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Abstract. In this paper, hidden bifurcation
routes to multiscroll chaotic attractors generated
by saturated function series are explored. The
method to �nd such hidden bifurcation routes
(HBR) depending upon two parameters is sim-
ilar to the method introduced by Menacer, et al.
(2016) for Chua multiscroll attractors. These
HBR are characterized by the maximal range
extension (MARE) of their attractors and cod-
ing the appearance order of the scrolls under the
control of the two parameters. Moreover, these
HDR have interesting symmetries with respect to
the two parameters. The novelty that this article
introduces, is �rstly the paradigm of MARE and
the formula giving their approximate value de-
pending upon parameters p and q, which is linked
to the size of the scrolls; secondly the coding of
the HBR which is de�ned for the �rst time in-
cluding the basic cell ; and thirdly unearthing
the symmetries of these routes, allowing to ob-
tain their coding without any numerical compu-
tation.
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1. Introduction

In the last three decades, generation of mul-
tiscroll chaotic attractors has been extensively
studied due to their promising applications in
various real-word technologies. Several methods
have been proposed, like piecewise linear func-
tions and nonlinear modulating functions, and
in electronic circuits (step, hysteresis and sat-
urated circuits), for generating multidirectional
multiscroll chaotic attractors (see [1] for a sur-
vey). Although the majority of such multiscroll
generations are known for many years, it is only
recently that they are studied under the scope
of bifurcation theory [2]. They also have been
found for hidden attractors [3] in the case where
equilibrium points exist [4], and even in the case
of in�nite number of equilibriums [5]. For all the
multiscrolls already known, the number of scrolls
(or spirals) is a �xed integer, which depends on
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one or more discrete parameters. To date no
bifurcation was analyzed. However, Menacer et
al. [2] changed the paradigm of discrete param-
eters by introducing hidden bifurcations, gen-
erating multiscrolls in a family of systems (7)
possessing a continuous bifurcation parameter.
Then, all the classical theories of dynamical sys-
tems and their powerful tools can be used for
studying the multiscrolls. Such hidden bifurca-
tion theory is based on hidden attractor theory
introduced by Leonov et al. [6, 7].
In this article, the focus is on the study of the
symmetries of hidden bifurcation routes in 1-D
multiscroll chaotic attractors generated by sat-
urated function series. In [8], a saturated func-
tion series was proposed for generating multi-
scroll chaotic attractors, including 1-D n-scroll,
2-D n × m-grid scroll, and 3-D n × m × l-grid
scroll chaotic attractors. The present article will
adopt saturated function series in the design.
The novelty that this article introduces, is �rstly
the paradigm of the maximal attractor range
extension and the formula giving their approxi-
mate value depending upon parameters p and q,
which is linked to the size of the scrolls; secondly
the coding of the HBR which is de�ned for the
�rst time including the basic cell ; and thirdly
unearthing the symmetries of these routes, al-
lowing to obtain their coding without any nu-
merical computation.
This article is organized as follows: In Section
2, the model of multiscroll chaotic attractors
generated by saturated function series proposed
in [1] is reviewed. In Section 3, the localization
method introduced in [2] is presented for hidden
bifurcation in multiscroll chaotic attractors gen-
erated by saturated function series. In Section 4,
this method is assessed on two numerical exam-
ples. In Section 5, the symmetries are studied,
which occur in hidden bifurcation routes when
two parameters vary. Finally, in Sec. 6, a brief
conclusion is drawn. Appendix A presents the
analytical-numerical method for hidden attrac-
tor localization proposed by Leonov [7].

2. Multiscrool chaotic

attractors from

saturated function

series

Among the several proposed methods for creat-
ing n-scroll (n ≥ 3) chaotic attractors [9�11],
for the one in [8], which is based on saturated
function series (Fig. 1) a controller is added to
a linear system

·
x = y
·
y = z
·
z = −ax− by − cz + d1f(x; k;h; p; q)

(1)

where

f(x; k;h; p; q) =



y1,k if x > qh+ 1

y2,k,i if |x− ih| ≤ 1

−p ≤ i ≤ q
y3,k,i if l1,i < x < l2,i

−p < i < q − 1

y4,k if x < −ph− 1

(2)
with l1,i = ih+ 1 and l2,i = (i+ 1)× h− 1,
y1,k = (2q + 1) k, y2,k,i = k (x− ih) + 2ik,
y3,k,i = (2i+ 1) k and y4,k = − (2p+ 1) k
Parameters p, q, h and k are integers, and
a, b, c, d1 are real numbers.

Throughout this article, set the parameter
values as a = b = c = d1 = 0.7. The number n of
scrolls (also denominated spirals elsewhere [2])
satis�es

n = p+ q + 2 (3)

Fig. 1: Saturated function series, when p = q = 2 and

k = 9, h = 18.
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Fig. 2: The 6-spiral attractor generated by Eqs. (1) and

(2), with k = 9; h = 18, p = q = 2 and a = b =

c = d1 = 0,7.

For k = 9, h = 18, p = q = 2, a 6-scroll attrac-
tor is generated as the asymptotic attractor of
system (1-2), see Fig. 2.

3. Recovering hidden

bifurcation in a

multiscrool chaotic

attractor

In the modi�ed Chua circuit with a sine func-
tion, the parameter c governing the number of
spirals is an integer, hence it is not possible to
vary it continuously and therefore it is not pos-
sible to observe bifurcations of attractors from
n to n + 2 spirals as the parameter c changes.
Moreover it is not possible to use non-integer
real values for c. To overcome this obstacle,
Menacer et al. [2] introduced a new method for
uncovering hidden bifurcations based on the idea
of Leonov and Kuznetsov [6] for searching hid-
den attractors (i.e. homotopy and numerical
continuation, see Appendix). While keeping c
constant, a new bifurcation parameter ε is in-
troduced. This method is now applied to multi-
scroll chaotic attractors from saturated function
series. Rewrite system (1-2) to the form

dX

dt
= MX + µψ(νTX), X ∈ R3 (4)

with

M =

 0 1 0
0 0 1
−a −b −c

 , X =

 x
y
z

 ,

ν =

 1
0
0

 , µ =

 0
0
d1

 and ψ(σ) = f(σ).

Introduce a coe�cient k0 and a small parameter
ε to represent system (4) as

dX

dt
= M0X + µεϕ(νTX), (5)

where

M0 = M + k0µν
T =

 0 1 0
0 0 1

k0d1 − a −b −c

 ,

λM0
1,2 = ±iω0, λM0

3 = −d

In practice, to determine k0 and ω0, one uses the
following transfer function of system (5):

WM0(λ) = ν(M − λI)−1q (6)

where λ is a complex variable. The number ω0

is determined from the equation ImW (iω0) =
0 and k0 is calculated by the formula k0 =
(ReW (iω0))−1.

Using the nonsingular linear transformation
X = SY , de�ned in the Appendix, system (5) is
reduced to the form

dY

dt
= AY + bεϕ(cTY ) (7)

where

A =

 0 −ω0 0
ω0 0 0
0 0 −d

 , Y =

 y1
y2
Y3

 ,

b =

 b1
b2
1

 , and c =

 1
0
−h

 .

Remark 1. System (7) is 3-dimensional, with

Y3 ∈ R.
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The transfer function of system (7) can be rep-
resented as

WA(λ) = CT (A− Iλ)−1B

=
h

d+ λ
− λ b1

λ2 + ω2
0

+ ω0
b2

λ2 + ω2
0

Further, using the equality of transfer functions
of systems (5) and (7), one obtains

WA(λ) = νT (M0 − λI)−1µ (8)

This implies the following relations:

k0 =
a−ω2

0d
d1

, d = c, h = −d1
ω2

0+d
2 ,

b1 = −d1
ω2

0+d
2 , b2 = −cd1

ω0(ω2
0+d

2)

(9)

Since system (5) can be reduced to the form
(7) by the non-singular linear transformation de-
�ned in Appendix, the following relationships
can be obtained:

A = S−1M0S, b = S−1µ, cT = νtS (10)

Solving these matrix equations gives the entries
of this matrix:

S =

 S11 S12 S13

S21 S22 S23

S31 S32 S33


with

S11 = 1, S12 = 0 , S13 = −h
S21 = 0, S22 = −ω0, S23 = dh
S31 = −ω3

0 , S32 = 0, S33 = d2h
(11)

For small enough ε, one can determine the
initial data of the �rst step in the multistage
localization procedure, as

X(0) = SV (0) = S

 η0
0
0

 =

 η0S11

η0S21

η0S31


(12)

For system (4), this gives the initial condition

X0(0) =

(
x0(0) = η0, y

0(0) = 0, z0(0) = −η0ω3
0

)
(13)

4. Examples and

properties of

bifurcation routes

4.1. Numerical computation of

two hidden bifurcation

routes

The goal of this article is to study the hidden
bifurcation routes of 1-D multiscroll attractors
de�ned in Section 2 and their symmetries.
First, two examples of such hidden bifurcation
routes are shown, and the way in which the
scrolls appear are revealed.

Consider the system (1-2) with parameter val-
ues

a = b = c = d1 = 0.7

Now, the localization procedure described above
is applied to system (4) with multiple spiral at-
tractors. For this purpose, the following starting
frequency ω0 and a coe�cient of harmonic lin-
earization k0 are computed, as explained in the
Appendix:

ω0 = 0.8366 and k0 = 0.3

Then, the solutions of system (5), with the
nonlinearity εϕ(x) = ε(ψ(x) − k0x), are com-
puted by increasing sequentially ε from the value
ε = 0.1 to ε = 1, with step 0.1. For p = 0, q = 4,
h = 20 and k = 10, using (13), one obtains the
initial conditions

x0(0) = 203.2, y0(0) = 0, z0(0) = −119.01

whereas in the case of p = 2 and q = 3, with
the same values of h and k the following initial
conditions are obtained:

x0(0) = 249, y0(0) = 0, z0(0) = −145.83

Using these initial conditions, the procedure
described in section 3 yields the values of the
parameter ε at the bifurcation points, where the
attractor increases the number of spirals from 1
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to 6 spirals (7 spirals, respectively), as shown in
both Table 1, and Table 2. Note that there is a
special feature or case 7 compared to the case 6,
where the bifurcations appear respectively from
1 to 7 spirals , in the following order: 1, 2, 4, 6
and 7, depending on the values of ε, as shown in
Figures 3, 4, 5 and 6.

Values of ε 0.41 0.6

Number of spirals 1 spiral 2 spirals

Values of ε 0.95 0.985

Number of spirals 3 spirals 4 spirals

Values of ε 0.988 0.99

Number of spirals 5 spirals 6 spirals

Tab. 1: Values of the parameter ε at the bifurcation

points for p = 0 and q = 4 (6 scrolls).

Values of ε 0.42 0.6

Number of spirals 1 spiral 2 spirals

Values of ε 0.95 0.98

Number of spirals 4 spirals 6 spirals

Values of ε 0.99

Number of spirals 7 spirals

Tab. 2: Values of the parameter ε at the bifurcation

points for p = 2 and q = 3 (7 scrolls).

4.2. Maximal attractor range

extension and coding order

of scrolls appearance

Both Tables 1 and 2 summarize the appearance
of scrolls versus the values of ε. Figs. 3 to 5
display some interesting information: the order
of scroll appearance and the maximal attractor
range extension. In both routes, the parameter
values of function (2) are k = 10 and h = 20.
These parameters play a signi�cant role in the
sizes of the attractors.
The maximal attractor range extension
(MAREp,q) is the size of the x -projection of
the considered attractor de�ned by parameter
values p and q, when ε =1 and as t → +∞.
For example, for the �rst route de�ned in Table
1, one can see from Fig. 4 that the minimum

(a)

(b)

(c)

Fig. 3: The increasing number of spirals of system (5)

according to increasing ε values, when p = 0 and

q = 4, k=10 and h=20. (a) : The �rst scroll

between 0 and 20 for ε=0.41, (b) : The second

scroll on the left for ε=0.6, (c) : The third scroll

on the right for ε=0.95. The horizontal axis is

the x -axis, the vertical axis is the y-axis.

value of the range of the variable x of the
attractor is -20, and the maximum value is 100.
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(a) (b) (c)

Fig. 4: The increasing number of spirals of system (5) according to increasing ε values, when p = 0 and q = 4,

k=10 and h=20. (a) : The fourth scroll on the right for ε=0.985, (b) : The �fth scroll on the right for

ε=0.988, (c) : The sixth scroll on the right for ε=0.99. The horizontal axis is the x -axis, the vertical axis

is the y-axis.

(a) (b) (c)

Fig. 5: The increasing number of spirals of system (5) according to increasing ε values, when p = 2 and q = 3,

k=10 and h=20. (a) : The �rst scroll between 0 and 20 for ε=0.42, (b) : The second scroll on the left for

ε=0.6, (c) : The third and the fourth scrolls: two left-right symmetrical for ε=0.95. The horizontal axis is

the x -axis, the vertical axis is the y-axis.

Therefore, in this case, MARE0,4 = [−20, 100],
and its length is equal to 120 for 6 scrolls.
For the second route in Table 2, the attractor
spans between -60 and 80 (Fig. 6) having
MARE2,3 = [−60, 80] with a length equa1 to
140 for 7 scrolls. In both cases, the length of
MARE is equal to the number of scrolls × 20
(i.e.(n+ p+ 2)× 20, following (3)).
Moreover, when ε increases (Figs. 3 and 4), the
size of each scroll is expanding. It is approxi-
matively equal to (17 × ε) + 3. By de�ning the
interval [v × 20, w × 20]{ε} as

[v×20, w×20]{ε} = [v×(17×ε+3), w×(17×ε+3)]
(14)

the �rst scroll ful�lls the interval [0, 20]{ε}. The
second scroll appears symmetrically to the �rst
one and ful�lls the interval [−20, 20]{ε}. Now,
introduce the coding [0, 20]{ε}/L (L stands for
the left of the previous interval) to designate
the progression of such appearance of scrolls.
After the appearance of the second scroll, the
third one belongs to the interval [20, 40]{ε}, the
fourth to the interval [40, 60]{ε}, the �fth to the
interval [60, 80]{ε}, and the last to the interval
[80, 100]{ε}.
The coding of this hidden bifurca-
tion route (HBR), which ends with
the interval [−20, 100]{ε}, is HBR0,4 =
[0, 20]{ε}/L/R/R/R/R (R stands for the right
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(a)

(b)

Fig. 6: The increasing number of spirals of system (5)

according to increasing ε values, when p = 2

and q = 3, k=10 and h=20. (a) : The �fth

and the sixth scrolls: two symmetrical left-right

for ε=0.98, (b) : The seventh scroll on the right

for ε=0.99.The horizontal axis is the x -axis, the

vertical axis is the y-axis.

of the previous interval).
As the value of ε is not important for the
search of symmetries of the hidden bifur-
cation routes, it is omitted and denote
simply HBR0,4 = [0, 20]{ε}/L/R/R/R/R by
HBR0,4 = [0, 20]/L/R/R/R/R.
The beginning of the second route (Figs. 5 and
6) is the same ([0, 20]{ε}/L). However, the third
and the fourth scrolls appear simultaneously,
expanding the interval [−20, 20]{ε} to [−40, 40]ε.
Denote this expansion by [0, 20]{ε}/L/2Sym.
The �fth and the sixth scrolls appear again

symmetrically to the previous attractor. Fi-
nally, the last scroll belongs to the interval
[60, 80]{ε}.
The coding of this second route, which
ends with the interval [−60, 80]{ε}, is
HBR2,3 = [0, 20]{ε}/L/2Sym/2Sym/R or
simply HBR2,3 = [0, 20]/L/2Sym2/R.

5. Symmetries of the

hidden bifurcation

routes

Consider all the values of p and q for the values
of n in Eq. (3), ranging from 3 to 7, and some
values of p and q for n between 8 and 12.

5.1. Basic cell

The numerical experiments show that the �rst
two scrolls appear following either the coding

([0, 20]{ε}/L) or ([−20, 0]{ε}/R)

as displayed in Figs. 7 and 8, for the same values
of h and k. Therefore, it is called the basic cell
and denoted as B, either

([0, 20]{ε}/L) or ([−20, 0]{ε}/R)

Together with B, the following generalized no-
tations are used for the coding:

2Syms = 2Sym�2Sym�...�2Sym︸ ︷︷ ︸
s times

Lt = L�L�...�L︸ ︷︷ ︸
t times

Ru = R�R�...�R︸ ︷︷ ︸
u times

5.2. Symmetries

All the hidden bifurcation routes have been com-
puted numerically for all the values of p and q,
giving the values of n in Eq. (3) ranging from 3
to 7. The results (MARE and coded bifurcation

c© 2019 Journal of Advanced Engineering and Computation (JAEC) 517



VOLUME: 3 | ISSUE: 4 | 2019 | December

Fig. 7: The �rst scroll between −16 and 0 for the values

of the parameters p = 0 and q = 4 with the

parameters values k = 9 and h = 18.

Fig. 8: The second scroll is in symmetry with the �rst

one, generated between 0 and 20 (−20, 0) for the
values of the parameters p = 0 and q = 4 with

the parameters values k = 9 and h = 18.

routes) are displayed in black color in Table 3.
It was found that

MAREp,q = [−20− 20× p, 20 + 20× q] (15)

Moreover the coding of every hidden bifurcation
route is given by

HBRp,q ==


B�2Syms if p = q

B�2Syms�Lp−s if p > q

B�2Syms�Rq−s if p < q

(16)
which is the formula that determines the num-
ber of scrolls and the order of their appearances,
where s = min(p, q).

In Table 3, HBRp,q andMAREp,q, which are
printed in red, correspond to both of the above
formulas. From these numerical results, it ap-
pears clearly that there exists some symmetry
about the �rst diagonal. This symmetry is de-
�ned for HBRp,q by the change of R to L when
p is changed in q, and vice versa. Moreover, if
MAREp,q = [α, β], then MAREq,p = [β, α].

Conclusion

In this article, the hidden bifurcation routes
in multiscroll chaotic attractors generated by
saturated function series have been explored.
Such hidden bifurcations were �rst discovered
few years ago for Chua multiscroll attractors,
which depend on a discrete parameter [2]. Em-
bedding systems of generating multiscrolls in a
family of systems possessing a continuous pa-
rameter, and using a method similar to the one
introduced by Leonov et al. [6, 7], the method
used for Chua attractors is applicable also to
other systems generating multiscroll attractors.
In the case of attractors generated by saturated
function series, the existence of hidden bifurca-
tion routes have been characterized by the max-
imal range extension of their attractors and cod-
ing of the appearance order of the scrolls, under
the control of two parameters. Moreover, it has
been con�rmed that these routes have interest-
ing symmetries with respect the two parameters.
The novelty that this article introduces, is �rstly
the paradigm of MARE and the formula giving
their approximate value depending upon param-
eters p and q, which is linked to the size of the
scrolls; secondly the coding of the HBR which is
de�ned for the �rst time including the basic cell
; and thirdly unearthing the symmetries of these
routes, allowing to obtain their coding without
any numerical computation.
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A Analytical-numerical

method for hidden

attractor localization

Recently, the new concepts of self-excited and
hidden attractors have been introduced [7], [12],
[14]. An attractor is called a self-excited attrac-
tor if its basin of attraction overlaps with neigh-
borhood of an equilibrium point; otherwise it
is called a hidden attractor. For example, hid-
den attractors are attractors in systems with no
equilibria, or with only one stable equilibrium,
or with in�nitely many equilibria. A hidden at-
tractor is characterized by its basin of attraction,
which does not intersect with small neighbor-
hoods of any equilibrium points, thereby making
it very di�cult to �nd.
The name hidden comes from this computa-
tional di�culty. However, Leonov et al. [6],
[13], [14] found a method to reveal numerically
their existence. They develop this method es-
pecially for Chua attractor. The method devel-
oped in [2], revealing hidden bifurcations in the
multispiral Chua attractor, in the case where
the parameter of bifurcation which determines
the number of spirals is discrete, is based on the
method of Leonov et al. [6]
To recall this numerical method, consider a sys-
tem with one scalar nonlinearity:

dX

dt
= MX + µψ(νTX), X ∈ R3. (17)

were M is a constant (n× n)−matrix, µ, ν are
constant n−dimensional vectors, T is a transpo-
sition operation, ψ(σ) is a continuous piecewise-
di�erentiable scalar function, and ψ(0) = 0. De-
�ne coe�cient k of harmonic linearization in
such way that the matrix

M0 = M + kµνT (18)

has a pair of purely imaginary eigenvalues ±iω0

(ω0 > 0) and the rest of its eigenvalues have neg-
ative real parts. Assume that such k0 exists.
Then, rewrite system (17) as

dX

dt
= M0X + µϕ(νtX) (19)

were ϕ(σ) = ψ(σ) − k0σ, and introduce a �nite
sequence of functions, ϕ0(σ), ϕ1(σ), · · · , ϕm(σ),

such that the graphs of neighboring function
ϕj(σ) and ϕj+1(σ), j = 0, · · · ,m − 1, slightly
di�er from each other. Suppose that the func-
tion ϕ0(σ) is small, and ϕm(σ) = ϕ(σ). Using
the smallness of the function ϕ0, one can apply
the method of harmonic linearization (describ-
ing function method) for the system

dX

dt
= M0X + µϕ0(νtX) (20)

and determine a stable nontrivial periodic solu-
tion X0(t).
For the localization of the attractor of the origi-
nal system (19), perform numerically the trans-
formation of this periodic solution. All the
points of this stable periodic solution are located
in the domain of attraction of the stable periodic
solution X1(t) of the system

dX

dt
= M0X + ϕj(νTX) (21)

With j = 1, or when passing from (20) to
system (21) with j = 1, one can observe the
instability bifurcation destroying the periodic
solution. In the �rst case, it is possible to �nd
X1(t) numerically, taking as initial condition of
system (21) with j = 1, any point of the stable
periodic solution X0(t).
Starting from this initial condition, after a
transient phase, the trajectory reaches the
periodic solution X1(t).
Then, after the computation of X1(t), it is
possible to obtain a periodic trajectory X2(t) of
system (21) with j = 2, starting from any point
of the stable periodic solution X1(t), and so on,
to obtain a periodic solution of system (19) if
such solution exists.

Remark 2. In some cases it is not possible to

get such solution because one observes at a cer-

tain step an instability bifurcation destroying the

periodic solution.

Remark 3. In the cases of Chua attractor, the

periodic solution close to the harmonic one is

transformed to a chaotic attractor. This is also

the case for multiscroll chaotic attractors from

saturated function series, studied in this article.
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In order to determine the initial condition
X0(0) of the periodic solution, system (20) can
be transformed by a linear nonsingular transfor-
mation S (X = SY ) to the form

·
y1 = −ω0y2 + b1ϕ

0(y1 + ct3Y3)
·
y2 = ω0y1 + b2ϕ

0(y1 + ct3Y3)
·
Y3 = A3Y3 +B3ϕ

0(y1 + ct3Y3)

(22)

Here, y1, y2 are scalar values; Y3 is an
(n− 2)−dimensional vector, B3 and c3 are
(n− 2)−dimensional vectors, b1 and b2 are real
numbers; A3 is an (n− 2) × (n− 2) matrix,
where all of its eigenvalues have negative real
parts.
Without loss of generality, assume that, for the
matrix A3, there exists a d2 > 0 such that

Y t3 (A3 +At3)Y3 ≤ −2d2 |Y3|2 ∀Y3 ∈ Rn−2. (23)

In the scalar case, introduce the describing func-
tion Φ of a real variable η as follows:

Φ (η) =

∫ 2π/ω0

0

φ(cos(ω0t)(η)) cos(ω0t) dt (24)

Theorem 1. [12] If a positive η0 satis�es that

Φ(η0) = 0, b1
dΦ(η)

dη

∣∣∣∣∣
η=η0

< 0 (25)

then, for the initial condition of the periodic so-

lution X0(0) = S(y1(0), y2(0), Y3(0))T at the

�rst step of algorithm, one has

y1(0) = η0 +O(ε), y2(0) = 0, Y3(0) = On−2(ε)

(26)

were On−2(ε) is an (n− 2)−dimensional vector

in which all its components are O(ε).

Recall that the stability is de�ned in the sense
that, for all solutions with the initial data su�-
ciently close to X0(0), the modulus of their dif-
ference with X0(t) is uniformly bounded for all
t > 0. For the stability of X0(t), it is su�cient
to require the following condition:

b1
dΦ(η)

dη

∣∣∣∣∣
η=η0

< 0. (27)

In practice, to determine k0 and ω0, one uses the
transfer function of system (17),

W (λ) = rT (M − λI)−1µ (28)

where λ is a complex variable. The number ω0

is determined from the equation ImW (iω0) = 0
and k0 is then calculated using the formula k0 =
−ReW (iω0).
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