
VOLUME: 4 | ISSUE: 3 | 2020 | September

People vs Differential Evolution in Search

of The Shortest Path

Michal BUKÁ�CEK∗

VSB - Technical University of Ostrava, Department of Computer Science, 17. listopadu 15,
Ostrava-Poruba, Czech Republic

*Corresponding Author: Michal BUKÁ�CEK (Email: michal@bukacek.cz)
(Received: 27-May-2020; accepted: 8-Sep-2020; published: 30-Sep-2020)

DOI: http://dx.doi.org/10.25073/jaec.202043.292

Abstract. The most common aim of computer
game optimisation is to �nd the shortest path
within a game or to solve a problem of a trav-
elling salesman within a small group of cities.
This article deals with the possibilities of com-
paring the ascertained solutions of a given prob-
lem of human intelligence and evolutionary al-
gorithms. Human intelligence is represented by
mobile game players programmed for the An-
droid operating system, by their conduct during
playing the game, and by the achieved the re-
sults. Evolutionary algorithms are represented
by di�erential evolution. The best possible pa-
rameter estimation will be sought and compared
with the player's results. The goal is to �nd pa-
rameter estimation of an equal or better qual-
ity in comparison with results of human players.
Another task is to verify whether this setting is
suitable for all mazes and whether people or the
di�erential evolution are better at searching.

Keywords

Travelling salesman problem, di�erential
evolution, android, parallel algorithms.

1. Introduction

You will hardly meet a person who has never
played a computer game whether on his or her
phone or on a computer. People enjoy �lling
the blank spaces in their free time by resting
while playing computer games and, what's more,
they even organise tournaments in this activ-
ity. According to (Syracuse University's online
MBA program, 2019 [10]), it becomes increas-
ingly popular every year to monitor computer
game players and certain areas are even becom-
ing as popular as watching the classic sports
tournaments. Playing computer games is actu-
ally discussed to be possibly added among the
new sports disciplines of the eSports category
(Chris Beer, 2019 [12]) at the Summer Olympic
Games in 2024 which will take place in Paris
(International Olympic Committee, 2019 [11]).

The most common issue of computer games as
well as the general information sciences is to look
for the shortest path through a �eld of obstacles.
This problem could be generalised as searching
for the shortest path through a maze where we
need to �nd our way from point A to point B.
The solution comprises various algorithms based
on various principles (D. Green et al., 2017 [4]).
The simplest solution is to use brute force where
the area is searched through widthwise. This
solution can be optimised by trying to make
a widthwise search but in the assumed direc-
tion. The most sophisticated and complex solu-

c© 2020 Journal of Advanced Engineering and Computation (JAEC) 207

VOLUME: 4 | ISSUE: 3 | 2020 | September

tion is using evolutionary algorithms (Marrow,
2000 [5]). There are various options and the lim-
iting factor is always the required accuracy of
results and how time-demanding is the search.
In this article, we will be comparing the con-
duct of people in a computer game with the use
of the di�erential evolution algorithm. We will
set collections of solutions of the shortest paths
that can be found by computer game players and
compare them with the solutions ascertained by
the di�erential evolution - DE. The aim is to
�nd a suitable setting for DE which could lead
to a relatively easy provision of a solution of
the highest quality comparable with the solution
provided by real people playing the games, who
can practically see the solutions in front of them
within small mazes. We will verify whether the
same DE setting can be applied to various kinds
of maze. At the same time, we will determine
whether real people or DE can provide better re-
search outcomes (Price, Storn, Lampinen, 2005
[6]).

2. Motivation

The motivation is to compare a group of peo-
ple playing the same game with an evolutionary
algorithm. In the case of an evolutionary algo-
rithm, di�erent results can be achieved due to
a change in the parameter settings. The goal
is to compare human intelligence with the intel-
ligence of an evolutionary algorithm also with
regard to the size and complexity of the maze.
Another goal is to verify the possibility of the ex-
istence of one DE parameter setting, that would
be optimal for di�erent types of games.

3. Experiment design

3.1. Solution design

The entire work is divided into two tasks. The
�rst one is to programme a game application
for users of mobile phones with the Android
OS with a server part that should be recording
the individual resulting paths and their lengths
(Ahn, Dabbish, 2008 [8]). The second task is to
create a solution by using DE. The settings of

the input DE parameters can be changed and
a solution will be sought, that would be better
compared to the previous ones, and thanks to
this feedback, the DE setting will be optimized
(Zelinka, Vasek, Lampinen, 2001 [3]).

a) User game

In order to have it more popularised and
available, the game �Travelling Salesman� has
been programmed better for mobile phones
with the Android operating system, the icon
of which is displayed as Fig. 1. An-
droid developer page was used actively for
creating the app (Android developer page,
2020 [9]). App �Travelling Salesman� can
be installed from Google Play server here:
https://play.google.com/store/apps/details?id
=cz.bukacek.travellingsalesman

Fig. 1: App Icon of the app �Travelling Salesman�
Source: Custom graphic processing.

Another option is to install with Google Play
directly from Android device and �nd the app
using the �Travelling Salesman� name.

Upon the installation and initiation of the
game, the players enter their nickname Fig. 2.
The reason why a nickname is required is the
possibility of subsequent comparison of the re-
sults of a given player with others. The results of
each player are recorded in the logs at the server
page. Players do not see the paths of other play-
ers, but only the number of steps of the currently
shortest path, compared to the parallel solution
of the SOMA algorithm (Zelinka, Bukacek, 2016
[7]).

b) Description of communication in
Game

208 c© 2020 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 4 | ISSUE: 3 | 2020 | September

Fig. 2: Running app �Travelling Salesman�-settings of
Player name Source: Custom graphic process-
ing.

The game consists of 10 levels with progressively
increasing di�culty as the searched area keeps
enlarging. Figure 3 compares graphically the
�rst and the last level generated.

Fig. 3: Comparison-Level 1 Source: Custom graphic
processing.

Upon starting the game on an Android device,
Fig. 4 the device is connected to the application
server which is indicated in Fig. 5 by the or-
ange arrow, and the maps for given game tasks
are downloaded along with the highest scores at-
tained for the given levels.

The players will see this way the highest score
attained which they either attempt to exceed or
at least attain the same score. The course of the
game is saved into the log and sent to the server

Fig. 4: Running app �Travelling Salesman�Level 1
Source: Custom graphic processing.

upon completion of the given round where it is
saved. In Fig. 5 this is indicated by the blue
arrow.

Fig. 5: Communication scheme Source: Custom
graphic processing.

3.2. Algorithm of di�erential

evolution

The description of the classic di�erential evolu-
tion (Price and Storn, 1995 [1]) is as follows.

The initial population P0 with elements N
from the population of possible solutions P is
determined by an equal selection from space S.
The value of the objective function is calculated
for all points of the initial population.

c© 2020 Journal of Advanced Engineering and Computation (JAEC) 209

VOLUME: 4 | ISSUE: 3 | 2020 | September

a) Pseudocode DE

Initial population generation P0 =
(x1, x2, ..., xn)
For all elements P0 calculate the values of the
purpose functions F ;
G=0; //Current generation
while (G<G_no) begin // G_no Number of
generations

QG =P(G);
i=0 ;
while i<N do
Random selection of individual xi from
population P ;
Random selection of three individuals
(r1, r2 and r3) from population P ;
u = r1 + F (r2 − r3);
Create individuals y by crossing u and xi;
if Rand[0,1]≤CR then
y=u ;

else
y=r1;

end if
Calculate the value of the objective function
F(y);
if F (y) ≤ F (xi) then
Into QG inserts point y in place of point xi;
end if
i=i+1;
end while
P(G+1)=QG

G=G+1
end while

A new possible solution QG enters the new
population y, the value of which is given by the
result of the binomial crossing and the value is
either the result of the mutation u or the �rst
randomly selected solution r1 from the previ-
ous population. The intersection takes place
in such a way that if the randomly selected
number from the interval (0-1) is less than or
equal to the intersection constant CR with the
value from interval (0-1), the value y is formed
by the mutated solution u. Otherwise by a
random solution r1. The mutated solution u
arises using a basic random mutation of three
randomly selected solutions r1, r2, r3 from the
previous generation according to the formula
u = r1 + F (r2 − r3), where F is a mutation
parameter with a value of (0-1). This new so-

lution y obtained by mutation and crossing will
enter a new population if its functional value, in
our case the path length is less than or equal to
the path length of the solution from the previous
generation. Otherwise, it enters a new popula-
tion QG solution xi, where i is the order of the
solution. As a result, only better or the same so-
lutions enter new populations than in previous
populations.

b) Di�erential Evolution in the game

As for programming the di�erential evolution
searching the maze, we will need to deal with
the key issue, i.e. the fact that the classic al-
gorithm of di�erential evolution works in a con-
tinuous environment rather than in a discrete
one. Within the maze, crossroads (TSP cities)
are given where the algorithm must stop, yet it
must visit all of them in order to prevent the so-
lution from penalization for taking the incorrect
path. Each city follows a certain group of cities
where the cities are not situated next to each
other.

In order to compare the decision-making of
DE and of people, we must take into account
the fact that entire paths are compared with
DE, which is contrary to human decision-making
(Yannakakis, Togelius 2018 [2]). As for the lat-
ter, every individual attempts to go through the
maze from one point to another and if there is an
unvisited place on the way and it is possible to
visit it, the individual decides to take this detour
to optimize better the e�orts made in order to
take this path and to assess it better. A person
considers a longer path at each crossroads of the
given maze; DE does not make such considera-
tions. The solution within the �rst generation
is determined by DE as all paths which can be
passed without considering the individual places
through which it has travelled already or which
it has not visited. The resulting paths are cre-
ated by these partial paths between the cities
regardless of any paths taken already. However,
there are always better solutions to be found
from which other generations produce smart in-
dividuals, i.e. new solutions, which then traverse
the paths and, in the end, the last generations
of DE take the correct shortest paths.

210 c© 2020 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 4 | ISSUE: 3 | 2020 | September

In order to combine the paths within the maze
and set a resulting path through the maze every
time, an entire assessment must be �rst made
between the shortest points within the maze.
In this case, the best solution is to create a
database (a table) where the lengths of the paths
between the individual paths can be found easily.
The database is created before the DE initiation
by means of an algorithm of brute force which
�nds the shortest distance for each city to the
other cities by searching widthwise.

Figure 6 displays a table of the shortest paths
within the maze. The coordinates of two speci�c
cities are marked green with coordinates 5-5 and
5-1, and the distance between them is 4 steps.
The shortest path for these two cities within the
maze itself is displayed in Fig. 7.

In Fig. 8 of the same table of the shortest
paths, the path of 8 steps between the cities 7-5
and 7-1 is highlighted and it is displayed in the
maze of Fig. 9.

4. Results

4.1. Measured values

Humans are represented by a group of 10 people
aged 7-60. Each person plays each level at least
once.

Fig. 6: Shortest travel table (shown between cities 5.5
and 5.1) Source: Custom processing-app screen-
shot.

Fig. 7: Show the shortest route on the map (between
cities 5.5 and 5.1) Source: Custom processing-
app screenshot.

c© 2020 Journal of Advanced Engineering and Computation (JAEC) 211

VOLUME: 4 | ISSUE: 3 | 2020 | September

Tab. 1: Scoreboard (Source: Custom processing).

Level People DE

Path length
Number
of games

Path length
(F and CR)

Number
of games

1. 26 20

26 F=1 CR=50
26 F=0.75 CR=75
26 F=0.5 CR=50
26 F=0.25 CR=50
26 F=0.25 CR=75

200 populations
50 generations

2. 36 20

36 F=1 CR=50
36 F=0.5 CR=50
36 F=0.25 CR=50
36 F=0.75 CR=50
36 F=0.75 CR=80

200 populations
50 generations

3. 66 20

62 F=0.25 CR=50
62 F=0.5 CR=50
62 F=0.75 CR=50
64 F=1 CR=50
66 F=0.5 CR=80

200 populations
50 generations

4. 91 15

74 F=0.5 CR=50
74 F=0.75 CR=50
74 F=0.5 CR=80
76 F=0.25 CR=50
78 F=1 CR=50

200 populations
50 generations

5. 120 15

116 F=1 CR=75
118 F=1 CR=90
128 F=1 CR=50
124 F=0.5 CR=75
130 F=1 CR=50

200 populations
50 generations

212 c© 2020 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 4 | ISSUE: 3 | 2020 | September

Tab. 1: Scoreboard (Source: Custom processing).

Level People DE

Path length
Number
of games

Path length
(F and CR)

Number
of games

6. 121 15

110 F=0.75 CR=50
114 F=0.5 CR=50
114 F=0.5 CR=75
118 F=0.25 CR=75
118 F=0.75 CR=80

200 populations
50 generations

7. 158 15

158 F=0.5 CR=80
178 F=0.5 CR=90
178 F=0.5 CR=30
186 F=0.5 CR=75
190 F=1 CR=50

200 populations
50 generations

8. 154 15

158 F=0.5 CR=80
178 F=0.5 CR=90
178 F=0.5 CR=30
186 F=0.5 CR=75
190 F=1 CR=50

200 populations
50 generations

9. 234 15

242 F=0.2 CR=80
244 F=0.5 CR=80
248 F=1 CR=50
256 F=0.75 CR=80
272 F=1 CR=50

200 populations
50 generations

10. 254 15

308 F=0.2 CR 80
326 F=0.2 CR 80
336 F=0.25 CR 80
348 F=0.5 CR 80
362 F=1 CR 50

200 populations
50 generations

c© 2020 Journal of Advanced Engineering and Computation (JAEC) 213

VOLUME: 4 | ISSUE: 3 | 2020 | September

Fig. 8: Shortest travel table (shown between cities 7.5
and 7.1) Source: Custom processing�app screen-
shot.

Fig. 9: Show the shortest route on the map (between
cities 7.5 and 7.1) Source: Custom process-
ing�app screenshot.

4.2. Findings

a) Conduct of humans vs. DE

The result of comparison of human conduct on
the same local path with the DE conduct is also
worth mentioning. DE is set in such a way that
the �nal path length, containing the already vis-
ited places, is penalised proportionally to the
number of such repeated visits. For instance,
if we are supposed to get from point A to point
B, as displayed in Figs. 10 or 11, and we wish to
visit points 1, 2 and 3 on the way as well, we have
two options to do that: the path following Figs.
10 or 11. DE, a�ected by the traversing and as-
sessment, will reach the best path following Fig.
10, as the path following Fig. 11 is penalised for
visiting city 2 repeatedly. As opposed to that,
humans tend to select the variant following Fig.
11. In fact, it does not matter which variant is
selected, as both paths are of the same length,
both �gures display a part from city 1 to city 2 of
the same length and two identical parts between
cities 2 and 3.

b) Blind alleys

Despite the fact that the generated graphs do
not contain any blind corridors and the cross-
roads always have at least 3 paths within the
maze, there are blinds alleys contained. As dis-
played in Fig. 12, a blind alley is such a part of
the maze with only one path leading to it and
this path must also be used to return from this
area. A blind alley contains several cities. If
there are more such alleys within the maze, it
is more di�cult for DE to combine this path;
a locally blind alley is passed correctly by DE
evolution.

A blind alley can be created even if the area
can be accessed from two ends and one of these
ends was used for a subsidiary local search. If
we use this path again, the resulting path is pro-
longed by it. If we enter the area through a path
we have not used before, when exiting the area,
we will need to take one of the paths we have
already used in both cases. It is best to keep
such an area till the end of searching and enter
the area through a path we have not used be-
fore, or more precisely, through a city we have
not visited before.

214 c© 2020 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 4 | ISSUE: 3 | 2020 | September

Fig. 10: Variant A) Local path from point A to point B
Source: Custom processing � app screenshot.

Fig. 11: Variant B) Local path from point A to point
B � with repetition (return to an already vis-
ited place.) Source: Custom processing � app
screenshot

Fig. 12: Blind alley highlighted blue in the 7th level of
the game. Source: Custom processing � app
screenshot.

5. Conclusions

We may say that the �rst human solution is not
bad at all, because people use their common
sense when being at a crossroads and they do
not select the paths between the cities randomly,
as displayed in Figs. 13 and 14. The given area
can be passed in di�erent ways. A thinking per-
son will select subconsciously the shortest local
path and solve the passage through the entire
map as a compound of the shortest paths.

From the comparisons, it emerges that the hu-
mans mostly use an algorithm to �nd the short-
est connection which they attempt to pass in
such an order that will make the total path as
short as possible. The green intuitive human
solution is rational, correct and fast with small
mazes.

Our gaming levels can be divided into three
types depending on their size. Low levels (small
mazes of level 1 and 2), medium levels (3-7) and
high levels (8-10). As for the low levels, the re-
sults of people and DE are identical, both cate-
gories found short paths within the maze of the
same length. DE evolution found more combi-
nation shapes with the same length, but needs

c© 2020 Journal of Advanced Engineering and Computation (JAEC) 215

VOLUME: 4 | ISSUE: 3 | 2020 | September

Fig. 13: Green local path is shorter than the orange one
Source: Custom processing-app screenshot.

Fig. 14: Green local path is shorter than the orange one
Source: Custom processing-app screenshot.

a relatively large number of evolution cycles, a
large population to o�er a veri�able and the
shortest path. We may say that people come
to the same or even better conclusions than DE
with less e�ort. As for the medium levels, the
results of DE are better than the ones of peo-
ple. We can see that the maps contain some
blind alleys with only one entrance, but there
are not as many of those, so the DE with the
same settings as for the low levels did well and
found the best combination. DE is better at
these levels. As opposed to that, people are ob-
vious winners when passing through large mazes.
There are more blind alleys and it is necessary
to combine them better. DE starts connecting
the blind alleys which are not always neighbour-
ing, but sometimes in a leap through the entire
game plan and so often visited some places re-
peatedly. It emerges from the measured values
and observing the algorithm that it is always
better to set a higher CR value (0-100), i.e. ap-
proximately 80%, as it leads to a higher traver-
sal number and parameter F (0-1) within 0.5-1.
Thanks to these settings, the algorithm will try
to pass more paths and more combinations of
cities. People are able to keep in mind the entire
path and to orient themselves, so when there is

a place, they have not visited next to the place
they have just passed, they visit this place as
well.

There is not a single common DE setting for
all kinds of mazes, as it depends on the size of
the maze, the number of cities, the number of
blind alleys and on the alleys neighbouring to
the given �eld. Furthermore, the element of a
chance plays a part in DE at all times. A good
solution can be created even in the �rst gener-
ations and all solutions derived therefrom may
not be necessarily as good.

In the next work, it would be good to add
the DE optimization so that when generating
random local roads, another city already passed
on the given road would be recorded and taken
into account. The DE algorithm does not take
into account the situation when, for example, we
have three cities marked A, B, C, which lies on
the line [AC], where between points A and C
lies point B. Then of course the shortest path
is given by the sequence A, B, C, but the al-
gorithm randomly generates as one of the �rst
solutions the path A, C, B, while in order to get
from A to C, he had to visit city B, but as if he
was not there, he returns to city B after passing
city C. This path is of course longer than the
variant A, B, C, but it is cultivated in the next
generations due to mutations and crosses to the
correct result.

Acknowledgments

The following grants are acknowledged for the
�nancial support provided for this research:
Grant of SGS No. SP2020/78, VSB Technical
University of Ostrava.

References

[1] Rainer, S., & Price, K. (1995). Di�eren-
tial evolution-a simple and e�cient adap-
tive scheme for global optimization over
continuous spaces, vol. 3. Berkeley: ICSI.

[2] Yannakakis, G. N., & Togelius, J. (2018).
Arti�cial intelligence and games, vol. 2.

216 c© 2020 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 4 | ISSUE: 3 | 2020 | September

New York: Springer.

[3] Ivan, Z., Vasek, V., & Lampinen, J. (2001).
New Algorithms of Global Optimization.
Automatizace (Journal of Automatization,
Czech Ed.), 10 (1), 628-634.

[4] Green, D., Aleti, A., & Garcia, J. (2017).
The nature of nature: Why nature-inspired
algorithms work. In Nature-Inspired Com-
puting and Optimization, Springer, Cham,
1-27.

[5] Marrow, P. (2000). Nature-inspired com-
puting technology and applications. BT
Technology Journal, 18(4), 13-23.

[6] Price, K., Storn, R. M., & Lampinen, J. A.
(2006). Di�erential evolution: a practical
approach to global optimization. Springer
Science & Business Media.

[7] Zelinka, I., & Bukacek, M. (2016). SOMA
swarm algorithm in computer games. In
International Conference on Arti�cial In-
telligence and Soft Computing, Springer,
Cham, 395-406.

[8] Von Ahn, L., & Dabbish, L. (2008). Design-
ing games with a purpose. Communications
of the ACM, 51(8), 58-67.

[9] Android developer page (2020)
https://developer.android.com/

[10] Syracuse University's online MBA program
(2019)
https://onlinebusiness.syr.edu/blog/esports-
to-compete-with-traditional-sports/

[11] Intenational Olympic Committee (2019)
https://www.olympic.org/news/declaration-
of-the-8th-olympic-summit

[12] Chris Beer (2019). 2019 in Review: Es-
ports Comes of Age. In Globalwebindex
https://blog.globalwebindex.com/trends/
2019-review-esports/

About Authors

Michal BUKÁ�EK He works as a software
developer. He likes to program apps for Android
OS, likes to use swarm algorithms. In free time
solves a TSP problem.

"This is an Open Access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium provided the original work is
properly cited (CC BY 4.0)."

217

	Introduction
	Motivation
	Experiment design
	Solution design
	Algorithm of differential evolution

	Results
	Measured values
	Findings

	Conclusions

