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Abstract. When compared with two conformal
phosphor and in-cup phosphor structures, the
remote phosphor structure has higher lumines-
cent performance. However, it is di�cult to
control the color quality of the remote phosphor
structure, so it has become a research target
in recent years. So far, there are two remote
phosphor structures used to improve color qual-
ity including dual-layer phosphor con�guration
and triple-layer phosphor con�guration. This
study suggests using those two con�gurations to
make multi-chip white LEDs (WLEDs) that can
achieve adequate values in color rendering index
(CRI), color quality scale (CQS), luminous ef-
�cacy (LE) and color uniformity. WLEDs with
color temperature of 5600 K are applied. Re-
search results show that the triple-layer phos-
phor con�guration is superior in CRI, CQS, LE.
Besides, the color deviation decreases signi�-
cantly, meaning that the color homogeneity in-
creases with the triple-layer phosphor con�gu-
ration. This can be demonstrated by analyzing
the scattering characteristics of phosphor classes
through Mie theory, thus making the research
results more reliable and valuable for producing
quality WLEDs.
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1. Introduction

Phosphor-converted white light-emitting diodes
(WLEDs) are a potential light source because
of their small size, high energy e�ciency, rea-
sonable cost, and color stability [1-4]. WLEDs
apply the principle of complementary colors:
Blue light from a blue chip is linked with yel-
low light from phosphor [5]. WLEDs have
a high probability of being applied in solid-
state lighting, but their luminous e�ciency must
be strengthened [6]. Generally, a freely dis-
persed coating is the most familiar technique
utilized to construct white light. In this pro-
cess, the transparent encapsulated resin is com-
bined with phosphor powder and is dispersed
on the phosphor package. Although this ap-
proach allows the thickness of the phosphor layer
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to be controlled easily and reduces much of the
cost, it does not produce high-quality WLEDs
[7]. Therefore, the conformal coating method
can be used as an alternative. This method
distributes colors uniformly, resulting in angu-
lar homogeneity of correlated color temperature
(CCT) [8]. However, the disadvantage of a con-
formal phosphor structure is the backscattering
e�ect, which reduces luminous e�ciency. Previ-
ous studies have proved the concept of separat-
ing the chip and the phosphor layer of remote
phosphor structures [9, 10]. The enhanced light
extraction internal re�ection structure, which
uses a polymer hemispherical shell lens with
an interior phosphor coating, is known to in-
crease extraction e�ciency [11]. Furthermore,
an air-gap embedded structure can enhance lu-
minous e�ciency by re�ecting downward light
[12]. Obviously, in addition to luminous e�-
cacy (LE), other optical characteristics includ-
ing color rendering index (CRI), color quality
scale (CQS) and color uniformity are all so ex-
tremely important for WLEDs. Therefore, two
improved remote phosphor structures were ap-
plied to improve the optical properties of LEDs
including dual-layer phosphor con�guration and
triple-layer phosphor con�guration. For dual-
layer phosphor con�guration, the yellow phos-
phor layer below and above is the phosphor red
or green layer. For the triple-layer phosphor
con�guration, the yellow phosphor layer below
and above is the red phosphor layer, the mid-
dle is the green phosphor. In addition to the
structure of the package, the concentration of
phosphor plays an important role in luminous
e�ciency. The re-absorption failure in the phos-
phor layer is obtained when the phosphor con-
centration increases. Therefore, device luminous
e�ciency would be lessened, speci�cally at lower
CCTs [13]. Therefore, it is essential to enhance
the emission of blue and yellow rays and re-
duce the amount of light lost from backscatter-
ing and re�ection. It is di�cult for manufactur-
ers to choose a remote phosphor structure to im-
prove the optical properties of their LED prod-
ucts due to the many proposed methods men-
tioned above. Prior research papers only focus
on a few phosphor con�gurations and lighting
performance indicators to come up with a solu-
tion to improve WLED, which sometimes limits
the researchers' overview and the ability to �nd

the best solution available. Therefore, this ar-
ticle wants to emphasis on diversity and appli-
cation e�ciency by considering di�erent types
of phosphor structures with distinct packaging
order and evaluate their performance through
the results from practical experiments that as-
sess various criteria. As a result, this study can
propose the optimal choice to improve all indi-
vidual features so that producers can choose an
optimal plan to improve the quality of WLEDs
to correspond with their personal goals.

2. Simulation

The �rst idea of the study is to use the
YAl3B4O12:Ce

3+,Mn2+ phosphor green layer to
increase the green light component in WLEDs,
leading to increased luminous �ux. The sec-
ond idea is to use the red phosphor layer
MgSr3Si2O8:Eu

2+,Mn2+ to increase the red
light component in WLEDs, leading to increased
CRI and CQS. YAl3B4O12:Ce

3+,Mn2+ and
MgSr3Si2O8:Eu

2+,Mn2+ particles, with many
outstanding characteristics such as high quan-
tum e�ciency and stability at high temper-
ature, are known as a type of yellow-green
phosphor and become more and more pop-
ular. Moreover, YAl3B4O12:Ce

3+,Mn2+ and
MgSr3Si2O8:Eu

2+,Mn2+ phosphor are applied
particularly for very high-loading and long life-
time �uorescent lamps. YAl3B4O12:Ce

3+,Mn2+

glows yellow-green at a peak wavelength at 545
nm. Meanwhile, MgSr3Si2O8:Eu

2+,Mn2+ emits
red light with peak wavelength at 681 nm.

The condition for these phosphors to
be applied is that they must have a
spectrum that matches with the blue
light emission wavelengths from the LED
chip. Before performing any optical sim-
ulation of YAl3B4O12:Ce

3+,Mn2+ and
MgSr3Si2O8:Eu

2+,Mn2+, the synchroniza-
tion between the absorption spectrum of these
phosphor types and the emission spectrum from
the blue chip must be guaranteed to ensure
accuracy. Input parameters, such as phosphor
concentration, phosphor particle size, excitation
spectrum, absorption spectrum, and phosphor
emission spectrum, need to be accurately
determined by experiments. Among the �ve
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Fig. 1: (a) Single-layer phosphor structure with yel-
low phosphor, (b) dual-layer remote structure
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Fig. 2: YAG:Ce3+ concentration corresponds to remote
phosphor structures.

In Figure 2, it is easy to see that the highest
yellow-emitting YAG:Ce3+ phosphor concentra-
tion is in the Y structure and the lowest is in
the YRG structure. Regarding to the remote
phosphor structures, the higher the YAG:Ce3+

concentration, the higher the scattering ability,
resulting in reduced luminous �ux. On the other
hand, the imbalance between the three primary
colors that produce white light: yellow, red and
green appears when the YAG:Ce3+ concentra-
tion is high, causing a decrease in color quality
of WLEDs. Therefore, in order to improve the
luminous �ux and color quality of WLEDs, the
backscattering e�ect must be reduced and the
three basic colors yellow, red and green must be
balanced. The color rendering index can be con-
trolled by increasing the red light component.
Besides, color homogeneity can be controlled by
adding the green light component. According to
the �ndings and requirements above, it seems
that triple-layer phosphor structure is the most
favorable structure in controlling optical prop-
erties. However, there is another crucial aspect
that need to consider before concluding, emis-
sion spectra.
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phor structures.

There are signi�cant di�erences in emission
spectra among the four remote phosphor struc-
tures. The Y-emission spectrum has the small-
est intensity compared to the other three remote
phosphor structures. This con�rms that the Y
structure achieves the smallest luminous �ux.
In contrast, the YRG structure has the largest
spectral intensity in the wavelength range of 380
nm - 780 nm. In the range of 400 nm - 500
nm, YG structure has a higher spectral intensity
than YR structure so YG's luminous �ux can be
higher than YR. However, YR's emission spec-
tral intensity is higher than YG's in the range
of 650 nm - 750 nm, which helps YR achieves
higher color rendering index than YG. However,
to con�rm the �ndings mentioned above, it is
necessary to consider the results achieved in sec-
tion 3.

3. Results and discussion

Figure 4 shows the CRI comparison between re-
mote phosphor structures. It is easy to see that
the YR structure achieves the highest CRI. The
outstanding CRI value in YR structure is ben-
e�ted by the red light component added from
the red phosphor layer MgSr3Si2O8:Eu

2+,Mn2+.
The second position in the CRI value achieved is
the YRG structure. Meanwhile, CRI is the low-
est in YG structure. These results con�rm that
YR is the best structure for mass production of
WLED that focuses on CRI.
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studies. CQS is a combination of 3 elements: CRI, 
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coverage of these three factors, CQS becomes a big target 

and "seems" to be the most important indicator to assess 

color quality. Thus, it can be concluded that the higher the 

CQS value is, the higher the color quality becomes. In this 

study, the CQS values of the remote phosphor structures 

are compared in Figure 5. If the YR reaches the highest 

CRI, the YRG reaches the highest CQS. This can be 

explained by the balance of 3 basic colors yellow, red and 

green. Meanwhile, the CQS is the lowest in the Y 

structure. In general, the Y structure has a high luminous 

flux, but it is difficult to control the color quality due to 
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Fig. 5: Color quality scale of remote phosphor struc-
tures.

However, CRI is just one of the color qual-
ity indicators. In recent years, CQS has become
the research target of many studies. CQS is a
combination of 3 elements: CRI, person's pref-
erence and color coordinates. With the coverage
of these three factors, CQS becomes a big target
and "seems" to be the most important indicator
to assess color quality. Thus, it can be concluded
that the higher the CQS value is, the higher
the color quality becomes. In this study, the
CQS values of the remote phosphor structures
are compared in Figure 5. If the YR reaches the
highest CRI, the YRG reaches the highest CQS.
This can be explained by the balance of 3 ba-
sic colors yellow, red and green. Meanwhile, the
CQS is the lowest in the Y structure. In general,
the Y structure has a high luminous �ux, but it
is di�cult to control the color quality due to the
lack of red and green light components. Despite
the disadvantage in color quality, Y structure
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has advantages in production. The production
procedure for Y structure WLED is simpler than
the rest, which also reduces the production costs.

Based on the result of Figure 5, it can be con-
�rmed that if the manufacturer's goal is color
quality, it is recommended to select YRG struc-
ture. However, there is an assumption that the
luminous �ux will be a�ected if the color quality
is better. The comparison between the emitted
luminous �ux between the single-layer and dual-
layer structures will help to demonstrate this is-
sue. This part will show and describe the math-
ematical model of the transmitted blue light and
converted yellow light in the double-layer phos-
phor structure, from which a notable advance-
ment of LED e�ciency can be achieved. The
transmitted blue light and converted yellow light
for single layer remote phosphor package with
the phosphor layer thickness of 2h are expressed
as follows:
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cannot be ignored in color homogeneity when it comes to 

color quality factor. There are many methods to improve 

color homogeneity including methods of using advanced 

scattering particles such as SiO2, CaCO3,... or using 

conformal phosphor configuration. Although the color 

uniformity is improved, luminous flux can be significantly 

reduced if the two methods above are applied. The use of 

green YAl3B4O12:Ce
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 phosphor and red 

MgSr3Si2O8:Eu
2+,

Mn
2+ phosphor is not only to increase 

the scattering properties but also to add a green or red light 
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where h is the thickness of each phosphor
layer. The subscript �1� and �2� are used to illus-
trate single layer and double-layer remote phos-
phor package. β presents the conversion coe�-
cient for blue light converting to yellow light. γ
is the re�ection coe�cient of the yellow light.
The intensities of blue light (PB) and yellow
light (PY ) are the light intensity from blue LED,
indicated by PB0. αB , αY are parameters de-
scribing the fractions of the energy loss of blue
and yellow lights during their propagation in the
phosphor layer respectively.

The lighting e�ciency of pc-LEDs with the
double-layer phosphor structure enhances con-
siderably compared to a single layer structure:
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The scattering of phosphor particles was an-
alyzed by using the Mie-theory. In addition,
the scattering cross section Csca for spherical
particles can be computed by the following ex-
pression through applying the Mie theory. The
transmitted light power can be calculated by the
Lambert-Beer law:
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color homogeneity including methods of using advanced 
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3+

,Mn
2+

 phosphor and red 

MgSr3Si2O8:Eu
2+,

Mn
2+ phosphor is not only to increase 

the scattering properties but also to add a green or red light 

In this formula, I0 is the incident light power,
L is the phosphor layer thickness (mm) and µext

is known to be the extinction coe�cient, which
can be expressed as: µext = Nr.Cext, where Nr

is as the number density distribution of particles
(mm−3). C ext (mm2) is the extinction cross-
section of phosphor particles.

Equation 5 demonstrates that using multiple
phosphor layers is more bene�cial to luminous
�ux than a single layer. Obviously, this is illus-
trated in the results of Figure 6, the structure
Y reaches the lowest luminous �ux out of the
four structures. In contrast, the highest lumi-
nous �ux is achieved in the YRG structure. This
eliminates any doubt about YRG lumen output
when its color quality is the best. The second
place in terms of the usefulness in luminous �ux
development is the YG structure thanks to the
green phosphor YAl3B4O12:Ce

3+,Mn2+. Green
phosphor YAl3B4O12:Ce

3+,Mn2+ helps to in-
crease green light composition and increase spec-
tra intensity in the wavelength range of 500 nm -
600 nm. Clearly in this wavelength range, YG's
intensity is greater than YR and Y. Due to the
smallest YAG:Ce3+ concentration in the YRG
structure that can keep the ACCT, the YRG
structure reduces the amount of re�ected light
after the YAG:Ce3+ concentration decreases.
Blue light rays from LED chips are easily trans-
mitted straight through the YAG:Ce3+ layer to
other layers. In other words, the YRG struc-
ture helps blue light energy from the LED chip
to convert e�ciently. Therefore, the YRG spec-
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tral intensity is the highest compared to other
remote phosphor structures in the same white
light wavelength range. Accordingly, the lumi-
nous �ux of the YRG structure also reached the
highest level.
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Thus, the YRG structure can be selected for
the superior optical properties of WLEDs in-
cluding CQS and LE but cannot be ignored in
color homogeneity when it comes to color qual-
ity factor. There are many methods to im-
prove color homogeneity including methods of
using advanced scattering particles such as SiO2,
CaCO3,... or using conformal phosphor con�g-
uration. Although the color uniformity is im-
proved, luminous �ux can be signi�cantly re-
duced if the two methods above are applied.
The use of green YAl3B4O12:Ce

3+,Mn2+ phos-
phor and red MgSr3Si2O8:Eu

2+,Mn2+ phosphor
is not only to increase the scattering proper-
ties but also to add a green or red light com-
ponent inside WLEDs to produce more white
light. The use of a remote phosphor structure
enhances the luminous �ux emitted by reducing
re�ections back to the LED chip. However, it is
necessary to control the phosphor layer concen-
tration to achieve the highest transferred energy.
This can be proved by Lambert-Beer law's law
in expression 6.

Figure 7 shows the comparison of color devi-
ation between structures. The smaller the color
deviation is, the higher the color homogeneity
becomes. It is easy to see that the color devi-
ation of YRG is the smallest, which can be ex-
plained by the scattering inside the LED pack-
age before forming white light. The more phos-
phor layers, the more scattering events, leading
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Fig. 7: Correlated color temperature deviation (D-
CCT) of remote phosphor structures.

to increased color uniformity of WLEDs. Of
course, when there are many scattering events,
the loss of luminous �ux can occur. However,
this reduction is negligible compared to the ben-
e�t obtained when the backscattering is reduced.
Therefore, the YRG structure achieves the best
color uniformity with the highest luminous �ux.
In contrast, the highest color deviation is ex-
pressed in the Y structure.

4. Conclusions

This paper compares the optical performance of
four structures, Y, YG, YR and YRG. Green-
emitting YAl3B4O12:Ce

3+,Mn2+ phosphor and
red-emitting MgSr3Si2O8:Eu

2+,Mn2+ phosphor
are used in the simulation process. In addition,
the study results were veri�ed by the Mie the-
ory and the Lambert-Beer law. According to the
results, adding green YAl3B4O12:Ce

3+,Mn2+

phosphor adds green light that improves color
homogeneity and luminous �ux. Therefore,
the YG structure achieves better optical �ux
and color uniformity than the YR structure.
CRI and CQS can be improved when increas-
ing the red light component through the red
MgSr3Si2O8:Eu

2+,Mn2+ phosphor. As a result,
YR structure achieves higher CRI and CQS than
YG. The color quality depends on the balance
between the three primary colors yellow, green
and red. YRG structure can satisfy the re-
quirements to control these 3 colors. In addi-
tion, the reduced light loss due to re�ection of
YRG leads to a signi�cant increase in the lumi-

508 c© 2019 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 3 | ISSUE: 4 | 2019 | December

nous �ux of this con�guration. The evidence is
that the highest luminous �ux is also achieved
in the YRG structure. Based on the results of
this study, producers can easily choose a suitable
structure for quality improvement of WLEDs.
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