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Abstract. Piezoelectric bimorph actuators

have been employed in several applications. In

this paper, the piezoelectric actuator is dis-

cretized and its hysteresis function is studied,

then a digital sliding mode controller is de-

signed. Furthermore, a perturbation estimation

technique is applied and an observer is no longer

needed. In addition, simulations are performed

also using the traditional PID controller in or-

der to validate the proposed controller scheme

performance.
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1. Introduction

Piezoelectric actuators have become popular due
to its capability to perform an extreme small dis-
placement, ranging from microns to nanometer.
This is an important characteristic, since many
devices and applications require sub-micron or
nanometer resolution, such as, microscopes [1]-
[6], positioning stages [7]- [9], microgrippers [10]-
[14]. However, due to the ferroelectric proper-
ties of the piezoelectric materials, these actu-

ators show hysteresis behavior when a voltage
is applied [15]. Since hysteresis is a nonlinear
phenomenon, this causes inaccuracy and unsat-
isfactory tracking performance when a high pre-
cision is required. Therefore, development of a
controller that can suppress nonlinear behavior
is essential.

A piezoelectric actuator model can be de-
scribed as an electromechanical system, where
the electrical system is composed of nonlin-
ear and linear functions, and mechanical sys-
tem is a mass-spring-damper system. However,
a control scheme is not given in [16]. Sev-
eral authors propose a hysteresis model, for
example, Preisach model [17], Maxwell model
[18], Prandtl-Ishlinskii model [19], Bouc-Wen
model [20], and Duhem model [21]. In these
studies, the hysteresis model has an ellipsoidal
shape or trapezoidal shape. In addition, in [22]
the hysteresis function is described as a four-
dimensional chaotic system and its circuit im-
plementation is designed in [23].

In order to attenuate hysteresis, charge ampli-
�ers were designed. However a control scheme is
still needed [16]. Development of control system
for piezoelectric actuators has attracted atten-
tion due to their dynamic complexity. Recently,
di�erent kinds of control schemes were proposed,
such as, backstepping control [14], adaptive con-
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trol [24, 25], robust control [26], iterative learn-
ing control [27], or combinations between these
control schemes. Sliding mode controller has
several advantages such as, simpli�ed control
scheme, external disturbance rejection and a low
sensitivity to plant parameter uncertainty [28].
For implementation of sliding mode control, full
state feedback is required. However in most of
cases we have only the position data. So, a de-
velopment of state observer is indispensable.

To deploy SMC on a sampled data system,
discrete-time SMC (DSMC) is more interesting
and attractive [31]- [33]. In general, DSMC can
be classi�ed into state-based and output-based
approach. The development of former based on
system status or status error [33]- [35], mean-
while this is done on the basic system or an out-
put error system [36, 37]. Generally, the pro-
cess of putting a plan into both methods requir-
ing feedback of system state. However, in the
greater number of practical situations, the loca-
tion information of a piezoelectric actuator sys-
tem gave that displacement sensor. Therefore, a
state observer is indispensable to implement the
practical DSMC [33], [35]- [37], in which com-
plicates the control design procedures. More-
over, the cause of instability of system is lack
of stability for designed observer state. In this
case, it is desirable to eliminate clearly the use of
the state observer. However, the works are lim-
ited to make toward this issue. In the document
of in the previous work, an input-output built
an adaptive DSMC has been proposed [38, 39],
based solely on input and output data.

Ultimately, the motivation for this research
is the development of a simple DSMC diagram
without using complex hysteresis model and
observing the state for precise motion control
of a piezoelectric actuator. Speci�cally, unad-
justed nonlinear e�ects are considered gross dis-
turbances and the perturbation is estimated by
using a one-step delayed estimation technique.
Moreover, the avoidance of state observer is re-
alized by developing a new DSMC based on
the system with discrete-time second-order dy-
namics model. Local stability of closed loop
system is proved on the theory and the e�ec-
tiveness of the proposal scheme is con�rmed
through experimental test. According to the
author's understanding, the proposed project is

the simplest approach based on DSMC to carry
out exclusively for piezoelectric actuator con-
trol [15, 16,30].

This paper focuses on to apply a control
scheme for a trajectory tracking of a piezoelec-
tric bimorph actuator. In section II, the elec-
tromechanical system is discretized with a �xed
time step and hysteresis function is studied.
Then in section III, a perturbation estimation
technique is applied to estimate external distur-
bances and hysteresis. After �nishing the pre-
vious steps, a discrete sliding mode controller is
proposed and applied. In section IV, a PID con-
troller is also designed and compared with the
proposed discrete sliding mode controller. Fi-
nally, in section V, we have the conclusion of
this paper.

2. DYNAMICS AND

HYSTERESIS MODEL

2.1. Plant Model

The piezoelectric bimorph actuator studied in
this paper is illustrated in Fig. 1.

Fig. 1: Piezoelectric bimorph actuator. (a) front view
(b) side view

When a voltage u is applied to a piezoelectric
actuator, a force F is generated and the resultant
displacement is given by x. The equation that
describes the motion of a piezoelectric bimorph
actuator is described as [29,30]

Mẍ(t) +Bẋ(t) +Kx(t) = Du(t) + P (t) (1)

where t represents the time variable, parame-
ters M,B and K, and x are the mass, damping
coe�cient, sti�ness, and displacement of the ac-
tuator, respectively. D is the piezoelectric coef-
�cient and u is the input voltage.
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Remark 1. To be more information, Fig. 2.
describes the overall electromechanical model
of piezoelectric actuator. An equally accurate
model was chosen for the piezo-phase due to be
simply of implementation and accuracy to esti-
mating the actual behavior of these actuators.
The piezo-stage includes in a piezo-drive with a
bending guided structure designed to have zero
friction and friction. Additionally, the bending
stages exhibit high rigidity or sti�ness, high load
capacity and insensitiveness to shock and vibra-
tion [15,16].

The e�ects of hysteresis separated piezoelec-
tric e�ects. H shows the hysteresis e�ect and the
voltage is uh due to this e�ect. The piezoelectric
e�ect is regarded as Tem is an electromechanical
converter with transformer proportion. Capaci-
tance C points out the total power of individual
piezoelectric wafers that are electrically in paral-
lel to each other. Furthermore, q̇ represents the
total current �owing through the circuit. Spe-
cially, q can be the total charge in the piezoelec-
tric actuator. The charge qp presents the probe
charge from the mechanical side. The voltage
up is due to piezo e�ect. The total voltage on
the piezoelectric actuator is upeo, Fp is the force
converted from the electrical side. The elonga-
tion of the piezoelectric actuator is denoted as
x = ∆L. The mechanical relationship between
Fp and x is indicated by m. Note that we have
equal electrical and mechanical energy at the in-
teraction gates, i.e. upqp = Fpx [15].

In electromechanical model of piezoelectric ac-
tuator, P (t) is the perturbation term, includ-
ing hysteresis e�ect, external disturbances, and
noise. When the input voltage u = 0, no hys-
teresis will a�ect the piezoelectric actuator. In
order to discretize the previous equation, both
side are divided by M

mẍ(t) + bẋ(t) + kx(t) = du(t) + p(t) (2)

where m = 1, b = B/m, k = K/M, d = D/M ,
and p(t) = P (t)/M. For discretization, the Euler
backward di�erence is adopted

ẋ(t) =
1

T
[x(kT )− x(kT − T )] (3)

ẍ(t) =
1

T 2
[x(kT )− 2x(kT − T ) + x(kT − 2T )]

(4)

Fig. 2: Electromechanical representation of the piezo-
electric actuator.

where k represents the kth time step. Therefore,
substituting the equations (3), (4) into equation
(2), we have the equivalent discrete time dynam-
ics equation [30]

mx(kT − 2T ) + bx(kT − T ) + kx(kT )

= du(kT )− p(kT ) (5)

where m = 1/T, b = (−b/T ) − (2/T ), k = k +
(b/T ) + (1/T 2), and d = d.

Remark 2. To get more accuracy in the hys-
teresis model, the classic Preisach model was
modi�ed by adding a parallel term as shown in
Fig. 3. The new term with hysteresis function
has some e�ects as following [18]- [20], [40, 41]:

- To �ll the predicted hysteresis loop to re-
duce the errors with the measured loop;

- To pose the splitting phenomenon between
minor and major loops.

Fig. 3: Mathematical model of piezoelectric bimorph
actuator in continuous time.

The purposed approach of this project is to
continue the modeling of hysteresis topic. It
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also discusses and �nds out the development of
the modi�ed Preisach model to replace the clas-
sic Preisach model. Therefore, the new model
can be used to describe the nonlinear hystere-
sis loop of piezoelectric bimorph actuator under
arbitrary or stimulating non-periodic input [18]-
[20], [40, 41].

Proposed Preisach model can be modi�ed to
upgrade the mathematical model of piezoelectric
bimorph actuator to control the system.

The de�nition of the hysteresis e�ect is dy-
namic, nonlinear system and independent of ra-
tio. So, we mean independent of the time scale
in terms of rate-independence. In [40, 41], the
e�ect of a combination of basic elements is mod-
eled. Therefore, the great number of parameters
is relatively large in this model. Moreover, a
model is not appropriate to proposed controller
design. Consequently, in [42], a di�erential equa-
tion with only three parameters is used as appli-
cation as a hysteresis model and a di�erential
equation is also more appealing when we want
to apply the model as a basis scheme for con-
troller design.

In this part, we consider this equation in more
detail. However, in [42], a much broad discussion
can be search.

The hysteresis loop is a de�nition as a static
loop in the input / output plane for a semi-
static monotonic oscillating input such as low
sinusoidal frequency.

The equation is proposed in [43] that consid-
ers �rst-order di�erential equation. It was de-
veloped to describe the magnetic hysteresis, but
in [42] it has been experimentally veri�ed that
this di�erential equation is also suitable to de-
scribe the electrical delay as in the piezoelectric
actuator. The model for the hysteresis e�ect be-
tween uh and q is given by [15]:

q̇ = α|u̇h(t)| (f(uh(t))− q) + u̇h(t)g(u̇h(t)) (6)

where f(uh(t)) and g(uh(t)) are functions with
which you can �shape� the hysteresis loop.

Therefore, we can have:

f(uh(t)) = auh(t), g(uh(t)) = b (7)

Where a and b are constants. So, the equation
becomes:

q̇ = αa|u̇h(t)|uh(t)− α|u̇h(t)|q(t) + bu̇h(t) (8)

The hysteresis function shows in mathematical
model of piezoelectric bimorph actuator in con-
tinuous time in Fig. 3.

2.2. Perturbation Estimation

In this paper, the model of continuous-time
piezoelectric actuators is eliminated by applying
the small sampling time T . Several approaches
are available (e.g. zero-order hold) to get the
purpose of discretization. In this study, Euler's
backward di�erence is used due to its simplic-
ity. For discretization, Euler's backward di�er-
ences applied. A disturbance estimation tech-
nique developed by Elmali [29] was applied. A
perturbation estimation technique developed by
Elmali [29] is used.

It is necessary note that the backward dif-
ferences (3) and (4) are used to discretize the
continuous time model (2). We are not consid-
ered to discretize the noises at this project. The
discrete-time model (5) exists in the delayed ver-
sions x(kT − 2T ) and x(kT − T ) of the plan of
output x(kT ). It is nearly similar to other ways
such as zero-order hold [30].

The main problem is discretized in the gener-
ated time delay ≈ T/2. The main reason of phe-
nomenon of slow response in transient behavior
of the closed loop control system is the time de-
lay. In this study, a small sampling time T will
be selected when the time delay is ignored [15].

Therefore, the perturbation term p(kT ) is
generated by its one-step delayed estimation
based on the perturbation estimation technique.

p̂(kT ) = p(kT − T ) = −du(kT − T )

+mx(kT − 3T ) + bx(kT − 2T ) + kx(kT − T )
(9)

if p̃(kT ) = p̂(kT ) − p(kT ) is the perturbation
estimation error, the equation (5) can be written
as

mx(kT − 2T ) + bx(kT − T ) + kx(kT )

= du(kT ) + p̂(kT )− p̃(kT ) (10)
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where k represents the kth time step. Perturba-
tion estimation error depends on the sampling
speed of the control hardware and the accuracy
of the feedback sensing. Upper bound of this
error can be experimentally determined.

The perturbation estimation error can be fur-
ther expressed as:

p̃(kT ) = p̂(kT )− p(kT )

≈ −ṗT = − T

M
Ṗ (t) (11)

2.3. Hysteresis E�ect

The hysteresis e�ect is represented inside the
electromechanical model as shown in Fig. 3
and can be described as a dynamic, rate-
independent, and nonlinear [15]. In [16], a di�er-
ential equation with three parameters and two
variables is adopted to model the hysteresis ef-
fect. This equation and its discrete form are
given by

q̇(t) = αa|u̇h(t)|uh(t)− α|u̇h(t)|q(t) + bu̇h(t)
(12)

q(kT ) =

 1

1

T
+ α

∣∣∣∣ 1

T
(uh(kT )− uh(kT − T ))

∣∣∣∣


+ αauh(kT )

∣∣∣∣ 1

T
(uh(kT )− uh(kT − T ))

∣∣∣∣
+
b

T
(uh(kT )− uh(kT − T )) +

q(kT − T )

T
(13)

where α, a and b are parameters.

In [15], it represents the method to �nd pa-
rameters by realistic hysteresis loop. Based on
the experiment, it can �nd out a and b from
center points and average slopes, the parameter
α can then be experimentally determined from
hysteresis areas. By varying these parameters,
di�erent shapes of hysteresis can be obtained in
Fig. 4.

Fig. 4: Simulated hysteresis function.

3. DIGITAL SLIDING

MODE CONTROL

Substituting the equation (9) into the discrete
plant model (10), we have

x(kT ) =
1

k


d̄ (u(kT )− u(kT − T ))

+m̄x(kT − 3T )(
b̄− m̄

)
x(kT − 2T )

+
(
k̄ − b̄

)
x(kT − T )

−p̃(kT )

 (14)

The position error is de�ned as e(kT ) = x(kT )−
xd(kT ), where xd(kT ) is the desired trajectory.
A proportional-integral sliding surface is de�ned
as,

s(kT ) = λP e(kT ) + λIε(kT ) (15)

where ε(kT ) = e(kT ) + ε(kT −T ) is the integral
error, λP and λI are proportional and integral
gains. In this paper, the following reaching law
is adopted,

s(kT )− s(kT − T ) = 0 (16)

Considering that the equivalent control u(kT )
is the solution to (19), the following deductions
hold:

s(kT − T ) = λP e(kT ) + λIε(kT ) (17)

s(kT − T ) = (λI + λP )e(kT ) + λIε(kT − T )
(18)

Then, inserting (14) into equation (17), and ig-
nore the estimation errors p̃(kT ), leads to the
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equivalent control.

u(kT ) = u(kT − T )

+
1

d


k̄

λA
s(kT − T )

− k̄

λA
λIε(kT − T )

+k̄xd(kT )


− 1

d

m̄x(kT − 3T )

+(b̄− m̄)x(kT − 2T )

+(k̄ − b̄)x(kT − T )

 (19)

where λA = λP + λI .

The equivalent control (19) represents the
control action for the case of perfect disturbance
estimation, that is, p̃(kT ) = 0. It takes e�ect in
the sliding phase when the position trajectory is
kept on the sliding surface (s(kT ) = 0). How-
ever, if a large error p̃(kT ) occurs during the
sliding phase, the standalone equivalent control
cannot drive the position towards the sliding sur-
face.

Thus, the equivalent control is augmented by
a switching control uSW (kT ) to give the total
control action

u(kT ) = ueq(kT ) + uSW (kT ) (20)

Control input is given by

u(kT ) = u(kT − T )

+
1

d


k̄

λA
s(kT − T )

− k̄

λA
λIε(kT − T )

+k̄xd(kT )


− 1

d

m̄x(kT − 3T )

+(b̄− m̄)x(kT − 2T )

+(k̄ − b̄)x(kT − T )


− λs

d̄
sgn (s(kT − T )) . (21)

where λs is a constant control gain and sgn(·)
represents the sign function. If λs ≥ |p̃(kT )|,
then the DSMC will occur with a quasi-sliding
domain (QSD). The proof can found in [30].
However, when the actuator is operated under

higher frequencies, it can decrease system per-
formance. In electrical circuits, chattering phe-
nomena can cause heating losses, degrading elec-
tronics components. In mechanical system, it
may lead to high wears of moving mechanical
parts. In this paper, a saturation function is
adopted in order to attenuate the chattering ef-
fect. The saturation function is given by,

sat(kT ) =

{
sgn(s(kT )) if |s(kT )| > ε

s(kT )/ε if |s(kT )| 6 ε
(22)

Remark 3. The chattering phenomenon is
highly undesirable because it may excite high
frequency unmodelled plant dynamics. There
are some approaches to reduce the chattering.

The �rst, the discontinuous function
s(kT )

‖s(kT )‖
in the control input (21) is replaced by a con-
tinuous approximation such as sat(kT ). This
method cannot guarantee asymptotic stability
but ultimate boundedness of system trajectories
to within a neighborhood of the origin.

4. SIMULATION

RESULTS

The plant parameters are shown in Table 1. In
this paper, a sampling time T is chosen as 0.004s.
So, the discrete plant parameters (5) are calcu-
late using this value. In addition, for compar-
ative study, the traditional PID is also imple-
mented. The control input is given by,

uPID(k) = uPID(k − 1) +Kpep(k)

+Kiei(k) +Kded(k) (23)

where uPID(k − 1) is the control input in the
previous time step, Kp,Ki, and Kd are propor-
tional, integral, derivative gains, respectively,
and the proportional, integral and derivative er-
rors are given by,

ep(k) = e(k)− e(k − 1)

ei(k) = e(k) (24)

ed(k) = e(k)− 2e(k − 1) + e(k − 2)

Besides tracking performance analysis, we also
calculate the percent maximum error (MAXE)
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Table 1. Parameters of the plant
Symbol Parameter Value

M mass 0.015 Kg
B damping 1 Ns/m

coe�cient
K sti�ness 1.5× 106 Nm
D Piezoelectric 1.152 N/V

coe�cient

Table 2. Parameters of the PID controller
Symbol Parameter Value
Kp Proportional Gain 0.017
Ki Integral Gain 0.000534
Kd Derivative Gain 0.00002

and root-mean-square error (RMSE) are calcu-
lated using the following equations

MAXE%

=
max(|e(kT )|)

max(xd(kT ))−min(xd(kT ))
× 100% (25)

RMSE%

=

√
1
N

N∑
k=1

e2(kT )

max(xd(kT ))−min(xd(kT ))
× 100% (26)

Fig. 5: Tracking performance for step response.

The simulations are performed using MAT-
LAB. In Fig. 5, the reference position is a con-
stant, and PID controller and DSMC are em-
ployed with the parameters in Tabs. 2 and 3.
The tracking performance using PID controller
show an overshoot of approximately of 1µm and

Fig. 6: Error for step response.

Table 3. Parameters of the discrete sliding
mode controller

Symbol Parameter Value
λp Proportional Gain 300
λi Integral Gain 1
λs Constant Control Gain 10000
ε Boundary layer 100

a larger steady state time. However, using a
DSMC, the system has a very fast response and
an error near to zero as shown in Fig. 6. In
addition, the calculate MAXE and RMSE are
3.7904 × 10−10 and 1.5346 × 10−12 in Tab. 4,
respectively.

Fig. 7: Tracking performance for sine function.

In the second experiment, the constant value
is replaced by a sinusoidal function and the
tracking performance is shown in Fig. 7. The
tracking performance applying the conventional
PID controller has an unsatisfactory tracking if
compared to DSMC.

498 c© 2019 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 3 | ISSUE: 3 | 2019 | September

Fig. 8: Error for sine function.

Table 4. MAXE and RMSE
PID MAXE% RMSE%

Constant 7.05 0.26
Sinusoid 10.35 0.39

DSMC MAXE% RMSE%
Constant 3.7904×10−8 1.5346×10−10

Sinusoid 1.9112×10−9 9.4985×10−12

From the Tab. 4, this can be explained by the
presence of hysteresis e�ect that turns the sys-
tem into a complex nonlinear system. For both
experiments, DSMC obtains a better trajectory
tracking response, tracking errors, MAXE and
RMSE in Fig. 7 and Fig. 8 and Tab 4. Sim-
ilar to the previous simulation, the tracking
performance using the proposed DSMC shows
no visible overshoot. This improvement is due
the combination between disturbance estimation
and DSMC which can work well with distur-
bances and nonlinear plant, resulting in a high-
performance micromanipulator.

5. CONCLUSION

Trajectory tracking of the piezoelectric bimorph
actuator is performed using DSMC in combina-
tion with perturbation estimation technique has
been simulated in this paper. To describe the
hysteresis e�ect, the Preisach model is adopted
and included in the perturbation term. In addi-
tion, this simulation was performed without us-
ing state observer, using only the position state.
This combination attenuates the hysteresis e�ect

have on the system, resulting in a high tracking
performance in comparison with the traditional
PID controller.
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