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Abstract. When doing research scienti�c is-

sues, it is very signi�cant if our research issues

are closely connected to real applications. In re-

ality, when analyzing data in practice, there are

frequently several models that can appropriate to

the survey data. Hence, it is necessary to have

a standard criteria to choose the most e�cient

model. In this article, our primary interest is to

compare and discuss about the criteria for select-

ing model and its applications. The authors pro-

vide approaches and procedures of these methods

and apply to the tra�c violation data where we

look for the most appropriate model among Pois-

son regression, Zero-in�ated Poisson regression

and Negative binomial regression to capture be-

tween number of violated speed regulations and

some factors including distance covered, motor-

cycle engine and age of respondents by using

AIC, BIC and Vuong's test. Based on results on

the training, validation and test data set, we �nd

that the criteria AIC and BIC are more consis-

tent and robust performance in model selection

than the Vuong's test. In the present paper, the

authors also discuss about advantages and disad-

vantages of these methods and provide some of

suggestions with potential directions in the future

research.
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1. Introduction

The model selection criteria is a very crucial
�eld in statistics, economics and several other ar-
eas and it has numerous practical applications.
This issue is currently researched theoretically
and practically by several statisticians and has
gained many attentions in the last two decades,
especially in regression and econometric mod-
els. There are three most commonly used model
selection criteria including Akaike information
criterion (AIC), Bayesian information criterion
(BIC) and Vuong's test, which are compared
and discussed in this paper. AIC is �rst pro-
posed by Akaike [1] as a method to compare dif-
ferent models on a given outcome. Meanwhile,
BIC is proposed by Schwarz [20], is a criterion
for model selection among a �nite set of models.
Vuong's test has been proposed by Vuong [24] in
the literature aiming at selecting a single model
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regardless of its intended use. All three crite-
ria are the most widespread criteria for choosing
model.

Until today, these problems have been stud-
ied and utilized in numerous areas. AIC has
been researched and applied extensively in lit-
erature such as: Snipes et al. [19] employ AIC
and present about an example from wine rat-
ings and prices, Taylor et al. [21] introduce in-
dicators of hotel pro�tability: Model selection
using AIC, Charkhi et al. [4] research about
asymptotic post-selection inference for the AIC,
Chang et al. [3] present about Akaike Informa-
tion Criterion-based conjunctive belief rule base
learning for complex system modeling, etc.

In addition, BIC is also utilized extensively in
literature for example: Neath et al. [16] intro-
duce about regression and time series model se-
lection using variants of the Schwarz information
criterion. Cavanaugh et al. [2] present about
generalizing the derivation of the BIC. Weakliem
[27] introduce about a critique of the Bayesian
information criterion for model selection. Neath
et al. [15] present about a Bayesian approach to
the multiple comparisons problem. Neath et al.
[17] present about the BIC: background, deriva-
tion, and applications. Nguefack-Tsague et al.
[23] focus on introduce about Bayesian informa-
tion criterion, etc.

Similarly to AIC and BIC, Vuong's test [24]
is also used largely in literature for instance:
Clarke [5] employ Vuong's test to introduce
a simple distribution-free test for non-nested
model selection, Theobald [22] utilize Vuong's
test to present a formal test of the theory of
universal common ancestry, Lukusa et al. [13]
use Vuong's test to evaluate whether the zero-
in�ated Poisson (ZIP) regression model is con-
sistent with the real data, Dale et al. [6] perform
model comparison using Vuong's test to estimate
of nested and zero-in�ated ordered probit mod-
els, Schneider et al. [18] present about model
selection of nested and non-nested item response
models using Vuong's test, etc.

Our main objective in this paper is to provide
researchers an overview of the criteria in model
selection for the tra�c violation data. The rest
of the paper is organized as follows. In Section
2, we present approaches and procedures of the

criteria for choosing model including Akaike in-
formation criterion (AIC), Bayesian information
criterion (BIC) and Vuong's test. In Section 3,
these methods are applied to a real data which
could help readers to easily assess them. Some
of suggestions and some potential directions for
the further research are devoted in Section 4.
Finally, some conclusions and remarks are given
in Section 5.

2. Some of Criteria for

Model Selection

In this section, we present approaches and proce-
dures of ubiquitous methods to choose the most
e�cient model consisting of Akaike Information
Criteria (AIC), Bayesian Information Criterion
(BIC) and Vuong's test.

2.1. Akaike Information
Criteria (AIC)

AIC is �rst proposed by Akaike [1] as a method
to compare di�erent models on a given outcome.
The AIC for candidate model is de�ned as fol-
lows:

AIC := −2`(θ̂|y) + 2K, (1)

where K is the number of estimated parameters
in the model including the intercept and `(θ̂|y)
is a log-likelihood at its maximum point of the
estimated model. The rule of choice: the smaller
the value of AIC is, the better the model is.

2.2. Bayesian Information
Criterion (BIC)

BIC is �rst introduced by Schwarz [20], one
sometimes calls the Bayesian information cri-
terion (BIC) or Schwarz criterion (also SBC,
SBIC) which is a criterion for model selection
among a �nite set of models. The BIC for can-
didate model is de�ned as follows:

BIC := −2`(θ̂|y) +K ln(n), (2)

where n is a sample size; K is the number of
estimated parameters in the model including the

294 c© 2019 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 3 | ISSUE: 1 | 2019 | March

intercept and `(θ̂|y) is the log-likelihood at its
maximum point of the estimated model. The
rule of selection: the smaller the value of BIC
is, the better the model is. The procedure for
applying AIC and BIC are given as follows:

Step 1: Selecting candidate models which
can be �tted to the data set.

Step 2: Estimating unknown parameters of
models.

Step 3: Finding values of AIC and BIC by
using the formulas (1) and (2), respectively.

Step 4: Basing on the rule of choice, one
can decide the most suitable model.

2.3. Vuong's Test

Vuong's test [24] is one of the ubiquitous cri-
teria for choosing model and it is often used
to the data set with no missing values. Let
f1(Y |X,Z,W ;α1) and f2(Y |X,Z,W ;α2) be
two non-nested probability models. Let α̂1 and
α̂2 be a consistent estimator of α1 and α2 un-
der the model f1 and f2, respectively. Letting
hypotheses

• H0: The two models are equally closed to
the true data.

• H1: Model 1 is closer than model 2.

The Vuong's test statistics is provided as follows;
(see Mouatassim and Ezzahid [14]):

V = V (α̂1, α̂2) =

√
n

[
1

n

n∑
i=1

mi (α̂1, α̂2)

]
h (α̂1, α̂2)

,

(3)

where

h2 (α̂1, α̂2)

=
1

n

n∑
i=1

m2
i (α̂1, α̂2)−

[
1

n

n∑
i=1

mi (α̂1, α̂2)

]2
The detailed calculation of V is provided in Ap-
pendix. Note that:

• mi (α̂1, α̂2) = ln

(
f1 (Yi|Xi, Zi, α̂1)

f2 (Yi|Xi, Zi, α̂2)

)
,

where fj (Yi|Xi, Zi, α̂j) , is the predicted
probability of an observed count for case i
from the model j, j = 1, 2, respectively.

• Moreover for the complete case, V can be
easily obtained from the package pscl in R
language, (Zeileis at el. [28]).

At the signi�cant level α, the decision rule is
given as follows:

• If V > Qα/2, choose model 1.

• If V < −Qα/2, choose model 2.

• If |V | < Qα/2, both models are equivalent.

where Qα/2 is an upper quantile of standard nor-
mal distribution at the level α/2. Similar to al-
gorithms for AIC and BIC, to perform Vuong's
test, we need to do through following steps:

Step 1: Choosing candidate models which
can be �tted to the data set.

Step 2: Estimating unknown coe�cients of
models.

Step 3: Calculating V by using (3)

Step 4: Basing on the rule of choice, one
can select the most compatible model.

Note that: Step 1 is a very important step in
practice, basing on characteristics of the data
set, one can choose some reasonable models to
�t. For example, if the data set is a binary, then
candidate models are considered such as logis-
tic regression model, probit model and so on. If
the data set is class of count data, one can uti-
lize some of models such as: Poisson regression
model, binomial regression model, negative bi-
nomial regression model and so on. If the data
set is a zero-in�ated or imbalance data, zero-
in�ated Poisson (ZIP) regression model, zero-
in�ated binomial (ZIB) regression model, and
zero-in�ated negative binomial (ZINB) regres-
sion model could be more plausible candidates.
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3. Models for Violated

Speed Regulation

The data set utilized in this analysis is from a
motorcycle survey study regarding road tra�c
regulations conducted in Taiwan by the Ministry
of Transportation and Communication in 2007.
This data set has been used in the paper "Semi-
parametric estimation of a zero-in�ated Poisson
(ZIP) regression model with missing covariates"
by Lukusa et al. [13]. This study consists of
7,386 respondents involving 1122 missing val-
ues. Before applying the criteria to select opti-
mal models, one may require the data having no
missing values. Hence, we need to remove all of
missing values and displayed in the Tab. 1. The
bar graph of the outcome variable Y is exhibited
in Fig. 1 (Appendix). As can be observed from
the Tab. 1 and the Fig. 1 that the number of
people violating of speed regulations in Taiwan
2007 is very small. The data set contains most
of zeros in Y which is usually called zero-in�ated
count data. With this type of data set, some of
zero-in�ated models may be more appropriate
than other models. In this section, we investi-
gate three following models: Zero-in�ated Pois-
son (ZIP) regression model denoted byM1, Pois-
son regression model called M2 and M3 stands
for Negative binomial (NB) regression model.
The forms of these models are brie�y given in
the Appendix. Our aim is to evaluate which
model is more appropriate for modeling between
the number of violated speed regulation (Y )
with some factors such as Distance-covered (X),
Motorcycle-engine (Z) and the Age of respon-
dents (W ). Firstly the data is randomly split
into three data sets, namely, training, valida-
tion and test with respect to the percentage
of 60% − 20% − 20%. This means 60% of the
whole data is used to train the three models
Mi, i = 1, 2, 3, with results as shown in the Tabs.
2, 3 and 4, respectively. Next, the validation
data which is also randomly extracted by 20%
of the full data is then used for selecting the most
appropriate model while the remaining test data
is to check accuracy when we do a performance
of forecast with those models. The criteria AIC,
BIC, Vuong's test, mean square error (MSE) and
accuracy are respectively computed to each data
set and each model for comparisons.

Descriptions Variables Re

Distance-covered X 6262
(km a year)
1. Under 1,000 X = 1 1752
2. 1,000-2,999 X = 2 1711
3. 3,000-9,999 X = 3 1856
4. Over 1,000 X = 4 943
Number-Violation Y 6262
(in a year)
1. Never violation Y = 0 5637
2. One violation Y = 1 380
3. Two violations Y = 2 169
4. Three violations Y = 3 59
5. Four violations Y = 4 11
6. Five violations Y = 5 2
7. Six violations Y = 6 3
8. Seven violations Y = 7 1
Motorcycle-engine Z 6262
(cubic centimeters (cc))
1. Under 50 Z = 1 1303
2. 50-249 Z = 2 4153
3. 250-549 Z = 3 272
4. Over 550 Z = 4 534
Respondent's age W 6262
(years old)
1. Under 18 W = 1 3
2. 18-19 W = 2 142
3. 20-29 W = 3 1395
4. 30-39 W = 4 1607
5. 40-49 W = 5 1508
6. Over 50 W = 6 1607

Tab. 1: Frequency of respondents (Re) in data set after
deleting missing values.

The ZIP model (M1) is composed of two parts
separately, where the former is called count
model with coe�cients denoted by β and the
latter is the so-called in�ation model with co-
e�cients denoted by γ, see Equation ( 5. ).
As can be seen from the Tab. 2, all esti-
mated coe�cients of zero-in�ated part are sta-
tistically signi�cant at the level 5% thanks to
all P-values are less than 0.05. In contrast, in
the count model, the Distance-covered (X) and
Motorcycle-engine (Z) are not signi�cant, ex-
cept the Age (W ). The factor Age a�ects the
number of tra�c violations for both parts in
the sense that if W is increasing and other fac-
tors are assumed to be unchanged, then the ex-
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pected number of violation is de�nitely reduced
and the probability of not violating is clearly in-
creasing since we have β̂3 = −0.23536 < 0 and
γ̂3 = 0.19547 > 0, respectively.

For the Poisson regression model (M2) and
the Negative binomial regression model (M3),
we also see the statistical signi�cance of esti-
mated coe�cients based on P-values are very
small (≈ 0). The two factors X and Z with
positive coe�cients imply that they increase the
incidence rate (see µ in (11) and (12)) of num-
ber of tra�c violations while W makes it to be
decreasing as in the case of ZIP model, see Tab.
3 and 4.

We now turn to discuss which model is better.
Based on results represented in the Tab. 5 and
6, the smallest value AIC and BIC on validation
data are respectively 1013.404 and 1033.937 and
both are produced by the model M1. One can
also see this con�rmation on the training and
test data sets. Hence, the model M1 (ZIP) is
the most plausible model in comparison to the
models M3 and M2. However, by Vuong's test
results on the validation set, see Tab. 8, it sug-
gests that the modelM1 is more preferable than
the model M2, but it is equivalent to the model
M3 (P-value = 0.1 > 0.05). This equivalence is
also con�rmed by the same mean square error
MSE = 0.3488 and the same accuracy 90.42%
on the validation data, see Tabs. 10 and 11.
When checking on the test set, the modelM1 has
a slightly better performance with the smallest
MSE 0.2811, the greatest accuracy 90.60% and
similarly result if using Vuong's test. Our result
is consistent to Lukusa et al. It also shows that
the information criteria AIC and BIC are more
robust than the Vuong's test in model selection.
[13].

4. Discussion and some

potential directions for

further research

It can be seen that, to consider the compati-
bility of two models, we can use some criteria
such as: Vuong's test, Akaike Information Cri-
teria (AIC) and Bayesian Information Criterion

(BIC). These formulas have the same character-
istics that can be derived from model's likeli-
hood functions and results of maximum likeli-
hood estimates (MLE). Nevertheless, if AIC or
BIC is used to consider the appropriateness of
models, one needs to calculate separately each
formula and compare values together with the
decision rule: the smaller the value of AIC or
BIC is, the better the model is, but the short-
coming is sometimes one may not know how
to determine whether di�erences between two
values AIC (resp. BIC) is statistically signi�-
cant or not. In case of using Vuong's test, we
only need to compute the statistic given in (3)
and follow the rule of choice or �nd the P-value
which can help us di�erentiate two models sig-
ni�cantly. However, the Vuong's test is not more
robust than AIC and BIC in model selection as
shown in the Section 3. .

For AIC and BIC, AIC is very ubiquitous in
econometrics, while BIC is more commonly uti-
lized in sociology, see Weakliem [27]. It can be
seen that, BIC becomes to AIC if K = ln(n).
To see the relationship between formula (1), (2),
and Vuong's test, the problem is given as fol-
lows: Let D is an observed data (a real data). A
number of possible models Mk for D are consid-
ered, with each model having a likelihood func-
tion L(D|θk;Mk) and θk are unknown param-
eters need to be estimated with pk parameters.
For simplicity's sake, let `(θk) = ln[L(D|θk;Mk)]

and θ̂k be an estimator of θk by using the maxi-
mum likelihood estimate (MLE). Assessment of
the candidate models can be carried out as a
sequence of comparisons between pairs of mod-
els. It is more convenient to consider model M1

andM2. The di�erence of two values AIC (resp.
BIC) obtained from two certain models can be
expressed as follows:

∆AIC := −2[`(θ̂2)− `(θ̂1)] + 2(p2 − p1) (4)

∆BIC := −2[`(θ̂2)− `(θ̂1)] + (p2 − p1) ln(n),
(5)

and the Vuong's test can be rewritten as:

V :=
`(θ̂1)− `(θ̂2)
√
nh(θ̂1, θ̂2)

, (6)

where h2((θ̂1, θ̂2)) denotes sample variance of the

di�erence of log-likelihood `(θ̂1)− `(θ̂2).
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From this point of view, one may prefer the
�rst model M1 than the second model M2 if
∆AIC,∆BIC and V are positive values.

AIC is a very widespread formula, thus there
are several scholars have researched and im-
proved it by some adjustments. List of modi�ed
AIC statistics are given as follows:

• First denoted by AICc is the corrected AIC
for sample size

AICc := AIC +
2K(K + 1)

n−K − 1
. (7)

• Next is the AIC weight of the model Mk

de�ned by

AICw(k) :=

exp

(
−1

2
AICc(k)

)
R∑
k=1

exp

(
−1

2
AICc(i)

) , (8)

where R is number of possible candidate
models. The AICw(k) is the weight of
the evidence of the model Mk with respect
to other candidate models, i.e. the model
has the highest AICw is considered as the
strongest model.

• Evidence ratio of the model Mk is deter-
mined by

ER(k) :=
AICwbest

AICw(k)
, (9)

where AICwbest is the AIC weight of the
best (true) model. This ratio measures how
decisive the evidence in the sense that the
model with the smallest ER is the most ap-
propriate model with respect to other can-
didate models.

Regarding applicability, Vuong's test, Akaike
Information Criteria (AIC) and Bayesian Infor-
mation Criterion (BIC) are only applicable for
complete data i.e. no missing values. In sev-
eral practical applications, some elements in the
given data set are usually missing. Hence, these
traditional criteria may be no longer suitable for
selecting models and if we remove all missing
elements, it could lead to the biasness in infer-
ences. Therefore, it is necessary to improve the

above formulas with the possibility of dealing
with missing data. To the best of our knowl-
edge, no scholar has studied this problem yet.
These are potential research directions in the
next time. Some of methods to solve this is-
sue are very ubiquitous and prevalent. Little
[12] reviewed six methods to solve the missing
data problem that are complete-case (CC) anal-
ysis, available-case (AC) methods, least squares
(LS) on imputed data, maximum likelihood
(ML), Bayesian methods and multiple imputa-
tion (MI). Zhao and Lipsitz [29] proposed the
inverse probability weighting (IPW) method.
Wang et al. [26] developed a regression calibra-
tion (RC) method. Wang et al. [25] introduced
the joint conditional likelihood (JCL) method.
In addition, we can combine methods to provide
a robust tool to solve this problem. For instance:
Han [8] presented multiply robust estimation in
regression analysis with missing data where the
IPW and MI method are combined together.

About the expansion of above issues, it is sim-
ilar to the study of regression models, the tradi-
tional regression models such as logistic regres-
sion model, zero-in�ated binomial (ZIB) regres-
sion model, zero-in�ated Poisson (ZIP) regres-
sion model, etc, coe�cients cannot be directly
estimated if some covariates having missing val-
ues. Hence, one needs to have some new ap-
proaches to estimate parameters in this situa-
tion. For instance, Wang et al. [25] employed
the joint conditional likelihood (JCL) estima-
tor in logistic regression with missing covari-
ates data. Hsieh et al. [9] extended method of
Wang et al. (2002) to introduce a semiparamet-
ric analysis of randomized response data with
missing covariates in logistic regression. Lee et
al. [11] also extended method in Wang et al.
(2002) to present a semiparametric estimation
of logistic regression model with missing covari-
ates and outcome. Pho et al. [30] discussed
about three ubiquitous approaches to handle the
issues having missing data. Diallo et al. [7] in-
troduced an IPW estimator of the parameters of
a ZIB regression model with missing-at-random
covariates. Lukuasa et al. [13] presented a semi-
parametric estimation of a zero-in�ated Poisson
(ZIP) regression model with missing covariates,
etc.
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5. Conclusion

We reviewed widespread methods for selecting
the most e�cient model: Vuong's test, Akaike
Information Criteria (AIC) and Bayesian In-
formation Criterion (BIC). The approach and
procedure of these methods and application to
tra�c violation data are provided step by step.
Based on results on the training, validation and
test data set, we �nd that the criteria AIC and
BIC have a more consistent and robust per-
formance in model selection than the Vuong's
test in this case. Besides, some advantages and
disadvantages of these methods have been dis-
cussed and compared in the paper. Further-
more, the authors also suggest some potential
research directions in the next time.
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Appendix

The detailed calculation of V

V =

√
n

[
1

n

n∑
i=1

mi (α̂1, α̂2)

]
{
1

n

n∑
i=1

[mi (α̂1, α̂2)−m]2
} 1
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=

√
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]
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=

√
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=

√
n

[
1

n

n∑
i=1

mi (α̂1, α̂2)

]
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i (α̂1, α̂2)−m2
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=
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[
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]
{
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i (α̂1, α̂2)−

[
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mi (α̂1, α̂2)

]2} 1
2

=

√
n

[
1
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mi (α̂1, α̂2)

]
h (α̂1, α̂2)

where m =
1

n

n∑
i=1

mi (α̂1, α̂2) , and

h2 (α̂1, α̂2) =
1

n

n∑
i=1

m2
i (α̂1, α̂2)

−

[
1

n

n∑
i=1

mi (α̂1, α̂2)

]2
.

Zero-in�ated Poisson (ZIP)
regression model

Lambert [10] propose the parametric ZIP regres-
sion model in which the non-susceptible proba-
bility (mixing weight) p is linked to X via a logit-
linear predictor, p = H(γTX ) for H(u) = [1 +
exp(−u)]−1, and the Poisson mean λ is linked
to X via a log-linear predictor, λ = exp(βTX ).
where γ and β are unknown parameters need
to be estimated. In the present paper, X =

(X,Z,W )T and so the ZIP model can be ex-
pressed as follows:

P (Y = y|X,Z,W ) = H(γTX )I(y = 0)+

+ [1−H(γTX )]
exp[− exp(βTX )][exp(βTX )]y

y!
(10)

for y = 0, 1, 2, . . . , where γ = (γ0, . . . , γ3)T is
called coe�cients of zero-in�ation model while
β = (β0, . . . , β3)T is called coe�cients of count
model, see more details in Lambert [10] and
Lukusa et al. [13].

Poisson regression model

The Poisson incidence rate µ is determined by
a set of p regressor variables (the X's). The
expression relating these quantities is

µ = exp (β0 + β1X1 + · · ·+ βnXp) . (11)

An ubiquitous Poisson regression model for an
observation i is written as follows

P (Yi = yi|µi) =
e−µi (µi)

yi

yi!
,

where µi = exp (β0 + β1X1i + · · ·+ βpXpi) , and
β0, β1, . . . , βn are regression coe�cients need to
be estimated.

Negative binomial regression
model

The mean of y is determined by the exposure
time t and a set of p regressor variables (the
X's). The expression relating these quantities is

µi = exp (ln(ti) + β0 + β1X1i + · · ·+ βpXpi) .
(12)

The widespread negative binomial regression
model for an observation i is given by

P (Yi = yi|µi, α) =
Γ
(
yi + α−1

)
Γ (α−1) Γ (yi + 1)

×
(

1

1 + αµi

)α−1 (
αµi

1 + αµi

)yi
where β0, β1, . . . , βp are unknown coe�cients
need to be estimated. In this paper, p = 3 and
the parameter α is taken to 1 which is automat-
ically estimated by the package "pscl" in R .
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Fig. 1. Frequency of violations of speed regulations in Taiwan 2007.

Count Coe�. Estimate Std. Error z value Pr(> |z|)
Intercept 0.31028 0.37714 0.823 0.41067

X 0.07804 0.07061 1.105 0.26904
Z 0.11969 0.08031 1.490 0.13614
W -0.23536 0.07102 -3.314 0.00092

Zero-in�ated Estimate Std. Error z value Pr(> |z|)
Intercept 4.16321 0.50823 8.192 2.58e-16

X -0.31510 0.09374 -3.362 0.000775
Z -1.25280 0.14906 -8.405 < 2e-16
W 0.19547 0.08847 2.209 0.027152

Tab. 2: Estimates of the model M1 (ZIP model).

Estimate Std. Error z value Pr(> |z|)
Intercept -3.07651 0.22958 -13.401 <2e-16

X 0.29910 0.04154 7.200 6e-13
Z 0.88207 0.04166 21.174 <2e -16
W -0.36958 0.03918 -9.433 <2e-16

Tab. 3: Estimates of the model M2 (Poisson model).

Estimate Std. Error z value Pr(> |z|)
Intercept -3.23072 0.29809 -10.838 < 2e-16

X 0.34635 0.05465 6.337 2.34e-10
Z 0.98898 0.06208 15.931 < 2e-16
W -0.42228 0.05024 -8.405 < 2e-16

Tab. 4: Estimates of the model M3 (NB model).
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Data Set M1 M2 M3

Training 2869.835 3181.406 2943.556
Validation 1013.404 1155.584 1028.383

Test 918.2253 1025.232 945.857

Tab. 5: Results of AIC.

Data Set M1 M2 M3

Training 2894.741 3206.312 2968.462
Validation 1033.937 1176.118 1048.916

Test 938.8124 1045.819 966.4441

Tab. 6: Results of BIC.

Model V P-value Preference
M1 vs M2 6.03 8.44e-10 M1

M1 vs M3 4.11 1.99e-05 M1

M2 vs M3 -5.14 1.00 M3

Tab. 7: Results of Vuong's test on training data.

Model V P-value Preference
M1 vs M2 5.37 5.42e-06 M1

M1 vs M3 1.28 0.10 M1 ≈M3

M2 vs M3 -5.01 1.00 M3

Tab. 8: Results of Vuong's test on validation data.

Model V P-value Preference
M1 vs M2 4.40 4.03e-08 M1

M1 vs M3 2.83 0.023 M1

M2 vs M3 -3.79 1.00 M3

Tab. 9: Results of Vuong's test on test data.

Data Set M1 M2 M3

Training 0.3145 0.3100 0.3145
Validation 0.3488 0.3416 0.3488

Test 0.2811 0.2827 0.2827

Tab. 10: Results of MSE.

Data Set M1 M2 M3

Training 0.8968 0.8933 0.8968
Validation 0.9042 0.8986 0.9042

Test 0.9063 0.9047 0.9047

Tab. 11: Results of accuracy.

"This is an Open Access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium provided the
original work is properly cited (CC BY 4.0)."
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