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Abstract. Feature extraction and emotional
classi�cation are signi�cant roles in speech emo-
tion recognition. It is hard to extract and select
the optimal features, researchers can not be sure
what the features should be. With deep learn-
ing approaches, features could be extracted by us-
ing hierarchical abstraction layers, but it requires
high computational resources and a large num-
ber of data. In this article, we choose static,
di�erential, and acceleration coe�cients of log
Mel-spectrogram as inputs for the deep learning
model. To avoid performance degradation, we
also add a skip connection with dilated convolu-
tion network integration. All representatives are
fed into a self-attention mechanism with bidirec-
tional recurrent neural networks to learn long-
term global features and exploit context for each
time step. Finally, we investigate contrastive-
center loss with softmax loss as loss function to
improve the accuracy of the emotion recognition.
For validating robustness and e�ectiveness, we
tested the proposed method on the Emo-DB and
ERC2019 datasets. Experimental results show
that the performance of the proposed method is
strongly comparable with the existing state-of-
the-art methods on the Emo-DB and ERC2019
with 88% and 67%, respectively.
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1. Introduction

Speech emotion recognition (SER) has an impor-
tant role in Human-Computer Interaction (HCI)
and also the most signi�cant one in human com-
munication. It has widely applied in health,
education, robotics, and customer service sys-
tems. Yoon et al. [1] proposed the SER agent
for mobile communication service. Huahu et
al. [2] integrated the SER model into an in-
telligent household robot platform. Cen et al.
[3] explored emotional recognition of continuous
speech and developed a real-time SER system
that can be applied to an online learning sys-
tem.

There are two important roles in the SER sys-
tem: (1) feature extraction that extracts the fea-
tures from raw audio/speech data, and (2) emo-
tional classi�cation that decides the emotional
state of speech. Feature extraction and selec-
tion are some of the key points in the SER sys-
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tems, but nobody is quite sure what the features
should be. Researchers have been used a vari-
ety of feature sets, such as Mel-frequency cep-
stral coe�cients (MFCC) [4�7], Linear predic-
tive coding (LPC) [7], signal energy, pitch, and
zero-crossing rate [8�11]. The best approach is
using deep learning as it will extract features
into hierarchical abstraction layers. With the
development of deep learning and neural net-
works, convolutional neural network (CNN) can
perform better than traditional techniques in
SER challenge [12�14]. Zhao et al. [15] found
that 1-D CNN with long short-term memory
(LSTM) and 2-D CNN with LSTM could ex-
plore the local and global features from raw
audio/speech and the log Mel-spectrogram, re-
spectively. Chan et al. [16] proved that the 2-
D CNN is better than 1-D CNN without more
data, and both time and frequency domains are
of the same importance. To compare 2-D and 3-
D convolution, researchers have tried to explore
3-D inputs for CNN to extract more features for
the SER [17�19]. Recently, some studies have
investigated attention mechanism to exploit the
context for each time step or select emotional
relevant frames for the SER [17,18,20�23].

For classifying the emotional states, a lot of
classi�er schemes have been used for the SER,
such as hidden Markov model (HMM), Gaus-
sian mixture model (GMM), support vector ma-
chine (SVM), arti�cial neural network (ANN), k-
nearest neighbors (k-NN) and the others. HMM
classi�er has been applied widely in speech ap-
plications and emotional classi�cation. Schuller
et al. [24] used continuous HMM for the SER,
Li et al. [25] investigated a hybrid deep neural
network (DNN) HMM with discriminative pre-
training for the SER, and Nwe et al. [4] pro-
posed a method using short time log frequency
power coe�cients (LFPC) feature and classify
the emotional states by a discrete HMM. As a
special continuous HMM, GMM has also used to
classify the emotional states from speech with
global features extracted from training utter-
ances. Tashev et al. [26] combined the GMM-
based with DNN to extract both low-level and
high-level features. Navyasri et al. [27] employed
the GMM to classify the emotional states from
speech features extracted by MFCC, spectral
centroid, spectral skewness, and spectral pitch

chroma. Shahin et al. [28] proposed a novel hy-
brid sequential GMM-DNN based classi�er that
gave signi�cantly better accuracy than the SVM
and multiplayer perceptron (MLP) classi�ers.
Lanjewar et al. [29] investigated and compared
the GMM and k-NN classi�ers to recognize six
emotional states from speech features extracted
by the MFCC, wavelet, and the pitch of vocal
traces. Other researchers have optimized loss
functions to train a state-of-the-art DNN for the
SER. Tripathi and Zhu proposed a Focal loss to
improve the accuracy of the emotion recognition
system [30,31]. Meng and Dai proposed a novel
approach to discriminate emotional states from
speech features by combining center loss with
softmax loss as loss function [18,32].

This research is motivated by previous works.
Meng et al. [18] proposed a novel architec-
ture ADRNN (dilated CNN with residual block
and bidirectional long short-term memory (Bi-
LSTM) based on the attention mechanism)
which applied the dilated CNN to extract the
features from the 3-D log Mel-spectrogram and
combined the softmax loss with the center loss
to improve the accuracy of emotion recognition.
The ADRNN outperforms Chen's ACRNN (3-
D attention-based convolutional recurrent neu-
ral networks) architecture with the softmax loss
in [17] and the center loss in [32]. However, due
to the weakness of the center loss, Qi et al. [33]
proved that the contrastive-center loss outper-
forms the center loss for deep neural networks.
Therefore, the combination of the contrastive-
center loss with the softmax loss is investigated
to improve the accuracy of emotion recognition.

In this article, we choose the 3-D static, dif-
ferential, and acceleration coe�cients of the log
Mel-spectrogram extracted from the raw sig-
nal as inputs for the proposed model. Then
all features are fed into an architecture AD-
CRNN (attention-based dilated convolution and
bidirectional recurrent neural networks) to ex-
tract high-level features. Finally, we use the
contrastive-center loss with softmax loss to clas-
sify the emotional states. Furthermore, we also
adopt a trick of dropout and batch normaliza-
tion (BN) to normalize the features and improve
the performance of deep neural network because
of avoiding vanishing gradient problem in the
training process. Our proposed method tested
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on the benchmark Emo-DB and validated on the
ERC2019. Our contributions in this research are
summarized below:

• We utilize the ADCRNN to extract spatial
local features, learn the sequential global
features and exploit the context for each
time step from spectrogram-based inputs
included static, di�erential, and accelera-
tion coe�cients.

• We also validate and compare the proposed
loss and the center loss with our ADCRNN
and ACRNN [17], respectively.

• Experimental results show that the pro-
posed method outperforms the existing
state-of-the-art methods on the Emo-dB
and ERC2019 by 88% and 67%, respec-
tively.

This article is organized as follows: Section 2
describes the methodology in detail, Section 3
shows the experimental results and comparison,
and Section 4 describes the conclusion.

2. Methodology

2.1. Generate 3-D log

Mel-spectrogram

The 3-D log Mel-spectrograms (static, di�eren-
tial, and acceleration coe�cients) are used as the
inputs for our proposed method. Given a raw
audio/speech signal, we compute the log Mel-
�lterbank energy features under the sample rate
of 16 kHz, the number of 40 �lters in the �lter-
bank, and the FFT size is chosen to 512. Be-
sides, we choose the length of the analysis win-
dow of 0.025 sec and the step between succes-
sive windows of 0.01 sec. Furthermore, to obtain
the 40 Mel-�lterbank, we also choose the lowest
band edge of Mel �lters, the highest band edge
of Mel �lters, and the pre-emphasis �ler with
preempt as coe�cients of 300 Hz, 8,000 Hz, and
0.97, respectively.

The static coe�cient of the log Mel-
spectrogram is obtained following six steps as
below:

• Firstly, the Mel scale frequency analysis [34]
was computed as below:

M(freq) = 1125× ln

(
1 +

freq

700

)
, (1)

where M(freq) is the Mel scale converted
from the frequency freq. The lowest
and highest frequencies were converted to
401.25 Mels and 2,835.00 Mels, respectively.

• Secondly, we need at least 42 points to
get the 40 �lterbanks. So, we added 40
points spaced linearly between the lowest
and highest Mel points.

• Thirdly, we inverted the Mel scale back to
frequency as in Eq. 2 so that there were 42
frequency points between 300 Hz and 8,000
Hz as mentioned before:

M−1(m) = 700×

[
exp

(
m

1125

)
− 1

]
, (2)

where M−1(m) is the frequency inverted
from the Mel scale m.

• Next, we had to round those frequency
points to the nearest FFT bin numbers be-
cause we could not have the exact frequency
resolution as calculated above. The FFT
bin numbers can be computed as follows:

f(n) = floor

[(
nFFT + 1

)
× h(n)

sp

]
, (3)

where the nFFT is the FFT size, the sp is
the sample rate, the h(n) is the frequency
points in Hert, and the floor is the function
that gives the greatest integer output less
than or equal to the real number input.

• Then, the �lterbanks can be de�ned as fol-
lows:

Hm(k) =


0 k < f(m-1)

k−f(m−1)
f(m)−f(m−1) f(m-1)≤k≤f(m)
f(m+1)−k

f(m+1)−f(m) f(m)≤ k ≤f(m+1)
0 k > f(m+1)

,

(4)
where k is the point of the FFT bin num-
bers, m is the number of �lterbanks we
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wanted, and f() is a list ofm+2 Mel points.
After that, we passed the power spectrum
calculated by short-time Fourier transform
(STFT) through the Mel �lterbanks to get
the Mel-spectrogram.

• Finally, we computed the log Mel-
spectrogram (logM) by taking the loga-
rithm of the Mel-spectrogram, which is the
�rst dimension of the inputs.

After computing the static coe�cient of the
log Mel-spectrogram, we obtained the di�eren-
tial (second dimension) and acceleration (third
dimension) coe�cients of the inputs as below:

∆(M) =

N∑
n=1

n
(
logMt+n − logMt−n

)
2

N∑
n=1

n2
, (5)

where ∆(M) is the di�erential coe�cient (deltas)
computed by taking the time derivative t of
static coe�cient from logMt+N to logMt−N , and
N is set to 2 in this equation. The accelera-
tion coe�cient (delta-deltas) is computed likely
in Eq. 2, but the input from the deltas (di�er-
ential) coe�cient.

We combined the 3-D log Mel-spectrogram
features X ∈ <t,f,c as the inputs of the pro-
posed model. In which, t is set to 0.3 sec as
the chunk size of the audio/speech duration,
f is set to the number of 40 �lters in the �l-
terbank, and c is set to 3 channels or dimen-
sions represented the static, di�erential, and ac-
celeration coe�cients, respectively. The 3-D
log Mel-spectrogram corresponding to the wave
data from the audio/speech signal is shown in
Fig. 1.

2.2. Attention-based dilated

convolution and

bidirectional recurrent

neural networks

In this section, we utilize the ADCRNN by
combining dilated convolution neural network
(DCNN) and Bi-LSTM with the attention mech-
anism to extract the features from the 3-D log
Mel-spectrogram for SER. Firstly, we perform

the CNN and the DCNN to extract spatial lo-
cal features from the 3-D log Mel-spectrogram
inputs. Then, we �t all feature maps into Bi-
LSTM to learn long-term sequential global fea-
tures and exploit the context for each time step
by attention mechanism. Next, all features are
passed to a fully connected network layer to ob-
tain high-level features. Finally, we integrate the
contrastive-center loss with the softmax loss as
a loss function to classify the emotional states.
Our proposed method is described as in Fig. 2
and the ADCRNN architecture is presented in
detail as in Tab. 1, where ES is the number of
emotional states.

Tab. 1: The layers and parameters of the proposed

model.

Layer
Kernel/
Size

Output Stride

Input � 300×40×3 �
CNN 3×3 298×38×128 1×1

Max-Pool 2×4 149×9×128 2×4
DCNN1 3×3 149×9×256 �
DCNN2 3×3 149×9×256 �
DCNN3 3×3 149×9×256 �
DCNN4 3×3 149×9×256 �
Skip-Net � 149×9×256 �
Linear � 512 �

Bi-LSTM 256 � �
Attention � 512 �

FC1 � 64 �
FC2 � ES �

1) Dilated convolution neural network

Dilated convolutions are investigated by Yu et
al. [35] to design a new convolutional network
module for dense prediction. Based on the di-
lated convolutions, the receptive �eld exponen-
tially expands without loss of resolution or cov-
erage while the number of parameters grows lin-
early. The dilated convolutions with the height
P and the width Q is de�ned as follows:

y(h, w) =

P∑
i=1

Q∑
j=1

x(h+dr ∗ i, w+dr ∗ j)F (i, j)

(6)
where y(h, w) is the receptive �eld output from
the input x(h, w) when applied a dilation rate
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Fig. 1: Visualization of the 3-D log Mel-spectrogram in the ERC2019 dataset.

Fig. 2: The proposed method architecture.

dr to the �lter F (i, j). Therefore, the original
convolution is the dilated one with the dr = 1.
The illustration of 3×3 kernel size with the dr =
2 is shown in Fig. 3.

In this subsection, we design three DCNN lay-
ers after performing by one original CNN and

Max-Pool layer. We utilize the CNN layer with
3×3 kernel size and stride at 1. To down-sample
representation, the Max-Pool layer with 2 × 4
kernel size and 2×4 stride is added. Each DCNN
layer has 3×3 kernel size, the stride of 1, and the
dilation rate of 2. Furthermore, we add a skip
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Fig. 3: Illustration of the dilated convolution with the

dr = 2.

connection with dilated convolution (Skip-Net)
to avoid performance degradation. The padding
is set to the "VALID" for both the CNN and
Max-Pool layers while it is the "SAME" in all
the DCNN layers. Instead of using ReLU, we
use the Leaky ReLU activation function to solve
the vanishing gradient descent and ensure the
non-linearity of deep neural networks when the
input value is negative. The Leaky ReLU ac-
tivation function g(x) can produce a non-zero
output for a negative input as below:

g(x) =

{
x, if x ≥ 0

αx, if x < 0
, (7)

where α is a constant in range (0, 1). We choose
the α = 0.01 for the Leaky ReLU activation
function in this experiment.

2) Recurrent neural networks

Recurrent neural networks (RNN) has solved
many sequential problems by learning historical
features. It has taken more advantage of nat-
ural language processing, video processing, and
time series prediction. However, it has a limita-
tion with long-term dependencies. Hochreiter et
al. [36] proposed a novel LSTM method to deal
with complex, arti�cial long-term tasks. In this
study, the e�ectiveness of BiLSTM proposed by
Schuster et al. [37] for the SER is investigated.
The BiLSTM can learn the sequential features in
both forward and backward directions by split-
ting the neurons of regular RNN. Therefore, the
BiLSTM can use the input information from the
future and past of the current time step for pre-
diction. Each LSTM cell is updated as in Eqs.

8-12:
it = σg

(
Wizt + Uiht−1 + bi

)
, (8)

ft = σg
(
Wfzt + Ufht−1 + bf

)
, (9)

ot = σg
(
Wozt + Uoht−1 + bo

)
, (10)

ct = ft · ct−1 + it · τg
(
Wczt +Ucht−1 + bc

)
, (11)

ht = ot · τg(ct), (12)

where σg and τg denote the sigmoid and tanh
activation functions, the (·) operator is the
element-wise product. The it, ft, ot, ct, zt and
ht represent the input gate, forget gate, output
gate, cell state with a self-recurrent, input vec-
tor, and hidden state at the time step t, respec-
tively. All weight matrices are set to W, U and
corresponding bias vectors are set to b.

In this implementation, we choose the cell
units of 256 for each LSTM direction. All fea-
tures obtained in the framework of DCNN are
fed into the BiLSTM to learn the sequential
global features.

3) Attention mechanism

After performing the BiLSTM to learn sequen-
tial features, we add the attention mechanism
to exploit the context of each time step. The
attention-based model has been e�ectively used
in almost sequence-to-sequence and the SER
tasks [17, 18, 20�23, 38, 39]. In the SER task,
not all emotional content from speech signal
contributes equally to represent the emotional
states. Hence, in this research, the attention-
based method is constructed to concentrate
more on the speci�c part of the spectrogram-
based features that involve mostly the emotional
classi�cation task.

In this experiment, the attention structure of
BiLSTM at the time step t is de�ned as below:

Att =

T∑
t=1

βtht, (13)

where the Att is the output of the attention
layer, the βt is the attention weight computed
by the softmax function as follows:

βt =
exp

(
W · ht

)
T∑

j=1

exp
(
W · ht

) , (14)
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where the (·) operator is the element-wise prod-
uct, the W is a trainable parameter, the ht is
the hidden state at time step t from the BiL-

STM that is ht =
[−→
ht ;
←−
ht
]
. Next, we integrate

the contrastive-center loss with the softmax loss
to classify the higher-level representation from
the attention output.

2.3. Loss function for

classi�cation

For most of the classi�cation tasks, people com-
monly used softmax cross-entropy with logit for
multi-class classi�cation. In this article, we not
only want to separate the emotional states but
also discriminate against them. To investigate
that we integrated the contrastive-center loss
with the softmax loss as the loss function to
update weights during training process. The
contrastive-center loss [33] performs better than
the center loss for deep neural networks and clas-
si�cation problems.

Due to the weakness of the center loss, the
contrastive-center loss has been proposed to dis-
criminate the intra-class compactness and inter-
class separability as follows:

LC =
1

2

S∑
s=1

∣∣∣∣xi − Cyi

∣∣∣∣2
2( E∑

e=1,
e 6=yi

∣∣∣∣xi − Ce

∣∣∣∣2
2

)
+ λ

, (15)

where S denotes the number of training sam-

ples in a mini-batch ,
∣∣∣∣xi − Cyi

∣∣∣∣2
2
denotes the

distances between the training samples and their

corresponding class centers,
∣∣∣∣xi−Cm

∣∣∣∣2
2
denotes

the distances between the training samples and
their non-corresponding class centers, E denotes
the number of classes, and the constant λ is set
to 1 to ensure that the denominator not equal
zero. Finally, we add the softmax loss with the
contrastive-center loss to obtain �nal loss func-
tion to update weights during training progress
as below:

Ltotal = LC + Lsoftmax. (16)

3. Experimental results

3.1. Datasets

To evaluate the robustness and e�ectiveness of
our proposed method with the 3-D log Mel-
spectrogram, we used the Berlin Database for
Emotional Speech (Emo-DB) and the Emotion
Recognition Challenge 2019 dataset (ERC2019).

1) Emo-DB

The Berlin Database of Emotional Speech [40]
is recorded with 44.1 kHz and downed sampling
rate to 16 kHz simultaneously. It contains 535
recorded �les by 5 males and 5 females. They
spoke the sentences with several di�erent emo-
tional states, such as anger, sadness, happiness,
neutral, disgust, fear, and boredom. We pre-
sented in detail the distribution of the emotional
states in the Emo-DB dataset in the pie chart as
Fig. 4.

23.74

Anger

11.59

Sadness

13.27

Happiness

14.77

Neutral 8.60

Disgust

15.14

Boredom

12.90

Fear

Fig. 4: The distribution of emotional states in the Emo-

DB dataset.

2) ERC2019 dataset

ERC2019 dataset is the dataset in Emotion
Recognition Challenge 2019 held by Robotics-
IoT club, Vietnam National University Ho Chi
Minh City - University of Science, which is a
subset of Crema-D in [41]. It contains 5,230
recorded �les that were spoken from a selection
of 12 sentences in six di�erent emotional states:
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anger, sadness, happiness, neutral, disgust, and
fear. All actors included 48 males and 43 fe-
males between the ages of 20 and 74 coming
from a variety of races and ethnicities, such as
Asian, African, American, Hispanic, Caucasian,
and Unspeci�ed. We presented in detail the dis-
tribution of the emotional states in the ERC2019
dataset in the pie chart as Fig. 5.

17.08

Anger
17.08

Sadness

17.08

Happiness

14.60

Neutral
17.08

Disgust

17.08

Fear

Fig. 5: The distribution of emotional states in the

ERC2019 dataset.

3.2. Experimental setup

The system was used for running the experiment
is built in Intel CORE i5 8th Gen with NVIDIA
Graphics Card 1080Ti. We used TensorFlow
deep learning framework [42] to implement the
whole model.

For the feature extraction, `python speech fea-
tures' framework [43] is used to compute and
extract the 3-D log Mel-spectrogram as follows:

• Compute the static coe�cient of the raw au-
dio/speech signal: The window length, the
overlap between windows, FFT size, and
pre-emphasis coe�cient are set by default
at 0.025 sec, 0.01 sec, 512, and 0.97, respec-
tively. The sampling rate, the lowest band
edge of Mel �lters, and the highest band
edge of Mel �lters are set to 16 kHz, 300
Hz, and 8,000 Hz, respectively.

• Compute the di�erential coe�cient is com-
puted by taking the time derivative of the
static coe�cient.

• Compute the acceleration coe�cient is com-
puted by taking the time derivative of the
di�erential coe�cient.

For parameter optimization, we set the batch-
size 32 to compatible with the limited memory.
Then, we chose Adam optimizer with a learn-
ing rate of e−4. Besides, we also integrated
the contrastive-center loss with standard soft-
max loss for the proposed model to improve the
classi�cation performance. Furthermore, to get
the best results, we also employed k-fold cross-
validation with k = 5 to get the mean and stan-
dard deviation accuracy.

3.3. Results

1) Experiment on the Emo-DB

Tab. 2: The comparison of accuracy on the Emo-DB.

Model Loss function Accuracy

ACRNN [17]
Center [18] 0.83 ± 0.03
Proposed 0.86 ± 0.01

ADCRNN
Center [18] 0.86 ± 0.05
Proposed 0.88 ± 0.03

In Tab. 2, our proposed loss function achieved
better accuracy than the center loss [18] in both
ACRNN [17] and our ADCRNN architectures.
Our proposed loss function reaches 0.86 ± 0.01
and 0.88 ± 0.03, respectively. The results in
Tab. 2 also prove that our ADCRNN architec-
ture with both proposed and center losses were
higher accuracy than ADRNN with the cen-
ter loss [18] by 0.88 ± 0.03, 0.86 ± 0.05, and
0.85± 0.02, respectively.

The confusion matrix shows the model
predicted results and the ground truth la-
bels for each emotional state in Fig. 6.
The A, B, D, F, H, S, and N labels rep-
resented anger, boredom, disgust, fear, happi-
ness, sadness, and neutral emotional states, re-
spectively. As the confusion matrix is shown in
Fig. 6, the proposed method was better than the
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Fig. 6: The confusion matrix of proposed method on

the Emo-DB.

previous methods in [17, 18]. In terms of com-
parison with [18], our proposed method achieved
3%, 27%, and 11% better performance in the
fear, happy, and bored emotional states, respec-
tively. Besides, our proposed method was more
accurate 12%, 36%, 1%, 17%, and 7% than [17]
in the angry, happy, fear, bored, and neutral
emotional states, respectively.

2) Experiment on the ERC2019

Tab. 3: The comparison of accuracy on the ERC2019.

Model Loss function Accuracy

ACRNN [17]
Center [18] 0.63 ± 0.01
Proposed 0.63 ± 0.00

ADCRNN
Center [18] 0.65 ± 0.01
Proposed 0.67 ± 0.01

In Tab. 3, our proposed loss function achieved
better accuracy than the center loss [18] with
our ADCRNN architectures. Our proposed loss
function reaches 0.86± 0.01 with our ADCRNN
architecture while the center loss reaches 0.65±
0.01. Besides, the accuracy is likely the same in
both the center and proposed loss functions with
ACRNN architecture. The results in Tab. 3 also
prove that our ADCRNN architecture with the
proposed loss function is better than the others
on the ERC2019.

The confusion matrix shows the model
predicted results and the ground truth la-
bels for each emotional state in Fig. 7.
The N, H, S, A, F , and D labels represented
neutral, happiness, sadness, anger, fear, and dis-
gust emotional states, respectively.
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Fig. 7: The confusion matrix of proposed method on

the ERC2019.

4. Conclusions

In this article, we proposed an architecture AD-
CRNN with the contrastive-center loss for SER
systems. The model not only learned spatial lo-
cal features by DCNN, but also learned long-
term global features and exploited the context
for each time step by bidirectional RNN with
attention mechanism from the 3-D log Mel-
spectrogram (static, di�erential, and acceler-
ation coe�cients) of raw speech/audio signal.
The DCNN with a residual block that consisted
of three dilated convolution layers with one
Leaky ReLU activation function in each layer
and the skip connection with one dilated convo-
lution layer. Then, we employed the contrastive-
center loss together with softmax loss to improve
performance classi�cation.

The proposed method was tested on the
benchmark Emo-DB and also validated on
the ERC2019 which was used in the Emotion
Recognition challenge. The experimental re-
sults show that the proposed model with the
contrastive-center loss not only extracted the
spatial features of the 3-D log Mel-spectrogram
and learn the long-term global features but
also discriminated the emotional states instead
of separating them. Our proposed method
achieved better accuracy than state-of-the-art
methods by 88% and 67% on the Emo-DB and
ERC2019, respectively.
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Abbreviations

ACRNN 3-D attention-based convolutional
recurrent neural networks

ADCRNN Attention-based dilated
convolution and bidirectional
recurrent neural networks

ADRNN Dilated CNN with residual block
and Bi-LSTM based on the
attention mechanism

ANN Arti�cial neural networks
Bi-LSTM Bidirectional long short-term

memory
BN Batch normalization
CNN Convolutional neural network
CRGNN Convolutional recurrent global

neural network
DCNN Dilated convolution neural network
Emo-DB Berlin database of emotional

speech
ERC2019 Emotion recognition challenge

2019
FFT Fast Fourier Transform
GMM Gaussian mixture model
HCI Human-Computer Interaction
HMM Hidden Markov model
KNN K-nearest neighbors
LeReLU Leaky recti�ed linear unit
LSTM Long short-term memory
LPC Linear predictive coding
MFCC Mel-frequency cepstral

coe�cients
RNN Recurrent Neural Networks
SER Speech Emotion Recognition
STFT Short-time Fourier Transform
SVM Support Vector Machine
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