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Abstract. In this paper a review on har-
monic wavelets and their fractional generaliza-
tion, within the local fractional calculus, will
be discussed. The main properties of harmonic
wavelets and fractional harmonic wavelets will
be given, by taking into account of their charac-
teristic features in the Fourier domain. It will
be shown that the local fractional derivatives of
fractional wavelets have a very simple expres-
sion thus opening new frontiers in the solution
of fractional di�erential problems.
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1. Introduction

Harmonic wavelets are some kind of complex
wavelets [1�9] which are analitically de�ned, in-
�nitely di�erentiable, and band-limited in the
Fourier domain. Although the slow decay in
the space domain, their sharp localization in fre-
quency, is a good property especially for the
analysis of wave evolution problems (see e.g.
[1�3,10,13,15,16,25,32,33]. In the search for nu-
merical approximation of di�erential problems,
the main idea is to approximate the unknown so-

lution by some wavelet series and then by com-
puting the integrals (or derivatives) of the basic
wavelet functions, to convert the starting di�er-
ential problem into an algebraic system for the
wavelet coe�cients (see e.g. [26�30]).

Wavelets are some special functions (see e.g.
[5, 9, 24]) which depend on two parameters, the
scale parameter (also called re�nement, com-
pression, or dilation parameter) and a the local-
ization (translation) parameter. These functions
ful�ll the fundamental axioms of multiresolution
analysis so that by a suitable choice of the scale
and translation parameter one is able to easily
and quickly approximate (almost) all functions
(even tabular) with decay to in�nity.

Therefore wavelets seems to be the more ex-
pedient tool for studying di�erential problems
which are localized (in time or in frequency).

There exists a very large literature devoted to
wavelet solution of partial di�erential and inte-
gral equations (see e.g. the pioneristic works [10,
13,25,35]) integral equations (see e.g. [11,23,34]
and more general integro-di�erential equations
and operators (see e.g. [26�30]).

By using the derivatives (or integrals) of the
wavelet basis the PDE equation can be trans-
formed into an in�nite dimensional system of or-
dinary di�erential equations. By �xing the scale
of approximation, the projection correspond to
the choice of a �nite set of wavelet spaces, thus
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obtaining the numerical (wavelet) approxima-
tion.

By using the orthogonality of the wavelet ba-
sis and the computation of the inner product of
the basis functions with their derivatives or in-
tegrals (operational matrix, also called connec-
tion coe�cients), we can convert the di�erential
problem into an algebraic system and thus we
can easily derive the wavelet approximate solu-
tion. The approximation depends on the �xed
scale (of approximation) and on the number of
dilated and translated instances of the wavelets.
However, due to their localization property just
a few instances are able to capture the main fea-
ture of the signal, and for this reason it is enough
to compute a few number of wavelet coe�cients
to quickly get a quite good approximation of the
solution.

In recent years there has been a fast rising
interest for the fractional di�erential problems.
Indeed the idea of fractional order derivative
is deeply rooted in the history of mathemat-
ics, since already Cauchy was wondering about
the possible generalization of ordinary di�eren-
tial operators to fractional order di�erential op-
erators. The main advantage of fractional or-
der derivative is to have an additional parameter
(the order of derivative) to be use in the analysis
of di�erential problems. On the other hand the
main drawback for the fractional di�erential op-
erators is that this derivative is not univocally
de�ned (see e.g. [19�22] and references therein).
We will not go deeply into this subject, since
we will focus only on a special fractional oper-
ator, the so-called local fractional derivative, as
de�ned by Yang [12,31,36,37].

The local fractional derivative when applied to
the most popular functions give a natural gener-
alization of known results and ful�lls the basica
axioms of the fractional calculus.

In the following after reviewing on the classi-
cal Harmonic wavelet, the fractional harmonic
wavelets will be de�ned. Moreover their lo-
cal fractional derivatives will be explicitly com-
puted. It will be shown that these frac-
tional derivatives, are some kind of generaliza-
tion already obtained for the so called Shan-
non wavelets [17, 18] and the sinc-derivative
[19,20,22]

The paper is organized as follows: in sec-
tion 2 some preliminary de�nitions about har-
monic (complex wavelets) together with their
fractional counterparts are given. The harmonic
wavelet reconstruction of functions is described
in section 3. In the same section, the har-
monic wavelet representation of the fractional
harmonic functions will be also given. Sec-
tion 4 shows some characteristic features of har-
monic wavelets. In section 5 the basic de�nitions
and properties of local fractional derivatives are
given and the local fractional derivatives of the
fractional harmonic wavelets will be explicitly
computed.

2. Harmonic (Newland)

Wavelets

Harmonic wavelets also known as Newland
wavelets [1, 3, 5, 7, 8] are complex orthonormal
wavelets that are characterized by the sharply
bounded frequency and slow decay in the space
of variable. Like any other wavelet they depend
both on the scale parameter n which de�ne the
degree of re�nement, compression, or dilation
and on a second parameter k which is related
to the space localization. As we will see, har-
monic wavelets ful�ll the fundamental axioms of
multiresolution analysis (see e.g. [24]), but they
also enjoy some more special features especially
in the function approximation.

2.1. Harmonic scaling function

The harmonic scaling function is de�ned as

ϕ(x)
def

=
e2πix − 1

2πix
(1)

that is

ϕ(x) =
sin(2πx)

2πx
+ i

[
1− cos(2πx)

2πx

]
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Fig. 1: Plot of the scaling function in the complex plane

(0 ≤ x ≤ 4).

there follow the real and imaginary part of the
scaling function

ϕr(x)
def

= <[ϕ(x)] =
sin(2πx)

2πx
,

ϕi(x)
def

= =[ϕ(x)] =
1− cos(2πx)

2πx
.

(2)

Plots of real ϕr(x) and imaginary part ,
ϕi(x)} of the scaling function in the real plane
are shown in Fig. 1. The parametric plot
{ϕr(x), ϕi(x)} of the complex scaling function
ϕ(x) is shown in Fig. 2.

It can be easily seen that

lim
x→∞

ϕr(x) = lim
x→∞

ϕi(x) = 0

and
lim
x→0

ϕr(x) = 1, lim
x→0

ϕi(x) = 0

Moreover, since

eπin =

 1, n = 2k, k ∈ Z

−1, n = 2k + 1, k ∈ Z
(3)

it is, in particular,

ϕ(n) = 0, n ∈ Z. (4)
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Fig. 2: Plot of the scaling function in the complex plane

(0 ≤ x ≤ 4).

The complex conjugate of the function ϕ(x) is
the function

ϕ(x) =
1− e−2πix

2πix
. (5)

2.2. Fractional prolungation of

the scaling function

The scaling function (1) is the power series, with
complex coe�cients,

ϕ(x) =
e2πix − 1

2πix
=

∞∑
k=0

(2πi)k

(k + 1)!
xk (6)

Let us slightly modify the harmonic scaling
function by using the Mittag-Le�er function,
instead of the exponential. So that we have

ϕα(x)
def

=
Eα(2απix)− 1

2πix
, (0 ≤ α ≤ 1) (7)

being

Eα(x)
def

=

∞∑
k=0

xαk

Γ(αk + 1)
. (8)

the Mittag-Le�er function.

When α = 1, namely we have

ϕ1(x)→ ϕ(x)
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while for α = 0, it is

ϕ0(x)→ δ(x)

where δ(x) is the Dirac delta

δ(x) =

{
0, x 6= 0

1, x = 0

By a direct computation we have the fractional
scaling function

ϕα(x)
def

=
E2παix − 1

2παix
=

∞∑
k=0

(2πi)k

αΓ(k + α+ 1)
xk,

(0 ≤ α ≤ 1)

(9)

2.3. Scaling function in Fourier

domain

The Fourier transform of the scaling function (1)
is de�ned as

ϕ̂(ω) = ϕ̂(x)
def

=
1

2π

∫ ∞
−∞

ϕ(x)e−iωxdx.

So that, in the frequency domain, i.e. with re-
spect to the variable ω the Fourier transform is
a function with a compact support (i.e. with a
bounded frequency)

ϕ̂(ω) =
1

2π
χ(2π + ω) (10)

χ(ω) being the characteristic function de�ned as

χ(ω)
def

=

{
1, 2π ≤ ω ≤ 4π,

0, elsewhere.
(11)

The scaling function in Fourier domain is box-
function thus being de�ned in a sharp domain
with slow decay in frequency.

The Fourier transform of the fractional scaling
function (9) can be also computed so that we
have at the �rst approximation

ϕ̂(ω) =
2π

αΓ(1 + α)
δ(ω) (12)

2.4. Harmonic wavelet function

Theorem 1. The harmonic (Newland) wavelet

function is de�ned as [3,4, 7, 8]

ψ(x)
def

=
e4πix − e2πix

2πix
= e2πixϕ(x) (13)

and its Fourier transform is

ψ̂(ω) =
1

2π
χ(ω) (14)

Proof: Starting from ϕ(x) we have to de�ne
a �lter and to derive the corresponding wavelet
function (see e.g. [7]). From (10) we have

ϕ̂ (ω) =
1

2π
χ(2π + ω)χ(2π +

ω

2
)

= χ(2π + ω)ϕ̂(
ω

2
) (15)

so that,

ϕ̂ (ω) = H
(ω

2

)
ϕ̂
(ω

2

)
with

H
(ω

2

)
= χ(2π + ω).

In order to have a multiresolution analysis [3,
5, 7, 24] the wavelet function must be de�ned as
(see e.g. [24])

ψ̂ (ω) = H
(ω

2
± 2π

)
ϕ̂
(ω

2

)
where the bar stands for complex conjugation.

With the �lter H
(ω

2
− 2π

)
= χ(ω) we have

ψ̂ (ω) = H
(ω

2
− 2π

)
ϕ̂
(ω

2

)
= χ (ω)

1

2π
χ
(

2π +
ω

2

)
=

1

2π
χ (ω)

while with H
(ω

2
+ 2π

)
we obtain

ψ̂ (ω) =
1

2π
χ (4π + ω)χ(2π +

ω

2
) = 0 ∀ω

from where there follows (14).
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By the inverse Fourier transform of (14) we
get ∫ ∞

−∞

1

2π
χ(ω)eiωxdω =

1

2π

∫ 4π

2π

eiωxdω,

we get the harmonic wavelet (13).

�

The real and imaginary parts of (13) are:

< (ψ(x)) =

(
e4πix − e2πix + e−2πix − e−4πix

)
4πix

=
sin 4πx

2πx
− sin 2πx

2πx
,

= (ψ(x)) =

(
−e4πix + e2πix + e−2πix − e−4πix

)
4πx

=−cos 4πx

2πx
+

cos 2πx

2πx
.

In particular, according to (3), (4), (13) it is

|ψ(x)| = |ϕ(x)| =
∣∣∣∣ sinπxπx

∣∣∣∣ , ψ(n) = 0, n ∈ Z.

The complex conjugate of the function ψ(x)
is the function

ψ(x) =
e−2πix − e−4πix

2πix
. (16)

2.5. Fractional prolungation of

the harmonic wavelet

From Eqs. (13), (8) we can de�ne the fractional
prolungation of the harmonic wavelet as

ψα(x)
def

= e2παixϕα(x) (17)

and its Fourier transform is

ψ̂α(ω) =
2π

αΓ(1 + α)
δ(2α2π − ω) (18)

2.6. Dilated and translated

instances

In order to have a family of (harmonic) wavelet
functions we have to de�ne the dilated (com-
pressed) and translated instances of the funda-
mental functions (1), (13), so that there will be a

family of functions depending on the scaling pa-
rameter n and on the translation paremater k.
From Eqs. (1), (13) there immediately follows
(see e.g. [1, 3, 7, 8]),

Theorem 2. The dilated and translated in-

stances of the harmonic scaling and wavelet

function are
ϕnk (x)

def

= 2n/2
e2πi (2nx−k) − 1

2πi(2nx− k)

ψnk (x)
def

= 2n/2
e4πi(2nx−k) − e2πi(2nx−k)

2πi(2nx− k)

(19)

with n, k ∈ Z.

For each function of the wavelet family

(19), it is |ψnk (x)| =

∣∣∣∣ sinπ (2nx− k)

π (2nx− k)

∣∣∣∣ so that

lim
n,k,x→∞

|ψnk (x)| = 0.

Let us now compute the Fourier transform of
the parameter depending instances (19), by us-
ing the properties of the Fourier transform. It
is known that if f̂(ω) is the Fourier transform of
f(x) then

̂f(ax± b) =
1

a
e±iωb/af̂(ω/a) , (20)

so that we can easily obtain the dilated and
translated instances of the Fourier transform of
(19), (see e.g. [3]):


ϕ̂nk (ω) =

2−n/2

2π
e−iωk/2

n

χ(2π + ω/2n)

ψ̂nk (ω) =
2−n/2

2π
e−iωk/2

n

χ(ω/2n)

(21)

3. Multiscale harmonic

wavelet reconstruction

of functions

In this section we give the inner product space
structure to the family of harmonic wavelets
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(19) and the harmonic wavelet reconstruction of
functions.

3.1. Hilbert space structure

Let f(x), g(x) be given two complex functions,
the inner (or scalar or dot) product, of these
functions is

〈f, g〉 def

=

∞∫
−∞

f (x) g (x)dx

Pars.
= 2π

∞∫
−∞

f̂ (ω) ĝ (ω)dω = 2π
〈
f̂ , ĝ
〉
,

(22)
where we have used the Parseval identity for the
equivalent inner product in the Fourier domain.

With respect to the family of the fundamental
functions (19), it can be shown that

Theorem 3. Harmonic wavelets are orthonor-

mal functions, such that

〈ψnk (x) , ψmh (x)〉 = δnmδhk, (23)

where δnm (δhk) is the Kronecker symbol.

Proof: It is (for an alternative proof see also
[7])

〈ψnk (x) , ψmh (x)〉

= 2π

∞∫
−∞

2−n/2

2π
e−iωk/2

n

χ(ω/2n)
2−m/2

2π

× eiωh/2
m

χ(ω/2m)dω

=
2−(n+m)/2

2π

∞∫
−∞

e−iωk/2
n

χ(ω/2n)

× eiωh/2
m

χ(ω/2m)dω

which is zero for n 6= m. For n = m it is

〈ψnk (x) , ψnh (x)〉

=
2−n

2π

∞∫
−∞

e−iω(h−k)/2n

χ(ω/2n)dω.

Moreover, according to (11), by the change of
variable ξ = ω/2n

〈ψnk (x) , ψnh (x)〉 =
1

2π

4π∫
2π

e−i(h−k)ξdξ.

For h = k (and n = m), trivially one has:
〈ψnk (x) , ψnk (x)〉 = 1 , while for h 6= k, it is

4π∫
2π

e−i(h−k)ξdξ

=
i

(h− k)

(
e−4iπ(h−k) − e−2iπ(h−k)

)
.

and since, according to (3),

e±4iπ(h−k) = e±2iπ(h−k) = 1, (h− k ∈ Z),
(24)

the proof easily follows.

�

Analogously it can be easily shown that

〈ϕnk (x) , ϕmh (x)〉 = δnmδkh,

〈ϕnk (x) , ϕmh (x)〉 = δnmδkh,

〈ϕnk (x) , ϕmh (x)〉 = 0,〈
ψnk (x) , ψmh (x)

〉
= δnmδkh,〈

ψnk (x) , ψmh (x)
〉

= 0,〈
ϕnk (x) , ψmh (x)

〉
= 0,

〈ϕnk (x) , ψmh (x)〉 = 0.
(25)

Moreover, the fundamental functions (1), (13)
ful�lls the basic (even-odd) properties of scaling
and wavelet, that is

<[ϕ(x)] = <[ϕ(−x)], =[ϕ(x)] = −=[ϕ(−x)]

<[ψ(x)] = −<[ψ(−x)], =[ψ(x)] = =[ψ(−x)]

and the following

Theorem 4. The harmonic scaling function

and the harmonic wavelets ful�ll the conditions∫ ∞
−∞

ϕ(x)dx = 1,

∫ ∞
−∞

ψnk (x)dx = 0.
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Proof: According to (10)-(22) one has∫ ∞
−∞

ϕ(x)dx

= 〈1, ϕ(x)〉 = 2π
〈

1̂, ϕ̂(ω)
〉

= 2π

∫ ∞
−∞

δ(ω)
1

2π
χ(2π + ω)dω

=

∫ 2π

0

δ(ω)dω = 1,

where δ(ω) is the Dirac delta function.

Analogously, taking into account (21)-(22),∫ ∞
−∞

ψnk (x)dx

= 〈1, ψnk (x)〉 = 2π
〈

1̂, ψ̂nk (ω)
〉

= 2π

∫ ∞
−∞

δ(ω)
2−n/2

2π
e−iωk/2

n

χ(ω/2n)dω

=

∫ 2n+2π

2n+1π

δ(ω)e−iωk/2
n

dω = 0.

�

3.2. Wavelet reconstruction

Let f(x) ∈ B, where B is the space of complex
functions, such that for any value of the param-
eters n, k, the following integrals, which de�ne
the wavelet coe�cients, exist and have �nite val-
ues



αk = 〈f(x), ϕ0
k(x)〉 =

∫ ∞
−∞

f(x)ϕ0
k(x)dx

α∗k = 〈f(x), ϕ0
k(x)〉 =

∫ ∞
−∞

f(x)ϕ0
k(x)dx

βnk = 〈f(x), ψnk (x)〉 =

∫ ∞
−∞

f(x)ψnk (x)dx

β∗nk = 〈f(x), ψ
n

k (x)〉 =

∫ ∞
−∞

f(x)ψnk (x)dx.

(26)
According to (21),(22), these coe�cients can be
equivalently computed in the Fourier domain,

thus being

αk = 2π〈f̂(x), ϕ̂0
k(x)〉

=

∫ ∞
−∞

f̂(ω)ϕ̂0
k(ω)dω =

∫ 2π

0

f̂(ω)eiωkdω

α∗k = 2π〈f̂(x), ϕ̂0
k(x)〉

= . . . =

∫ 2π

0

f̂(ω)e−iωkdω

βnk = 2π〈f̂(x), ψ̂nk (x)〉

= . . . = 2−n/2
∫ 2n+2π

2n+1π

f̂(ω)eiωk/2
n

dω

β∗nk = 〈f̂(x), ψ̂
n

k (x)〉

= . . . = 2−n/2
∫ 2n+2π

2n+1π

f̂(ω)e−iωk/2
n

dω,

(27)

where the hat stands for the Fourier transform.
It can be easily seen (see e.g. [14]) that

f̂(x) = f̂(−ω).

3.3. Harmonic wavelet series

Let f(x) ∈ B be a complex funtion with �nite
wavelet coe�cients (26), (27). By taking into ac-
count the orthonormality of the basis functions
(23), (25) the function f(x) can be expressed as
a wavelet (convergent) series (see e.g. [7]). In
fact, if we put

f(x) =

[
∞∑

k=−∞

αkϕ
0
k(x) +

∞∑
n=0

∞∑
k=−∞

βnkψ
n
k (x)

]

+

[
∞∑

k=−∞

α∗kϕ
0
k(x) +

∞∑
n=0

∞∑
k=−∞

β∗nkψ
n
k (x)

]
(28)

the wavelet coe�cients can be easily computed
by using the orthogonality of the basis and its
conjugate.

In [7] (see also [24]) it was shown that, un-
der suitable and quite general hypotheses on the
function f(x), the wavelet series (28) converges
to f(x).
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The conjugate of the reconstruction (28) it is

f(x) =

[
∞∑

k=−∞

αkϕ
0
k(x) +

∞∑
n=0

∞∑
k=−∞

βnkψ
n

k (x)

]

+

[
∞∑

k=−∞

α∗kϕ
0
k(x) +

∞∑
n=0

∞∑
k=−∞

β
∗n
kψ

n
k (x)

]

=

[
∞∑

k=−∞

α∗kϕ
0
k(x) +

∞∑
n=0

∞∑
k=−∞

β
∗n
kψ

n
k (x)

]

+

[
∞∑

k=−∞

αkϕ
0
k(x) +

∞∑
n=0

∞∑
k=−∞

βnkψ
n

k (x)

]

The wavelet approximation is obtained by �x-
ing an upper limit in the series expansion (28),
so that with N <∞, M <∞ we have

f(x) ∼=

[
M∑
k=0

αkϕ
0
k(x) +

N∑
n=0

M∑
k=−M

βnkψ
n
k (x)

]

+

[
M∑
k=0

α∗kϕ
0
k(x) +

N∑
n=0

M∑
k=−M

β∗nkψ
n
k (x)

]
.

(29)

Since wavelets are localized, they can capture
with few terms the main features of functions
de�ned in a short range interval.

1) Examples of Harmonic wavelet

reconstruction

Let us give a couple of examples to show the
powerful approximation obtained by the har-
monic wavelets.

Let us �rst consider the reconstruction of the
Gaussian function:

f(x) = e−x
2/σ .

The truncated wavelet series with N =
0 ,M = 0 is

f(x) ∼= α0ϕ
0
0(x) + α∗0ϕ

0
0(x) + β0

0ψ
0
0 + β∗00ψ

0
0,

so that if we compute the wavelet coe�cients
α0 , α

∗
0 , β

0
0 , β

∗0
0 by using the Eqs. (26) (or (27))

we get

α0 = α∗0 = 1
2 erf (π

√
σ),

β0
0 = β∗00 = 1

2 [ erf (2π
√
σ)− erf (π

√
σ)]

being the error function de�ned as

erf (x)
def

=
2√
π

∫ x

0

e−udu

There follows the zero order approximation of
the Gaussian

f(x) ∼=
1

2
erf (π

√
σ)
[
ϕ0

0(x) + ϕ0
0(x)

]
+

1

2

[
erf (2π

√
σ)− erf (π

√
σ)
]

×
[
ψ0

0(x) + ψ
0

0(x)
]
,

and since

ϕ0
0(x) + ϕ0

0(x) =
sin 2πx

x

and

ψ00(x) + ψ
0

0(x) =
sin 4πx− sin 2πx

πx

we have

e−x
2/σ ∼=

1

2
erf (π

√
σ)

sin 2πx

x

+
1

2

[
erf (2π

√
σ)− erf (π

√
σ)
]

× sin 4πx− sin 2πx

πx

For instance, the second scale approximation
N = 2, M = 0 for the Gaussian function
e−(16x)2 is (see Fig. 3)

e−(16x)2 ∼=
sin 2πx

2πx

[(
2 erf

π

16
− erf

π

8

)
− 2 cos 2πx

(
erf

π

16
− erf

π

8

)
− 2 cos 6πx

(
erf

π

8
− erf

π

4

)
− (cos 10πx+ cos 14πx)

×
(
erf

π

4
− erf

π

2

)]
As expected, by increasing the scaling parameter
N we will get a better approximation.

2) Computation of the wavelet

coe�cients in the Fourier domain

According to (27) the wavelet coe�cient are ob-
tained by Fourier transform.
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Fig. 3: Harmonic wavelet approximation of the function

f(x) = e−(16x)2 and the 0-scale N = 0,M = 0

and 2-scale N = 2,M = 0 approximation.

If we apply the Fourier transform to (29), we
get

f̂(ω) ∼=

[
M∑
k=0

αkϕ̂
0
k(ω) +

N∑
n=−N

M∑
k=−M

βnk ψ̂
n
k (ω)

]

+

[
M∑
k=0

α∗kϕ̂
0
k(ω) +

N∑
n=−N

M∑
k=−M

β∗nk ψ̂
n
k (ω)

]

and, according to (21),

f̂(ω) ∼=

[
1

2π

M∑
k=0

αke
−iωkχ(2π + ω) +

N∑
n=0

2−n/2

2π

×
M∑

k=−M

βnk e
−iωk/2n

χ(2π + ω/2n)

]

+

[
1

2π

M∑
k=0

α∗ke
iωkχ(2π + ω) +

N∑
n=0

2−n/2

2π

×
M∑

k=−M

β∗nke
iωk/2n

χ(2π + ω/2n)

]

i.e.

f̂(ω) ∼=

[
1

2π
χ(2π + ω)

M∑
k=0

αke
−iωk +

N∑
n=0

2−n/2

2π

× χ(2π + ω/2n)

M∑
k=−M

βnk e
−iωk/2n

]

+

[
1

2π
χ(2π + ω)

M∑
k=0

α∗ke
iωk +

N∑
n=0

2−n/2

2π

× χ(2π + ω/2n)

M∑
k=−M

β∗nke
iωk/2n

]

and for a real function

f̂(ω) ∼=
1

2π
χ(2π + ω)

M∑
k=0

αk
(
e−iωk + eiωk

)
+

N∑
n=0

2−n/2

2π
χ(2π + ω/2n)

×
M∑

k=−M

βnk

(
e−iωk/2

n

+ eiωk/2
n
)

that is,

f̂(ω) ∼=
1

2π
χ(π + ω)

M∑
k=0

αk cos(ωk)

+

N∑
n=0

2−n/2

π
χ(2π + ω/2n)

×
M∑

k=−M

βnk cos(ωk/2n)

So that the wavelet coe�cient can be obtained
by the fast Fourier transform. In [7] it was given
a simple algorithm for the computation of these
coe�cients through the fast Fourier transform.

3) Harmonic wavelet coe�cients of

the fractional harmonic scaling and

wavelet

The fractional harmonic scaling and wavelet
functions (9), (17) in general are not orthogo-
nal as can be checked by a direct computation
of their inner product. However, they can be ex-
pressed, by the wavelet coe�cients with respect
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to the harmonic wavelet basis. By taking into
account the simple form of the Fourier transform
of the fractional functions (12), (18)

ϕ̂α(ω) =
2π

αΓ(1 + α)
δ(ω),

ψ̂α(ω) =
2π

αΓ(1 + α)
δ(2α2π − ω)

(30)

we have for the scaling function ϕα(x)



αk =

∫ 2π

0

ϕ̂α(ω)eiωkdω =
2π

αΓ(1 + α)

α∗k =

∫ 2π

0

ϕ̂α(ω)e−iωkdω =
2π

αΓ(1 + α)

βnk = 2−n/2
∫ 2n+2π

2n+1π

ϕ̂α(ω)eiωk/2
n

dω

=
2π

αΓ(1 + α)

β∗nk = 2−n/2
∫ 2n+2π

2n+1π

ϕ̂α(ω)e−iωk/2
n

dω

=
2π

αΓ(1 + α)
,

(31)

Analogously for the fractional wavelet ψα(x)



αk =

∫ 2π

0

f̂(ω)eiωkdω =
2π

αΓ(1 + α)
e2πiα

2k

α∗k =

∫ 2π

0

f̂(ω)e−iωkdω =
2π

αΓ(1 + α)
e2πiα

2k

βnk = 2−n/2
∫ 2n+2π

2n+1π

f̂(ω)eiωk/2
n

dω

=
2π

αΓ(1 + α)
e2πiα

2k

β∗nk = 2−n/2
∫ 2n+2π

2n+1π

f̂(ω)e−iωk/2
n

dω

=
2π

αΓ(1 + α)
e2πiα

2k ,

(32)

So that according to (28) we get the fractional
scaling as a wavelet series

ϕα(x) =
2π

αΓ(1 + α)

∞∑
k=−∞

[
ϕ0
k(x) + ϕ0

k(x)
]
(33)

and analogously for the fractional harmonic
wavelet

ψα(x) =
2π

αΓ(1 + α)

∞∑
n=0

∞∑
k=−∞

e2πiα2k

×
[
ψnk (x) + ψnk (x)

]
.

(34)

By taking into account Eqs.(1), (5), the basic
functions on the right hand side can be simpli�ed
thus giving

ϕα(x) =
4π

αΓ(1 + α)

∞∑
k=−∞

sin 2π(x− k)

2π(x− k)
(35)

so that the fractional scaling is closely related
to the sinc-fractional operator (see e.g. [22]) and
for the fractional wavelet, from (13), (16), anal-
ogously we get

ϕα(x) =
2π

αΓ(1 + α)

∞∑
k=−∞

e2πiα2k

×
[

sin 4π(x− k)

π(x− k)
− sin 2π(x− k)

π(x− k)

]
(36)

Also the fractional wavelet is closely related
to the Shannon wavelet and the sinc-fractional
wavelets [22].

4. Some properties of the

Harmonic wavelets in

Fourier domain

It is clear from (27) that the reconstruction of
a function f(x) it is impossible when its Fourier
transform f̂(ω) is not de�ned. Moreover, the
function (to be reconstructed) must be con-
centrated around the origin (like a pulse) and
should rapidly decay to zero. The reconstruc-
tion can be done also for periodic functions, or

c© 2018 Journal of Advanced Engineering and Computation (JAEC) 233



VOLUME: 2 | ISSUE: 4 | 2018 | December

functions localized in a point di�erent from zero:
x0 6= 0, by using the so-called periodized har-
monic wavelets [1, 7, 8]).

Among all functions f(x) some of them are
constant under harmonic wavelet map (28). In
fact, we have that,

Theorem 5. For a non trivial function f(x) 6=
0 the corresponding wavelet coe�cients (27), in

general, vanish when either

f̂(ω) = 0, ∀k or f̂(ω) = Cnst., k 6= 0.

In particular, it can be seen that the wavelet

coe�cients (27) trivially vanish when
f(x) = sin(2kπx), k ∈ Z

f(x) = cos(2kπx), k ∈ Z (k 6= 0)

(37)

Proof: For instance from (26)1, for cos(2kπx)
it is

αk =

∫ ∞
−∞

cos(2kπx)ϕ0
k(x)dx

=
1

2

∫ ∞
−∞

(
e−2ihπx + e2ihπx

)
ϕ0
k(x)dx

=
1

2

[∫ ∞
−∞

e−2ihπxϕ0
k(x)dx

+

∫ ∞
−∞

e2ihπxϕ0
k(x)dx

]

from where by the change of variable 2πx = ξ
and taking into account (20) there follows

αk =
1

2

[
ϕ̂0
k(x) + ϕ̂0

k(x)
]
x=2πh

.

According to (21) it is

ϕ̂0
k(2πh) =

1

2
e−i2πhkχ(2π + 2πh)

(3)
=

1

2
χ(2π + 2πh)

and, because of (11)

χ(2π + 2πh) = 1, 0 < h < 1

so that
ϕ̂0
k(2πh) = 0, ∀h 6= 0.

There follows that αh = 0, as well as the remain-
ing wavelet coe�cients of cos(2kπx) (with k ∈ Z
and k 6= 0) are trivially vanishing. Analogously,
it can be shown that all wavelet coe�cients of
cos(2kπx) (∀k ∈ Z) are zero.

�

As a consequence, a given function f(x), for
which the coe�cients (26) are de�ned, admits
the same wavelet coe�cients of

f(x) +

∞∑
h=0

[Ah sin(2hπx) +Bh cos(2hπx)]−B0,

(38)
or (by a simple tranformation) in terms of com-
plex exponentials,

f(x)− C0 +

∞∑
h=−∞

Che
2ihπx, (39)

so that the wavelet coe�cients of f(x) are de-
�ned unless an additional trigonometric series
(the coe�cients Ah , Bh , Ch being constant) as
in (38).

5. Local fractional calculus

In order to get some advantages from the de�ni-
tion of the fractional harmonic wavelets we give
in this section the de�nition of the local fraction
derivative, and then we apply this operator to
the fractional wavelets (9), (17). By taking into
account that wavelets are localized functions, we
need to de�ne a suitable local di�erential oper-
ator as the ones proposed by Yang [36�39]:

5.1. Local fractional derivative

De�nition 1. The local fractional derivative of

f(x) of order α at x = x0 is the operator

dαf

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α(f(x)− f(x0))

(xα − xα0 )
,

0 < α ≤ 1

(40)
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being

∆α(f(x)− f(x0)) ∼= Γ(1 + α) [(f(x)− f(x0))] .

(41)

There follows that

dαxα

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α(f(x)− f(x0))

(xα − xα0 )

∼= Γ(1 + α) lim
x→x0

(xα − xα0 )

(xα − xα0 )

= Γ(1 + α)

i.e.,
dαxα = Γ(1 + α)dxα

For any x in a suitable interval centered in x0,
we can de�ne the local fractional derivative

Dα
xf(x)

def

=
dα

dxα
f(x), x ∈ (x0 − δ, x0 + δ)

5.2. Local fractional integral

De�nition 2. The local fractional integral of

f(x) of fractional order α in the interval (a, b)

is de�ned as ( [36,37])

aI
(α)
b f(x) =

1

Γ(1 + α)

∫ b

a

f(u)(du)α

=
1

Γ(1 + α)
lim

∆u−→0

N−1∑
j=0

f(uj)(∆uj)
α,

(42)

where we have ∆uj = uj+1 − uj , ∆u =
max {∆u0,∆u1,∆u2, · · · } and [uj , uj+1] , u0 =
a, uN = b, is a partition of the interval [a, b].
For any x ∈ (a, b), we can also de�ne the inte-
gral operator aI(α)

x f(x),

5.3. Some properties of the

local fractional operators

The local fractional operators, previously de-
�ned, have some special features when applied

to the most signi�cant functions. By a direct
computation it can be easily shown that, start-
ing from the power series [31,36�39]:

Eα(xα) =

+∞∑
m=0

xmα

Γ(1 +mα)
, 0 < α ≤ 1,

(43)

sinα(xα) =

+∞∑
m=0

(−1)m
x(2m+1)α

Γ(1 + (2m+ 1)α)
,

0 < α ≤ 1
(44)

cosα(xα) =

+∞∑
m=0

(−1)m
x2mα

Γ(1 + 2mα)
,

0 < α ≤ 1

(45)

and by taking into account that [36,37]

dαxmα

dxα
=

Γ(1 +mα)

Γ(1 + (m− 1)α)
x(m−1)α. (46)

we can easily show that

dα

dxα
Eα(xα) = Eα(xα). (47)

dα

dxα
sinα(xα) = cosα(xα). (48)

dα

dxα
cosα(xα) = − sinα(xα). (49)

0I
(α)
x

xmα

Γ(1 +mα)
=

x(m+1)α

Γ(1 + (m+ 1)α)
. (50)

5.4. Local fractional derivative

of the fractional Harmonic

wavelets

In this section we will give the explicit expression
of the local fractional derivative of the harmonic
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fractional scaling (9) and wavelet (17), namely

ϕα(x) =

∞∑
k=0

(2πi)k

αΓ(k + α+ 1)
xk, (0 ≤ α ≤ 1)

ψα(x) = E(2παix)ϕα(x) (51)

According to Eqs. (46), (47) it is

d

dxα
ϕα(x) =

∞∑
k=0

(2πi)k

αΓ(k + α+ 1)

d

dxα
xk

=

∞∑
k=1

(2πi)k

αΓ(k + α+ 1)

Γ(1 + k)

Γ(k)
xk−1,

(0 ≤ α ≤ 1)

d

dxα
ψα(x) = Eα(2παix)

×
(

2παiϕα(x) +
d

dxα
ϕα(x)

)
(52)

and symplifying

d

dxα
ϕα(x) =

∞∑
k=1

k(2πi)k

αΓ(k + α+ 1)
xk−1,

(0 ≤ α ≤ 1)

d

dxα
ψα(x) = Eα(2παix)

( ∞∑
k=0

(2πi)k+1

Γ(k + α+ 1)
xk

+

∞∑
k=1

k(2πi)k

αΓ(k + α+ 1)
xk−1

)
(53)

The knowledge of the local fractional deriva-
tive of the fractional harmonic wavelets can be
a fundamental tool in the search for numerical
solution of fractional di�erential equations.

Conclusion

In this paper the main properties of the com-
plex harmonic wavelets are given. Moreover the
fractional harmonic wavelets were de�ned and
their local fractional derivatives explicitly com-
puted. These fractional harmonic wavelets are
the fundamental functions to build a model for
the solution of fractional di�erential problems.
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