edge, some number of clusters are proposed, in-
cluding 2, 3 and 4 clusters. SF-based assessment
will be applied similarly to the previous example
to select the most suitable partition and number
of clusters.

Fig. 6: Some tra�c images extracted from a short video

on Nguyen Huu Tho Street at night.

The PDFs estimated are demonstrated in Fig.
7. It is obviously that almost PDFs are signif-
icantly overlapped resulting in challenging the
non-hierarchical algorithm to deduce a good par-
tition.

The numerical result is shown in Table 3. As
can be seen from the table that the case k = 2

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 181

VOLUME: 2 | ISSUE: 3 | 2018 | September

Fig. 7: 121 PDFs estimated by 121 tra�c images on

Nguyen Huu Tho Street at night in example 3

before clustering.

has the smallest SF index. This shows that at
every moment, there are just two main state
tra�c: tra�c jams and no tra�c jams. Other
states are not really clear in this situation. This
result also reveals an useful application of the al-
gorithm in real problem. Figure 8 is set of prob-

Table 3. The results for three cases of k using
non - hierarchical algorithm for 121 PDFs in

Example 3 in R software

k =2 k = 3 k = 4

Min of SF

Index 0.267 0.558 0.893

Mean of

Time (seconds) 2.273 4.686 13.546

ability density functions extracted from images,
so that we can see that the group of red prob-
ability functions are tra�c images classi�ed as
cluster of not tra�c jams and the group of light
blue probability are tra�c images classi�ed as
cluster of tra�c jams.

6. CONCLUSION

This paper provides an R code of non-
hierarchical algorithm using for clustering prob-
lem of probability density functions. This aims
to extend the range of this algorithm as well
as o�ering more options for whom interested
in clustering for PDFs. By advantages of R

Fig. 8: The clustering result of 121 PDFs in example 3

by non-hierarchical algorithm in R.

software, this would bring convenience for re-
searchers in addition to educators. Overall, the
structure of the code and how to implement it
are fully presented. Moreover, some simulations
and applications are also used to validate the ac-
curacy plus the computational time of the code.
The result shows that the code in R is supe-
rior than that in MATLAB regarding the com-
putational time. Furthermore, the source code
is completely shown in the Appendix section so
that one can refer for more detail.
Nevertheless, the provided code in this pa-

per is just presented in one dimension. There-
fore, two or more dimensions should be added
in order to expand the code as well as develop
the applications of the non-hierarchical method.
This would be a promising direction in our fu-
ture work.

References

[1] Ihaka, R., & Gentleman, R. (1996). R:
a language for data analysis and graph-
ics. Journal of computational and graphical
statistics, 5(3), 299-314.

[2] Fox, J., & Andersen, R. (2005). Using the R
statistical computing environment to teach
social statistics courses. Department of So-
ciology, McMaster University, 2-4.

[3] Muenchen, R. A. (2014). The popularity of
data analysis software. no. April.

182 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 2 | ISSUE: 3 | 2018 | September

[4] Nguyen Trang, T., & Vo Van, T. (2017).
Fuzzy clustering of probability density func-
tions. Journal of Applied Statistics, 44(4),
583-601.

[5] Suzuki, R., & Shimodaira, H. (2006). Pv-
clust: an R package for assessing the un-
certainty in hierarchical clustering. Bioin-
formatics, 22(12), 1540-1542.

[6] Kumar, L., & Futschik, M. E. (2007).
Mfuzz: a software package for soft clus-
tering of microarray data. Bioinformation,
2(1), 5.

[7] Brock, G., Pihur, V., Datta, S., & Datta,
S. (2011). clValid, an R package for cluster
validation. Journal of Statistical Software
(Brock et al., March 2008).

[8] Müllner, D. (2013). fastcluster: Fast hierar-
chical, agglomerative clustering routines for
R and Python. Journal of Statistical Soft-
ware, 53(9), 1-18.

[9] Galili, T. (2015). dendextend: an R pack-
age for visualizing, adjusting and compar-
ing trees of hierarchical clustering. Bioinfor-
matics, 31(22), 3718-3720.

[10] Vo Van, T. (2017). L 1-distance and classi�-
cation problem by Bayesian method. Jour-
nal of Applied Statistics, 44(3), 385-401.

[11] Scott, D. W. (2015). Multivariate density
estimation: theory, practice, and visualiza-
tion. John Wiley & Sons.

[12] Ho-Kieu, D., Vo-Duy, T., Vo Van, T., &
Nguyen Trang, T. (2018). A Di�erential
Evolution-Based Clustering for Probability
Density Functions. IEEE Access, 6, 41325-
41336.

[13] Vo Van, T., & Pham-Gia, T. (2010). Clus-
tering probability distributions. Journal of
Applied Statistics, 37(11), 1891-1910.

[14] Vo Van, T., Nguyen Trang, T., & Che-
Ngoc, H. (2016, March). Clustering for
probability density functions based on Ge-
netic Algorithm. In Applied Mathematics
in Engineering and Reliability, Proceedings

of the 1st International Conference on Ap-
plied Mathematics in Engineering and Re-
liability (Ho Chi Minh City, Vietnam, May
2016) (pp. 51-57).

About Authors

Tran Thi Ngoc DIEM received the Bachelor
degree in Statistics at Ton Duc Thang Univer-
sity, Ho Chi Minh City, Vietnam in 2018. Her
research interests include statistics, machine
learning, big data and data analysis.

Tom VINANT is a student from a French
engineering school, Polytech Lille, in Statistics
and Computer Science Department for 3 years.
He has been working on this thesis subject
during a two months internship at Institute
for Computational Science (INCOS), Ton Duc
Thang University, Ho Chi Minh City, VietNam.

Théo Marc COLOMBANI is a student
from the French engineering school Polytech
Lille. He has been studying in Statistics and
Computer Science Department for 3 years. He
has been working on this subject at Institute
for Computational Science (INCOS), Ton Duc
Thang University, Ho Chi Minh City, VietNam
and supervised by Thao Trang Nguyen.

Kieu Diem HO received the B.Sc degree in
Applied Mathematics at Can Tho University,
Can Tho City, Vietnam and the M.Sc degree
also in Applied Mathematics at University of
Orléans, France. Her research interests include
unsupervised recognition, supervise recognition,
particularly analyzing and applying techniques
to discover the potential information in data
science. She was an Assistant Researcher at
Institute for Computational Science (INCOS),
Ton Duc Thang University, Ho Chi Minh city,
Vietnam. Currently, she is a doctoral student
in computer science at Polytech Tours, Tours
University, France.

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 183

VOLUME: 2 | ISSUE: 3 | 2018 | September

APPENDIX - R CODE FOR1

IMPLEMENTATION OF NON-2

HIERARCHICAL ALGORITHM3

#Function to clustering of PDFs based on4

non-hierarchical method5

cluster <- function(f, k, x)6

{7

#Randomly create an initial partition matrix8

iter <- 09

U <- createU(k, npdf)10

print("Initial matrix")11

print(U)12

#Attach the value of the element to13

the cluster that it belongs to14

C <- vector('list', k)15

for (i in 1:k)16

{17

id = which(U[i,] %in% c(1))18

C[[i]] = f[,id]19

}20

#Calculates the cluster width of21

each element to the clusters22

W <- matrix(0, k, ncol(f))23

for (j in 1:ncol(f))24

{25

for (i in 1:k)26

{27

W[i,j] =28

ClusterWidth(cbind(f[,j], C[[i]]), x)29

}30

}31

m <- 032

Unew <- U33

j <- 134

d <- c()35

#Start while loop36

while (j < ncol(f)+.1) 37

{ 38

#Identify which elements belong to which 39

cluster 40

r = which(U[,j] %in% c(1)) 41

#Identify the element does not satisfy the 42

cluster that it belongs to 43

if (W[r,j] != min(W[,j])) 44

{ 45

temp1 = min(W[,j]) 46

d = c(d, temp1) 47

m = m + 1 48

} #End if loop 49

j = j + 1 50

} #End while loop 51

if (length(d) == 0) 52

{ 53

U = Unew #Output clustering results 54

} else { 55

dmin <- min(d) 56

#Update the partition matrix 57

j <- 1 58

while (j < ncol(f)+.1) 59

{ 60

#Identify which elements belong to which 61

cluster 62

r = which(U[,j] %in% c(1)) 63

for (i in 1:k) 64

{ 65

if ((W[r,j] != min(W[,j]))&& (min(W[i,j]) == 66

dmin)) 67

{ 68

Unew[r,j] = 0 69

Unew[i,j] = 1 70

} 71

} 72

184 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 2 | ISSUE: 3 | 2018 | September

j = j + 173

U=Unew74

} #End while loop75

print("Number of iterations")76

iter = iter + 177

print(iter)78

print(U)79

#End While loop80

###################81

#Update process82

while (m > 0)83

{84

print("Number of iterations")85

iter = iter + 186

print(iter)87

Cnew = vector('list', k)88

for (i in 1:k)89

{90

idd = which(U[i,] %in% c(1))91

Cnew[[i]] = f[,idd]92

}93

Wnew = matrix(0, k, ncol(f))94

for (j in 1:ncol(f))95

{96

for (i in 1:k)97

{98

Wnew[i,j]99

= ClusterWidth(cbind(f[,j], Cnew[[i]]), x)100

}101

}102

m <- 0103

Unew <- U104

j <- 1105

dnew <- c()106

while (j < ncol(f)+.1)107

{ 108

#Identi�es which elements belong to which 109

cluster 110

r = which(U[,j] %in% c(1)) 111

#Identify the element does not satisfy the 112

cluster it belongs to 113

if (Wnew[r,j] != min(Wnew[,j])) 114

{ 115

temp3 = min(Wnew[,j]) 116

dnew = c(dnew, temp3) 117

m = m + 1 118

} 119

j = j + 1 120

} #End while loop 121

if (length(dnew) == 0) 122

{ 123

U = Unew #Output clustering results 124

} else { 125

dminnew <- min(dnew) 126

#Update the partition matrix 127

j <- 1 128

while (j < ncol(f)+.1) 129

{ 130

#Identi�es which elements belong to which 131

cluster 132

r = which(U[,j] %in% c(1)) 133

#End Identi�cation 134

for (i in 1:k) 135

{ 136

if ((Wnew[r,j] != min(Wnew[,j])) && 137

(min(Wnew[i,j]) == dminnew)) 138

{ 139

Unew[r,j] = 0 140

Unew[i,j] = 1 141

} 142

} 143

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 185

VOLUME: 2 | ISSUE: 3 | 2018 | September

j = j + 1144

} #End while loop145

U = Unew146

print(U)147

} #End If else the second148

} #End While Loop from #Cluster149

} #End If else the �rst time150

U #Output clustering results151

} #End Cluster function152

Function to create initial partition matrix153

createU<-function(k, npdf)154

{155

comp <- rep(0, k)156

iter <- 0157

while (comp[which.min(comp)] == 0)158

{159

B <- runif(1*npdf, .5, k + .5)160

B <- round(B)161

U <- matrix(rep(0, k*npdf), k, npdf)162

for (i in 1:npdf)163

{164

U[B[i],i] = 1165

}166

for (i in 1:k)167

{168

temp = sum(U[i,])169

comp[i] = temp170

}171

comp172

iter = iter + 1173

}174

U175

}176

#Function to compute cluster width177

WidthCluster <- function(f,x)178

{ 179

((sum(rowMaxs(f, na.rm = 180

FALSE))/length(x))*(x[length(x)] - x[1])) - 181

1 182

} 183

#Function to compute SF index 184

SF <- function(f,U,x) 185

{ 186

k <- nrow(U) 187

id <- list() 188

ni <- c() 189

for (i in 1:k) 190

{ 191

id[[i]] = which(U[i,] %in% c(1)) 192

temp1 = length(id[[i]]) 193

ni = c(ni, temp1) 194

} #End for loop 195

#Compute representing probability density 196

function 197

fv <- list() 198

for (i in 1:k) 199

{ 200

idd = which(U[i,] %in% c(1)) 201

if (ni[i] == 1) 202

{ 203

fv[[i]] = f[,idd] 204

} else { 205

fv[[i]] = (1/ni[i])*(rowSums(f[,idd])) 206

} 207

} 208

fv 209

li <- c() 210

for (i in 1:k) 211

{ 212

for (j in 1:ni[i]) 213

186 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 2 | ISSUE: 3 | 2018 | September

{214

temp2 = (L1(f[,id[[i]][j]], fv[[i]], x))2215

li = c(li, temp2)216

}217

}218

di <- c()219

for (i in 1:(k-1))220

{221

for (j in (i+1):k)222

{223

temp3 = (L1(fv[[i]], fv[[j]], x))2224

di = c(di, temp3)225

}226

}227

SF <- ((1/ncol(f))*sum(li))/min(di)228

SF229

}230

#Function to compute L1 distance231

L1 <- function(f1, f2, x)232

{233

sum(abs(f1 - f2))/length(x)*(max(x) -234

min(x))235

}236

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 187

khangnt
Typewriter
"This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0)."

	INTRODUCTION
	PRELIMINARY
	Estimating PDFs from discrete elements
	Evaluating similarity between PDFs
	SF index- an internal validity measure index
	Extracting image features

	NON-HIERARCHICAL ALGORITHM
	IMPLEMENTATION IN R SOFTWARE
	Main program
	Creating initial partition matrix
	Computing cluster width
	Validate clustering result by SF-internal validity measure index

	NUMERICAL EXAMPLE
	Simulated data
	Application to clustering student satisfaction level at Ton Duc Thang University
	Application to clustering traffic images

	CONCLUSION

