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Abstract.We prove a local existence of weak so-
lutions of semilinear parabolic equations with a
strong singular absorption and a source. More-
over, we consider the qualitative behavior of so-
lutions. We show that any solution exists glob-
ally and vanishes after a �nite time if either the
initial data or the source term is small enough.
On the other hand, we point out some crite-
ria such that solutions are explosive in a �nite
time.
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1. Introduction

In this paper, we are interested in nonnegative
solutions of the following equation: ∂tu−∆u+ u−βχ{u>0} = f(u) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

(1)

where Ω is a bounded domain in RN , 0 < β < 1,
and χ{u>0} denotes the characteristic function
of the set of points (x, t) where u(x, t) > 0, i.e:

χ{u>0} =

{
1, if u > 0,
0, if u ≤ 0.

Note that the absorption term u−βχ{u>0} be-
comes singular when u is near to 0, and we im-
pose tactically u−βχ{u>0} = 0 whenever u = 0.

Problem Eq. (1) can be considered as a limit of
mathematical models describing enzymatic ki-
netics (see [1]), or the Langmuir-Hinshelwood
model of the heterogeneous chemical catalyst
(see, e.g. [19] p. 68, [22], [18]). This problem
has been studied by the authors in [18], [29],
[28], [13], [16], [9], [7], [8], [6], [20], and refer-
ences therein. These authors have considered
the existence and uniqueness, and the qualita-
tive behavior of these solutions. For example,
when f = 0, D. Phillips [18] proved the existence
of solution for the Cauchy problem associating
to Eq. (1). A partial uniqueness of solution of
Eq. (1) was proved by J. Davila and M. Mon-
tenegro, [9] for a class of solutions with initial
data u0(x) ≥ Cdist(x, ∂Ω)µ, for µ ∈ (1, 2

1+β )

(see also [5] the uniqueness in a di�erent class
of solutions). A beautiful result established by
M. Winkler, [20], showed that the uniqueness of
solution fails in general. One of the interesting
behaviors of solutions of Eq. (1) is the extinc-
tion that any solution vanishes after a �nite time
even beginning with a positive initial data, see
[18], [28] ( see also [7] for a quasilinear equation
of this type). It is known that this phenomenon
occurs according to the presence of the nonlin-
ear singular absorption u−βχ{u>0}. One can see
the same situation for the nonlinear absorption
uβ , for β ∈ (0, 1), see [21] and references therein.
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Equation (1) with source term f(u) satisfying
the sublinear condition, i.e: f(u) ≤ C(u + 1),
was considered by J. Davila and M. Montene-
gro, [9]. The authors proved the existence of
solution and showed that the measure of the set
{(x, t) ∈ Ω× (0,∞) : u(x, t) = 0} is positive (see
also a more general statement in [23]). In other
words, the solution may exhibit the quenching
behavior. Still in the sublinear case with source
term λf(u), M. Montenegro [17] proved that
there is a real number λ0 > 0 such that for any
λ ∈ (0, λ0), there is t0 > 0 such that

u(x, t0) = 0, ∀x ∈ Ω.

And it is called the complete quenching phe-
nomenon.

From our knowledge, Eq. (1) with a general
source term f(u) has not been studied com-
pletely, such as f(u) = u2. Thus, we would like
to investigate existence, and the qualitative be-
havior of solutions of Eq. (1) for source term
f(u). It is well known that nonlinear parabolic
equations with general source f(u) may cause
the �nite time blow-up, i.e: there is a time
T0 > 0 such that limt→T0

‖u(t)‖∞ → +∞.
As mentioned above, the nonlinear absorption
u−βχ{u>0} causes the complete quenching phe-
nomenon. Thus, it is interesting to see when the
complete quenching prevails the blow-up, and
conversely. We also note that the similar ques-
tions were studied by [7], [8], [6] for the quasilin-
ear parabolic equations of this type. To be sim-
ple, we consider f(u) = up, p ≥ 1 through this
paper, although our analysis can be applied to a
general source f(u), which is a locally Lipschitz
function on [0,∞). Before discussing the behav-
iors of solutions of Eq. (1), it is necessary to in-
troduce a notion of weak solution, and establish
�rst a local existence of solutions of Eq. (1).

De�nition 1. Let u0 ∈ L∞(Ω). A nonneg-
ative function u(x, t) is called a weak solution
of Eq. (1) if u−βχ{u>0} ∈ L1(Ω × (0, T )),

and u ∈ Lp(0, T ;W 1,2
0 (Ω)) ∩ L∞(Ω × (0, T )) ∩

C([0, T );L1(Ω)) satis�es Eq. (1) in the sense of
distributions D′(Ω× (0, T )), i.e:

∫ T
0

∫
Ω

(
−uφt +∇u.∇φ+ u−βχ{u>0}φ− f(u)φ

)
dxdt = 0

(2)
for all φ ∈ C∞c (Ω× (0, T )).

Our local existence result is as follows.

Theorem 1. Let u0 ∈ L∞(Ω), and f(u) = up.
Then, there exists a �nite time T = T (u0) > 0
such that Eq. (1) has a maximal weak solution
u in Ω × (0, T ), i.e: for any weak solution v in
Ω× (0, T ), we have

v ≤ u, in Ω× (0, T ).

Moreover, there is a positive constant C =
C(‖u0‖∞) such that

|∇u(x, τ)|2 ≤ Cu1−β (τ−1 + 1
)
, (3)

for a.e (x, τ) ∈ Ω× (0, T ).

Besides, if ∇(u
1
γ

0 ) ∈ L∞(Ω), with γ =
2

1+β , then there is a positive constant C =

C(‖u0‖∞, ‖∇(u
1
γ

0 )‖∞) such that

|∇u(x, τ)|2 ≤ Cu1−β(x, τ), (4)

for a.e (x, τ) ∈ Ω× (0, T ).

Remark 1. The result of Theorem 1 implies
that u is continuous up to the boundary. Fur-
thermore, u is continuous up to t = 0 if provided

∇(u
1
γ

0 ) ∈ L∞(Ω).

Our next purpose is to study the global exis-
tence of solutions. Particularly, we are inter-
ested in the complete quenching phenomenon
that any solution vanishes identically after a �-
nite time under some circumstances. To state
our global existence result and the complete
quenching phenomenon, we consider Eq. (1)
with source term λup, for any λ > 0. In some
of our considerations, a crucial role is played by
the �rst eigenvalue λ1 of the Dirichlet problem:{

−∆Φ = λ1Φ in Ω,
Φ(x) = 0, on ∂Ω

(5)

where Φ is the �rst normalized eigenfunction,∫
Ω

Φ(x)dx = 1. It is known that λ1 decreases
when the measure of the spatial domain Ω in-
creases. Then, we have a result of global exis-
tence of solution.

Theorem 2. Let u0 ∈ L∞(Ω), and f(u) = λup,
for λ > 0. Assume that there are an open
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bounded domain Ω0, and a positive real number
k0 such that Ω ⊂⊂ Ω0, and

u0(x) ≤ k0ΦΩ0
(x), for a.e x ∈ Ω,

k0λ1,Ω0
ΦΩ0

(x) + k−β0 Φ−βΩ0
(x) ≥ λ

(
k0ΦΩ0

(x)
)p

∀(x, t) ∈ Ω× (0,∞),
(6)

where λ1,Ω0
and ΦΩ0

are the �rst eigenvalue and
the �rst eigenfunction of problem Eq. (5) corre-
sponding to Ω0. Then, any solution v of Eq. (1)
exists globally and satis�es

v(x, t) ≤ k0ΦΩ0
(x), in Ω× (0,∞). (7)

Remark 2. For a given λ > 0; if u0 is
small enough then Eq. (6) holds, and conversely.
Thus, we obtain the global existence of solutions
if provided either u0 or λ is small enough.

Next, we give the complete quenching results.

Theorem 3. Let u0 ∈ L∞(Ω), and f(u) = λup.
For a given λ > 0, then every solution of Eq. (1)
is extinct after a �nite time if provided that
‖u0‖∞ is small enough.

Theorem 4. For a given u0 ∈ L∞(Ω), there is
a real number λ0 > 0 such that every solution of
Eq. (1) quenches after a �nite time if provided
λ ∈ (0, λ0).

Finally, we study the global nonexistence of
solutions of Eq. (1), the so called �nite time
blow-up, see [15], [16], [12], [11], [25], [26], [30].
In this paper, we point out some criteria on ini-
tial data u0 in order to guarantee the blow-up of
solution in a �nite time. Thus, it is convenient
to introduce the energy functional

E(t) =

∫
Ω

(
1

2
|∇u(t)|2 +

1

1− β
u1−β(t)

− 1

p+ 1
up+1(t)

)
dx.

(8)

Then we have a blowing up result as follows:

Theorem 5. Let u0 ∈ L∞(Ω)∩H1
0 (Ω). Suppose

that f(u) = up, for p > 1, and E(0) ≤ 0. Let u
be a solution of Eq. (1). Then, u blows up in a
�nite time.

The paper is organized as follows: In the
next section, we prove some gradient estimates
for the approximating solutions. In Sec. 3.
we shall prove the local existence results. The
global existence of solutions and the complete
quenching phenomenon will be considered in
Sec. 4. Section 5. is devoted to study the
non-global existence of solution. In the �nal
Section, we give some simulation in order to il-
lustrate the interesting phenomenon: quenching
versus blow-up.

Several notations which will be used through
this paper are the following: we denote by C a
general positive constant, possibly varying from
line to line. Furthermore, the constants which
depend on parameters will be emphasized by us-
ing parentheses. For example, C = C(p, β, τ)
means that C depends on p, β, τ . And Supp(f)
is denoted as the support compact of f .

2. Gradient estimate for

the approximate

solutions

In this section, we consider the regularized prob-
lem (Pε,η) of Eq. (1) as follows: ∂tu−∆u+ gε(u) = up in Ω× (0,∞),

u = η on ∂Ω× (0,∞),
u(0) = u0 + η on Ω

for any 0 < η < ε, with gε(s) = ψε(s)s
−β ,

ψε(s) = ψ( sε ), and ψ ∈ C∞(R) is a non-
decreasing function on R such that ψ(s) = 0 for
s ≤ 1, and ψ(s) = 1 for s ≥ 2. Note that gε is
a globally Lipschitz function for any ε > 0. We
will show that solution uε,η of equation (Pε,η)
tends to a solution of Eq. (1) as η, ε → 0. In
passing to the limit, we need to derive some gra-
dient estimates for solution uε,η. Then, we have
the following result:

Lemma 1. Let u0 ∈ C∞c (Ω), u0 6= 0. There ex-
ists a classical unique solution uε,η of (Pε,η) in
Ω× (0, T ).
i) Moreover, there is a constant C > 0 only de-
pending on β, T, f, ‖u0‖∞ such that

|∇uε,η(x, τ)|2 ≤ Cu1−β
ε,η (x, τ)

(
τ−1 + 1

)
, (9)
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for any (x, τ) ∈ Ω× (0, T ).

ii) If ∇(u
1
γ

0 ) ∈ L∞(Ω), then we get

|∇uε,η(x, τ)|2 ≤ Cu1−β
ε,η (x, τ), (10)

for any (x, τ) ∈ Ω × (0, T ), with C > 0 merely

depends on β, T, ‖u0‖∞, ‖∇(u
1
γ

0 )‖∞.

Proof. The proof of this lemma is similar to the
one in [20]. Thus, we skip it and refer to Lemma
3.1, [20].

Thanks to Lemma 1 and the classical regular-
ity (see [14]), we can pass to the limit as η → 0
in problem (Pε,η). Then, problem (Pε): ∂tu−∆u+ gε(u) = up in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0) = u0 on Ω

has a unique solution uε. Note that uε also sat-
is�es Lemma 1.

3. Local existence

In this section, we consider a local existence of
solution of problem Eq. (1). We give the proof
of Theorem 1.

Proof of Theorem 1. Let uε be a unique solution
of problem (Pε) in Ω × (0, T ). Then, we show
that {uε}ε>0 is a non-decreasing sequence. In-
deed, we have

gε1(s) ≥ gε2(s), for any 0 < ε1 < ε2.

This implies that uε1 is a sub-solution of the
equation satis�ed by uε2 . Therefore, the com-
parison principle yields

uε1 ≤ uε2 , in Ω× (0, T ), ∀ε1 < ε2,

so the conclusion follows. Consequently, there
is a nonnegative function u such that uε ↓ u as
ε→ 0+.

Obviously, we have from the comparison prin-
ciple

uε ≤ Γ(t) =
(
‖u0‖1−p∞ − (p− 1)t

)1−p
,

for any (x, t) ∈ Ω× (0, T0), T0 =
‖u0‖1−p∞
p−1 .

Integrating equation (Pε) on Ω× (0, T ) yields∫
Ω

uε(x, T )dx−
∫ T

0

∫
∂Ω

∇uε.ndσds

+

∫ T

0

∫
Ω

gε(uε)dxds =

∫
Ω

uε(x, 0)dx

+

∫ T

0

∫
Ω

upεdxds, ∀T ∈ (0, T0),

where n is the unit outward normal vector of
∂Ω.

Since ∇uε.n ≤ 0, we obtain∫ T

0

∫
Ω

gε(uε)dxds ≤
∫

Ω

(
u0(x) + ε

)
dx

+

∫ T

0

∫
Ω

upεdxds.

This inequality and the boundedness of uε above
imply that ‖gε(uε)‖L1(Ω×(0,T )) is bounded by a
constant not depending on ε.

Thanks to Fatou's lemma, there is a function
Υ ∈ L1(Ω× (0, T )) such that

lim inf
ε→0

gε(uε) = Υ, in L1(Ω× (0, T )). (11)

Next, the monotonicity of {uε}ε>0 deduces

gε(uε)(x, t) ≥ gε(uε)χ{u>0}(x, t),

for (x, t) ∈ Ω× (0, T ), so

lim inf
ε→0

gε(uε)(x, t) = Υ(x, t) ≥ u−βχ{u>0}(x, t),

(12)
for (x, t) ∈ Ω× (0, T ). Then, u−βχ{u>0} is inte-
grable on Ω× (0, T ).

Actually, we shall prove

Υ = u−βχ{u>0}, in L1(Ω× (0, T )). (13)

On the other hand, we use a result of gradient
convergence of Boccardo et al., [3], [2] in order
to obtain

∇uε
ε→0−→ ∇u, for a.e (x, t) ∈ Ω× (0, T ). (14)

As a result, ∇u ful�lls estimate Eq. (3) for a.e
(x, t) ∈ Ω× (0, T ), and for any τ > 0

∇uε
ε→0−→ ∇u, in Lr(Ω× (τ, T )), ∀r ∈ [1,∞).

(15)

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 137



VOLUME: 1 | ISSUE: 2 | 2017 | November

Now, it su�ces to demonstrate that u satis�es
Eq. (1) in the sense of distribution.

For any η > 0 �xed, we use the test function
ψη(uε)φ, for any φ ∈ C∞c (Ω × (0, T )), to the
equation satis�ed by uε. Then, using integration
by parts yields

∫
Supp(φ)

(
−Ψη(uε)φt +

1

η
|∇uε|2ψ′(

uε
η

)φ

+∇u.∇φψη(uε) + gε(uε)ψη(uε)φ

+upεψη(uε)φ

)
dxds = 0,

with Ψη(u) =
∫ u

0
ψη(s)ds. Note that ψη(.) plays

a role in avoiding the singularity of the term
u−βχ{u>0} as u is near 0. Thus, there is no
problem of going to the limit as ε → 0 in the
indicated equation in order to obtain

∫
Supp(φ)

(
−Ψη(u)φt +

1

η
|∇u|2ψ′(u

η
)φ

+∇u.∇φψη(u) + u−βψη(u)φ

+f(u, x, s)ψη(u)φ

)
dxds = 0.

Next, we go to the limit as η → 0 in the last
equation.

By Eq. (14), Eq. (15), and the integration of
u−βχ{u>0} in Ω × (0, T ), it is not di�cult to
verify



lim
η→0

∫
Supp(φ)

Ψη(u)φtdxds =

∫
Supp(φ)

uφtdxds,

lim
η→0

∫
Supp(φ)

∇u.∇φψη(u)dxds =

∫
Supp(φ)

∇u.∇φdxds,

lim
η→0

∫
Supp(φ)

u−βψη(u)φdxds =

∫
Supp(φ)

u−βχ{u>0}φ,

lim
η→0

∫
Supp(φ)

upψη(u)φdxds =

∫
Supp(φ)

upφdxds.

(16)

Next, we show that

lim
η→0

∫
Supp(φ)

1

η
|∇u|2ψ′(u

η
)φ dxds = 0. (17)

In fact, since u satis�es estimate Eq. (3), we have

1

η

∫
Supp(φ)

|∇u|2|ψ′(u
η

)φ|dxds

≤ C 1

η

∫
Supp(φ)∩{η<u<2η}

u1−βdxds

≤ 2C

∫
Supp(φ)∩{η<u<2η}

u−βdxds,

where Supp(φ) means the support compact of
φ, and the constant C > 0 is independent of η.
Since u−βχ{u>0} is integrable on Ω× (0, T ), we
obtain

lim
η→0

∫
Supp(φ)∩{η<u<2η}

u−βdxds = 0,

which implies the conclusion Eq. (17). A com-
bination of Eq. (16) and Eq. (17) deduces∫

Supp(φ)

(
− uφt +∇u.∇φ

+u−βχ{u>0}φ+ f(u, x, s)φ
)
dxds = 0.

(18)

In other words, u satis�es Eq. (1) in D′(Ω ×
(0, T )).

As mentioned above, we prove Eq. (13) now.
From equation (Pε), we have∫

Supp(φ)

(
− uεφt +∇uε.∇φ

+gε(uε)φ+ f(uε, x, s)φ
)
dxds = 0,

for any φ ∈ C∞c (Ω× (0, T )), φ ≥ 0.

Then, letting ε→ 0 deduces∫
Supp(φ)

(−uφt +∇u.∇φ) dxds+

lim
ε→0

∫
Supp(φ)

gε(uε)φ dxds

+

∫
Supp(φ)

f(u, x, t)φ dxds = 0.

(19)

By Eq. (18) and Eq. (19), we get

lim
ε→0

∫
Supp(φ)

gε(uε)φ dxds

=

∫
Supp(φ)

u−βχ{u>0}φ dxds.

(20)
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According to Eq. (11), Eq. (20) and Fatou's
lemma, we obtain∫
Supp(φ)

u−βχ{u>0}φdxds ≥
∫
Supp(φ)

Υφdxds,

∀φ ∈ C∞c (Ω× (0, T )), φ ≥ 0.

The last inequality and Eq. (12) yield conclu-
sion Eq. (13).

The conclusion u ∈ C([0, T ];L1(Ω)) is well
known, so we skip its proof and refer to the com-
pactness result of J. Simon, [33]. Thus, u is a
weak solution of Eq. (1).

To complete the proof of Theorem 1, it re-
mains to show that u is the maximal solution of
Eq. (1).

Let v be any weak solution of Eq. (1) on Ω×
(0, T ). Then, we have

v(x, t) ≤ u(x, t), for a.e (x, t) ∈ Ω× (0, T ).

In fact, we observe that

gε(v) ≤ v−βχ{v>0}, ∀ε > 0.

Thus,

∂tv−∆v+gε(v) ≤ f(v, x, t), in D′(Ω×(0, T )),

which implies that v is a sub-solution of equation
(Pε).

By the comparison principle, we get

v(x, t) ≤ uε(x, t), for a.e (x, t) ∈ Ω× (0, T ).

Letting ε→ 0 yields the result.

4. Global existence and

complete quenching

phenomenon

In this part, we study the global existence of so-
lution and the complete quenching phenomenon
through proving Theorem 2, and Theorem 3.
Since u is the maximal solution, then it su�ces
to work on u.

Proof of Theorem 2. Let u be the maximal so-
lution of Eq. (1) in Ω× (0, T ). To prove that u
exists globally, we show that u is bounded by a
constant not depending on t.

We �rst remind that inf
x∈Ω
{ΦΩ0

(x)} > 0, for

Ω ⊂⊂ Ω0.

Thus, for any ε ∈
(

0,
1

2
inf
x∈Ω
{k0ΦΩ0

(x)}
)
, we

have gε(k0ΦΩ0) = k−β0 Φ−βΩ0
.

Put

Lε(v) := vt −∆v + gε(v)− λvp.

Then,

Lε(k0ΦΩ0) = k0λ1(Ω0)ΦΩ0+k−β0 Φ−βΩ0
−λ(k0ΦΩ0)p.

(21)
By Eq. (6), we observe that Lε(k0ΦΩ0

) ≥ 0, in
Ω× (0, T ). Therefore, k0ΦΩ0

is a super-solution
of equation (Pε). The strong comparison theo-
rem yields

uε(x, t) ≤ k0ΦΩ0
(x), ∀(x, t) ∈ Ω× (0, T ).

Since uε is bounded on Ω× (0, T ), the standard
argument allows us to extend the existence of uε
on Ω× (0, T + δ0), Ω× (0, T + 2δ0),..., for some
δ0 > 0, thereby proves the global existence of
solution uε. By the monotonicity of uε, u must
exist globally, and the conclusion Eq. (7) follows
immediately.

Next, we will show that for a given λ > 0, the
maximal solution u must vanish identically after
a �nite time if ‖u0‖∞ is small enough.

Proof of Theorem 3. Since ‖u0‖∞ is small
enough, we can choose a real number k0 > 0
small as well, and an open bounded domain
Ω0 containing Ω, such that Eq. (6) holds.
Thanks to Theorem 2, the maximal solu-
tion u exists globally, and it is bounded by
M = k0 sup

x∈Ω
{ΦΩ0(x)}.

Using the test function u to Eq. (1) gives us

1

2

d

dt

∫
Ω

u2(t)dx+

∫
Ω

(
|∇u(t)|2 + u1−β(t)

)
dx =

λ

∫
Ω

up+1dx, ∀t > 0.
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Since u ≤M , we have

1

2

d

dt

∫
Ω

u2(t)dx+

∫
Ω

(
|∇u(t)|2 + u1−β(t)

)
dx

≤ λMp+β

∫
Ω

u1−β(t)dx, ∀t > 0.

Or

1

2

d

dt

∫
Ω

u2(t)dx+

∫
Ω

|∇u(t)|2dx+

(1− cM )

∫
Ω

u1−β(t)dx ≤ 0,

(22)

where cM = λMp+β . Note that M is as small
as ‖u0‖∞. Thus, if ‖u0‖∞ is small enough then
we get (1− cM ) > c0 > 0.

It follows from Eq. (22) that

1

2

d

dt

∫
Ω

u2(t)dx+ c0

∫
Ω

(
|∇u(t)|2dx+ u1−β(t)

)
dx ≤ 0.

(23)

Now, using Garliardo-Nirenberg's inequality
[31] yields

‖u(t)‖L2(Ω) ≤ c‖∇u(t)‖θL2(Ω)‖u(t)‖1−θL1(Ω)

= c

(∫
Ω

|∇u(t)|2dx
) θ

2
(∫

Ω

u(t)dx

)1−θ

,

with θ = N+1
N+2 . Thus,

‖u(t)‖L2(Ω) ≤ c
(∫

Ω

(
|∇u(t)|2 + u(t)

)
dx

) θ
2 +1−θ

≤ c
(∫

Ω

(
|∇u(t)|2 +Mβu1−β(t)

)
dx

)1−θ/2

≤ c1
(∫

Ω

(
|∇u(t)|2 + u1−β(t)

)
dx

)1−θ/2

,

with c1 = c1(β,M) > 0.

Then, we obtain

(∫
Ω

u2(t)dx

)N+2
N+3

≤ c2
∫

Ω

(
|∇u(t)|2 + u1−β(t)

)
dx,

(24)

with c2 = c2(β,M,N) > 0.

By Eq. (23) and Eq. (24), there is a positive
constant c3 = c3(β,M) > 0 such that

y′(t) + c3y
N+2
N+3 (t) ≤ 0, for t > 0, (25)

with y(t) =

∫
Ω

|u(x, t)|2dx.

If we can show that there exists a time t0 ∈
[0,∞) such that y(t0) = 0, it follows then from
Eq. (25) that y(t) = 0, for any t ≥ t0, thereby
proves Theorem 3.
Indeed, we assume a contradiction that y(t) > 0,
for any t > 0. Solving the ordinary di�erential
inequality Eq. (25) yields

y
1

N+3 (t) + c4t ≤ y
1

N+3 (0) = ‖u0‖
2

N+3

L2(Ω), ∀t > 0,

(26)
with c4 = c3

N+3 . This leads to a contradiction as
t is su�ciently large. Thus, u must quench after
a �nite time.

Similarly, for a given initial data u0, we also
obtain the complete quenching result for the case
λ small. Thus, Theorem 4 follows.

Remark 3. Inequality Eq. (26) implies that
the extinction time of u, denoted by T ? ≤
‖u0‖

2
N+2

L2(Ω)

c4
.

5. Non-global existence of

solutions

In this section, we study the non-global existence
of solutions of Eq. (1). We give the proof of
Theorem 5.

Proof of Theorem 5. By multiplying u (resp.
ut) to Eq. (1), we have the following integral
equations:

1

2

d

dt

∫
Ω

u2(x, t)dx = −
∫

Ω

(
|∇u(x, t)|2+

u1−β(x, t)− uq+1(x, t)
)
dx,

(27)

and∫ t

0

∫
Ω

|ut|2dxds+

∫
Ω

(1

2
|∇u(t)|2 +

1

1− β
u1−β(t)

− 1

q + 1
uq+1(t)

)
dx =∫

Ω

(1

2
|∇u0|2 +

1

1− β
u1−β

0 − 1

q + 1
uq+1

0

)
dx,

(28)
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see [30], [32]. By combining Eq. (27) and
Eq. (28), we obtain

1

2

d

dt

∫
Ω

u2(x, t)dx = −2E(t)

+
1 + β

1− β

∫
Ω

u1−β(x, t)dx+
q − 1

q + 1

∫
Ω

uq+1(x, t)dx.

Since E(0) ≤ 0, Eq. (28) implies E(t) ≤ 0, for
any t > 0. It follows then from the last inequal-
ity that

1

2

d

dt

∫
Ω

u2(x, t)dx ≥ q − 1

q + 1

∫
Ω

uq+1dx. (29)

By Holder's inequality, we get

∫
Ω

u2dx ≤
(∫

Ω

uq+1dx

) 2
q+1

|Ω|
q−1
q+1 . (30)

From Eq. (29) and Eq. (30), we obtain

y′(t) ≥ Cy
q+1
2 (t),

with y(t) =
∫

Ω
u2(x, t)dx, and C = 2(q−1)

(q+1)|Ω|
q−1
2

.

This inequality implies that y(t) → +∞ as

t→ T−0 , with T0 =
4‖u0‖1−qL2(Ω)

(q + 1)|Ω| q−1
2

.

6. Simulation results

In this part, we will illustrate our theoretical
results with some numerical experiences. In the
sequel, we consider Eq. (1) with p = 2, β =
0.8, I = (0, L), and u0(x) = x(1 − x/L). Our
numerical scheme mimics the one in the paper of
[10]. Similarly, we use the linear �nite elements
with mass lumping in a uniform mess for the
space variable to discretize our Eq. (1). The
reader who is interested in detail can �nd in [10].

We �x L = 2.

With λ = 14, the maximal solution of Eq. (1)
vanished after t = 0.36, see Fig. 1. While λ =
15, the maximal solution of Eq. (1) blows up at
t = 0.33, see Fig. 2.
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Fig. 1: Evolution of the maximal solution of Eq. (1).
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Fig. 2: Evolution of the maximal solution of Eq. (1).
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