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Abstract. We study the long time behavior
of the bounded solutions of non homogeneous
gradient-like system which admits a strict Lya-
punov function. More precisely, we show that
any bounded solution of the gradient-like sys-
tem converges to an accumulation point as time
goes to in�nity under some mild hypotheses. As
in homogeneous case, the key assumptions for
this system are also the angle condition and
the Kurdyka-Lojasiewicz inequality. The conver-
gence result will be proved under a L1 -condition
of the perturbation term. Moreover, if the Lya-
punov function satis�es a Lojasiewicz inequal-
ity then the rate of convergence will be even ob-
tained.
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1. Introduction

We are interested in the long time behavior of
bounded solutions of the �rst order non homo-
geneous gradient-like system

u′ (t) +G (t) = f (t) , t > 0 (1)

where u ∈ C1
(
R+,RN

)
, G ∈ C

(
RN ,RN

)
, and

f ∈ L1
(
R+,RN

)
. The second term f (t) in the

right hand side of (1) can be interpreted as a
perturbation term for the original equation

u′ (t) +G (u) = 0 (2)

Roughly speaking, we study in this paper the
e�ect of adding a L1 forcing term to the equation
(2) on the long time behavior of the trajectories
u. As in some existing papers on convergence for
gradient-like system (2) (see [6] or [15]), we also
restrict our study to situations that the system
(1) admits a strict Lyapunov function F. That
means F (u (t)) is non increasing and the solu-
tion u(t) will be constant if F (u (t)) vanishes at
some t.

The most simple situation of (2) is the case
of gradient system where G = ∇F . This sys-
tem has been studied by many authors such as
Absil & Kurdyka [1], Chill [5], Haraux & Jen-
doubi [11], [12] or Simon [17]. They have proved
that if F satis�es a Lojasiewicz inequality then
the bounded solution converges to an equilib-
rium as t goes to in�nity. More general, in a
paper of R. Chill et al. [6], the authors gave an
abstract result which guarantees that the con-
vergence result also holds for the gradient-like
system (2). To obtain the convergence result,
they used an additional condition that G,∇F
satisfy an angle condition. In [15] and [16], the
authors showed that the hypothesis Lojasiewicz
inequality of F can be extended by Kurdyka-
Lojasiewicz for convergence result. They even
have the rates of convergence if F satis�es Lo-
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jasiewicz inequality and G,∇F satisfy angle and
comparability condition.

In the non homogeneous case, recently R.
Chill and M. Jendoubi [7] (or Huang and Takac
[14]) have shown that any bounded solution of
the following gradient system

u′ (t) +∇F (u) = f (t) , t > 0,

converges to a critical point of F as t tends to
in�nity if f satis�es

sup
t∈R+

t1+µ

∞∫
t

‖f (s)‖2ds <∞ (3)

for some positive constant µ. This condition
shows that the forcing term f(t) quickly decays
to zero as t goes to in�nity. Their results have
been generalized to some second order systems
in [2], [3], [4], [9] or [10]. Moreover, M. Ghisi et.
al. have estimated the decay rates for solutions
of semi linear dissipative equations in [8].

Motivated by these works, we establish the
convergence results for the �rst order nonhomo-
geneous gradient-like system (1) under a weaker
assumption. In the other words, we will show
that we can remove the strong assumption of
the forcing term (3). In fact, we only need that
the forcing term term f belongs to L1 (R+) .
In particular, our proof seems simpler than the
proof in [7] and [14].

In this article, the convergence results will
be obtained under the Kurdyka-Lojasiewicz in-
equality. The main di�culty comes from
the generality of non-decreasing function Θ in
Kurdyka-Lojasiewicz inequality. To overcome
this problem, our idea is to consider Θ satis-
fying a subadditive property which always holds
for the case of Lojasiewicz inequality. Moreover,
we also establish a general abstract result for an
arbitrary function which are not necessary solu-
tions of (1). Then we apply this abstract result
by replacing the energy by a suitale perturbed
Lyapunov function. We believe that this general
setting enables to quickly check whether conver-
gence properties hold in speci�c situations.

Our article is organized as follows. In the
next section, we present some notations and def-
initions that we use through the whole of the

paper. In the last section, we also establish a
general abstract result that we will apply for
the main results. Then we prove the conver-
gence of bounded solutions of the nonhomoge-
neous gradient-like system with the rates of con-
vergence.

2. Some De�nitions

In this paper, to obtain the convergence result,
we assume that G and ∇F satisfy the angle con-
dition and F satis�es the Kurdyka-Lojasiewicz
inequality de�ned below.

De�nition 1. We say that G and ∇F satisfy
the angle condition if there exists a positive num-
ber α such that

〈G (u) ,∇F (u)〉 > α ‖G (u)‖ ‖∇F (u)‖ ,
∀u ∈ RN (4)

Using the same notation as in [13], we still de-
note by Q the class of non-decreasing functions
Θ ∈ C (R+,R+) such that

Θ (0) = 0, Θ > 0 on (0,+∞) , 1/Θ ∈ L1
loc

(
R+
)

De�nition 2. The functions F satis�es a
Kurdyka-Lojasiewicz inequality at ϕ if there ex-
ists σ > 0 and a non-decreasing function Θ ∈ Q
such that

Θ (|F (u)− F (ϕ)|) 6 ‖∇F (u)‖ , ∀u ∈ B (ϕ, σ)
(5)

Throughout this paper, we assume moreover that
the function Θ in Kurdyka-Lojasiewicz inequal-
ity is subadditive. This means that there exists
a constant γ > 0 such that

Θ (x+ y) 6 γ (Θ (x) + Θ (y)) , ∀x, y ∈ R+

(6)
However, the Kurdyka-Lojasiewicz inequality is
not su�cient to estimate the explicit conver-
gence rate. In this case, we need a Lojasiewicz
inequality.

De�nition 3. We say that the function F satis-
�es a Lojasiewicz inequality at ϕ is there exists
β, σ > 0 and θ ∈ (0, 1/2] such that,

|F (u)− F (ϕ)|1−θ 6 β ‖∇F (u)‖ ,
∀u ∈ B (ϕ, σ)

(7)

The coe�cient θ is called a Lojasiewicz expo-
nent.
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Remark 1. The Lojasiewicz inequality is a spe-
cial case of Kurdyka - Lojasiewicz inequality
with Θ (x) = (1/β)x1−θ. In particular we note
that this function is subadditive by the following
lemma.

Lemma 1. If θ ∈ (0, 1) then the function
Θ (x) = x1−θ is subadditive.

Proof.

For every y > 0 let us consider the function

gy (x) = (x+ y)
1−θ − x1−θ − y1−θ, x > 0

Computing the �rst order derivative of gy at x >
0, we get

g,y (x) = (1− θ)
(

(x+ y)
−θ − x−θ

)
Note that x 7→ xθ is non-decreasing for every
x > 0 and θ ∈ (0, 1), so we obtain that gy is non-
decreasing. This implies gy (x) 6 gy (0) = 0.
The proof is complete.

3. Convergence Results

Let us study the main result of this paper. We
�rst establish an abstract convergence result for
arbitrary functions which are not necessary so-
lutions of the ordinary di�erential equation (1).
Then, we prove the convergence result under a
L1 - condition of the forcing term.

3.1. An abstract convergence

result

Theorem 1. Let u ∈ C1
(
R+,RN

)
be bounded

and f ∈ L1
(
R+,RN

)
. Assume that the func-

tion H ∈ C1 (R+) is a non-increasing and H(t)
converges to 0 at in�nity. Assume moreover that
there exists a function Θ ∈ Q such that for every
t large enough, we have

− H ′ (t)

Θ (H (t))
> C (‖u′ (t)‖ − ‖f(t)‖) , (8)

where C is a positive constant. Then u′ (t) be-
longs to L1 (R+).

In particular, there exists an accumulation
point ϕ such that u(t) converges to ϕ as t tends
to in�nity.

Proof.

Let us de�ne Φ (x) =
x∫
0

1
Θ(s)ds, x > 0.

Since the function H is non increasing and
lim
t→∞

H(t) = 0, we deduce that Φ is well-de�ned

and Φ(H(t)) converges to 0 as t goes to in�nity.

In the other hand, because the function u is
bounded, so there exists an accumulation point
ϕ of u, it means

ϕ ∈ ω [u] :=
{
ϕ ∈ RN : ∃tn ↑ such that u (tn)→ ϕ

}
From these above reasons and the hypothesis
f ∈ L1 (R+), we have that ϕ ∈ ω [u] and

lim
t→∞

Φ (H (t)) = lim
t→∞

∞∫
t

‖f (s)‖ds = 0

Hence, for every ε > 0, we can choose t0 large
enough such that

‖u (t0)− ϕ‖+ C−1Φ (H (u (t0))) +

+
∞∫
t0

‖f (s)‖ds < ε.
(9)

Let us set t1 = inf {t > t0 : ‖u (t)− ϕ‖ > ε}.
By (9) and continuity of the function u, we have
t1 > t0. For every t ∈ [t0, t1], using the hypoth-
esis (8), we have the estimation

− d

dt
Φ (H (t)) = − H ′(t)

Θ (H(t))
> C (‖u′(t)‖ − ‖f(t)‖) .

Integrating this estimation on [t0, t) for any t ∈
[t0, t1], we get

t1∫
t0

‖u′(s)‖ds 6 1

C
(Φ (H(t0))− Φ (H(t)))

+

t1∫
t0

‖f(s)‖ds.

(10)

It follows from the above estimate that

‖u (t)− u (t0)‖ 6
t1∫
t0

‖u′(s)‖ds

6
1

C
Φ (H(t0)) +

∞∫
t0

‖f(s)‖ds
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We claim that t1 = +∞. Indeed, otherwise t1 <
+∞, applying the above estimate for t = t1 and
then using (9), we obtain

‖u (t1)− ϕ‖ 6 ‖u (t1)− u (t0)‖+‖u (t0)− ϕ‖ < ε

This contradicts the de�nition of t1. Eventually,
the estimate (10) yields that u′(t) ∈ L1 (R+) and
then we deduce u(t) converges to ϕ as t tends to
in�nity by Cauchy criterion.

3.2. Convergence under a L1 -

condition of the forcing

term

We assume that ∇F is bounded from above by
a constant K. Let us de�ne:

V (t) = Θ

K ∞∫
t

‖f(s)‖ds

 , ∀t > 0

We prove that the convergence result is obtained
if V ∈ L1 (R+).

Theorem 2. Let u be a bounded solution
of (1) and f ∈ L1 (R+). Assume that
G,∇F satisfy the angle condition (4), F satis-
�es the Kurdyka-Lojasiewicz inequality (5) and
‖G (u)‖ 6 C ‖∇F (u)‖. If V ∈ L1 (R+) then
u(t) converges to as t goes to in�nity.

Proof.

Let us de�ne H(t) = F (u(t)) + I(t), where

I(t) =
∞∫
t

〈f(s),∇F (u(s))〉 ds Firstly, the func-

tion H is well-de�ned because

|I(t)| 6 ‖∇F‖
∞∫
t

‖f(s)‖ds. (11)

We note that since f ∈ L1 (0,+∞), so
∞∫
t

‖f(s)‖ ds→ 0 as t tends to in�nity. We de-

duce I(t) converges to 0 as t goes to in�nity.
Next, we will prove that this function satis�es
the hypotheses of Theorem 1. Indeed, using the
angle condition (4), we have

H ′(t) = 〈u,t,∇F (u(t))〉 − 〈f(t),∇F (u(t))〉
= −〈G(u(t)),∇F (u(t))〉

6 −α ‖G (u(t))‖ ‖∇F (u(t))‖ 6 0.

So the function H is non-increasing. Moreover,
since u is a bounded solution of (1), which im-
plies that H is bounded from below and there
exists an accumulation point ϕ ∈ ω [u]. There-
fore, by continuity of F , it follows that H(t)
converges to F (ϕ) at in�nity. Without loss of
generality, we may assume that F (ϕ) = 0. In
fact, we can de�ne the energy function H by
H(t) = F (u(t))−F (ϕ)+I(t) in general. Hence,
H(t) converges to 0 as t goes to in�nity. In the
other hand, using the angle condition (4), we
have

− H ′(t)

Θ(H(t))
=
〈G(u(t)),∇F (u(t))〉

Θ(H(t))

6
α ‖G(u(t))‖ ‖∇F (u(t))‖

Θ(H(t))
.

(12)

Combining the subadditive property (6) of Θ
and the Kurdyka-Lojasiewicz inequality (5), we
get

Θ(H(t)) 6 γ (Θ (|F (u(t))|) + Θ (|I(t)|)) 6
6 γ (‖∇F (u(t))‖+ Θ (|I(t)|)) .

(13)
Moreover, we can estimate

‖∇F (u(t))‖
‖∇F (u(t))‖+ Θ (|I(t)|)

= 1− Θ (|I(t)|)
‖∇F (u(t))‖+ Θ (|I(t)|)

(14)
From (12), (13) and (14), then we obtain

− H ′(t)

Θ(H(t))
>
α

γ
‖G(u(t))‖

−α
γ

Θ (|I(t)|) ‖G(u(t))‖
‖∇F (u(t))‖+ Θ (|I(t)|)

>
α

γ
‖G(u(t))‖ − α

γ
Θ (|I(t)|) ‖G(u(t))‖

‖∇F (u(t))‖

>
α

γ
‖G(u(t))‖ − Cα

γ
Θ (|I(t)|) .

However, recall that Θ is non-decreasing and
∇F is bounded. So it is easy to show that
Θ (|I(t)|) 6 V (t). Combining these estimations,
we get that

−H ′(t) > α

γ
Θ (H(t)) (‖G(u(t))‖ − CV (t)) .

Using the Eq. (1), we deduce that

−H ′(t) > α

γ
Θ (H(t)) (‖u′(t)‖ − ‖f(t)‖ − CV (t)) .
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Applying Theorem 1, we �nally obtain the con-
vergence result.

Next, we will estimate the rate of convergence
of bounded solutions of (1). The convergence
rate will be depended on the Lojasiewicz expo-
nent θ in (7). For more convenient, we �rst state
the decay rate for the classical ordinary di�er-
ential equation as follows:

Lemma 2. Let y be a positive solution of the
following ODE:

y′t + ayα 6 0, t > 0.

If a > 0 and α > 1 the for t large enough, we
have

y (t) 6

{
ce−at, if α = 1,

ct−1/(α−1), if α > 1.

Proof.

In the case α = 1, we get that y′ + ay 6 0.
Writing g(t) := eaty(t), we deduce that g is non-
increasing. Hence, g(t) 6 g(0), for every t > 0.
We conclude that y(t) 6 g(0)e−at. In the second
case α > 1, let us de�ne g(t) := (y(t))

1−α. This
function satis�es g′(t) > (α − 1)a := c which
implies g(t) > ct for t large enough. It follows
y(t) 6 ct−1/(α−1).

Theorem 3. Let u be a bounded solution of
(1). Assume that ∇F is bounded from below and
G,∇F satis�es the angle and comparability con-
dition, this means there exists a constant ν > 0
such that

ν−1 ‖G(u)‖ 6 ‖∇F (u)‖ 6 ν ‖G(u)‖ (15)

If sup
t>0

t1+µ
∞∫
t

‖f(s)‖ ds < ∞ for some constant

µ > 0 and F satis�es Lojasiewicz inequality with

Lojasiewicz exponent θ ∈
(

0, µ
1+µ

)
then u(t)

converges to ϕ as t goes to in�nity. We even
have the convergence rate as follows:

‖u(t)− ϕ‖ 6 O
(
t−(µ−θ−θµ)

)
+

{
ce−aνt, if θ = 1/2

ct−θ/(1−2θ), if θ ∈ (0, 1/2)

(16)

Proof.

We have sup
t>0

t1+µ
∞∫
t

‖f(s)‖ ds < ∞ and now we

deduce that
∞∫
t

‖f(s)‖ ds 6 Ct−(1+µ). Therefore,

V (t) 6 Θ
(
CKt−(1+µ)

)
= C1t

−(1+µ)(1−θ).

For every θ ∈
(

0, µ
1+µ

)
, we have (1+µ)(1−θ) >

1. It turns out that V ∈ L1 (R+). Applying
Theorem 2, we have the convergence result of
bounded solution u and we even obtain the fol-
lowing estimation

‖u(t)− ϕ‖ 6 −γ
α

d

dt
Φ (H(t)) + ‖f(t)‖+ CV (t).

Integrating this equality on [t,∞), we get that:

‖u(t)− ϕ‖ 6
∞∫
t

‖u′(s)‖ds

6

∞∫
t

‖f(s)‖ ds+ C

∞∫
t

V (s)ds+
γ

α
Φ(H(t))

6 O(t−(1+µ)) +O(t−(µ−θ−θµ)) +
γ

α
Φ(H(t))

6 O(t−(µ−θ−θµ)) +
γ

α
Φ(H(t)).

In the other hand, by using the angle and com-
parability condition (15) and the Lojasiewicz in-
equality, we deduce that

− d

dt
Φ(H(t)) > ν

‖∇F (u(t))‖2

Θ (H(t))
> νΘ (H(t)) .

(17)
Recall that in the Remark 1, if F satis�es Lo-
jasiewicz inequality then Θ(x) = (1/β)x1−θ

and Φ (x) = (β/θ)xθ It follows that Θ(x) =

aΦ(x)
1−θ
θ , where a = a (θ, β) is a positive con-

stant. Then we deduce from (17) as follows

d

dt
Φ(H(t)) + aνΦ(H(t))

1−θ
θ 6 0

Applying Lemma 2 for the above ordinary dif-
ferential equation, we get that

Φ(H(t)) 6

{
ce−aνt, if θ = 1/2,

ct−θ/(1−2θ), if θ ∈ (0, 1/2) .

(18)
Combining two above estimations, we obtain the
convergence rate (16). The proof is complete.
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4. Conclusion

In this article, we establish some convergence
results of bounded solutions for non homoge-
neous �rst order gradient-like system under L1-
condition of forcing term. We also provide an
estimation of convergence rate. The asymptotic
behavior of solutions for general second order
gradient-like system is still interesting for many
people. We hope to study this problem in future
works.
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