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Abstract. This paper presents a pipe cutting

Robot system with two di�erent cutting methods:

the method with the end-e�ector moves on cut-

ting path and direction while the stationary pipe

and the method with the end-e�ector moves on a

straight line while the rotating pipe to create the

desired cutting path and direction. The cutting

trajectory are described, the Robot model is con-

structed, solving the inverse kinematics, plan-

ning the trajectory of motion, simulating and

controlling Robot in Matlab, and designing the

experimental Robot to verify. The results of the

two methods are compared to point out a better

one. This research builds up an important foun-

dation for choosing an e�ective method for pipe

cutting Robot in industry.
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1. Introduction

In industry, gases and liquids are transported
daily by pipelines and these pipeline systems
paired together in a complex way. To create
them, the steel pipes are cut and welded to-
gether. However, this is not simple because
there are complex joints that require cutting
and welding paths to be complicated in which

the trajectory and direction change continu-
ously. With that requirement, conventional
tools cannot be implemented and the applica-
tion of robots is necessary.

The use of robot for cutting pipe has become
very popular in the world. In Vietnam, this tech-
nique has not yet been widely applied, and there
are few scienti�c publications in this �eld.

In [1], the authors mentioned a Delta Robot
for cutting high-speed laser with the numer-
ous advantages of robot: higher sti�ness, fewer
joints, the ability of transporting heavier loads,
and higher accuracy. The main drawback is the
small workspace, and this paper also does not
mention much about the application of Delta
Robot to cut steel pipes.

In [2], the authors presented a pipe cutting
technique that included a pipe cutting Robot
that the robot arm moves and the pipe is sta-
tionary during cutting. The authors successfully
builds 3D simulation and experimental model,
solving the inverse kinematics, planning the tra-
jectory as well as designs Robot controller. The
results of simulated and experimental errors are
provided. However, the authors only stopped at
the method of the end-e�ector moves while the
stationary pipe without mentioning their coor-
dinated motion.

In this paper, the author presents another
method of cutting pipe more e�ectively with a 6
degrees of freedom pipe cutting Robot, consist-
ing of 5 degrees of freedom robot arm and the
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degree of freedom created by the rotating motion
of a pipe. With this method, the end-e�ector
will only move on a straight line, and the pipe
will rotate in conjunction with the movement of
the end-e�ector to create cutting path in reality.
This result is compared with the results in [2]
to point out that this cutting method is better
than the cutting method in [2].

2. Pipe Cutting Problem

The cutting paths and cutting directions can
happen many cases, depending on pipeline as-
sembly position and welding conditions. This
paper will focus on Hyperbolic Paraboloid
Pringles; a common path is created by two in-
tersecting pipes as shown in Fig. 1.

2.1. Cutting Path

In coordinate frame {−1}, place pipes R1 and
R2 which have center lines coincident with Z−1
axis, each pipe equation is given by Eq. (1):{

x2n + y2n = R2
n,

− 1
2Ln ≤ zn ≤

1
2Ln,

(1)

where

• L, R: the length and radius of two pipes,

• x, y, z: coordinates of two pipes and

• n = 1: pipe R1, n = 2: pipe R2.
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Fig. 1: The intersection of two pipes.

When turning pipe R2 an angle ar◦ around
X−1 axis (for example 90◦, see Fig. 1), we have
Eq. (2):x′2y′2

z′2

 =

1 0 0
0 car −sar
0 sar car

x2y2
z2

 , (2)

where

• ar: angle between R1 and R2 and

• sar: sin ar, car: cos ar.

Based on Eq. (1) and Eq. (2), we obtain the
equation of pipe R2 after turning ar

◦ as Eq. (3):{
x22 + (y2car − z2sar)2 = R2

2,

− 1
2L2 ≤ y2sar + z2car ≤ 1

2L2.
(3)

From Eq. (1), Eq. (2) and Eq. (3), we have the
locus of the intersection of two pipes as Eq. (4):{

x2 + y2 = R2
1,

x2 + (ycar − zsar)2 = R2
2.

(4)

Assuming that R1 ≥ R2, set:{
R2sϕ = x,

R2cϕ = ycar − zsar,
(5)

where 0 ≤ ϕ ≤ 2π, sϕ: sinϕ, cϕ: cosϕ.

Based on Eq. (4) and Eq. (5), we obtain the lo-
cus of the intersection of two pipes in the coordi-
nate frame {−1} as Eq. (6), Eq. (7) and Eq. (8):

x = R2sϕ, (6)

y = ±
√
R2

1 − (R2sϕ)2, (7)

z =
−R2cϕ ± car

√
R2

1 − (R2sϕ)2

sar
. (8)

Set up the coordinate frame {0} so that the
X0 axis is coincided and reversed with the Z−1
axis. The distance from {−1} to {0} is d0 (see
Fig. 1). The coordinate frame {0} is �xed and
coordinate frame {−1} can rotate around Z0 an
angle θ0. The locus of the intersection of two
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pipes R1 and R2 in the coordinate frame {0} is
given by Eq. (9), Eq. (10), Eq. (11) and (12):

Q1 =


0 0 −1 d0
−c0 s0 0 0
s0 c0 0 0
0 0 0 1



x
y
z
1

 =


Q1x

Q1y

Q1z

1

 ,
(9)

where

Q1x = d0 −
−R2cϕ ± car

√
R2

1 − (R2sϕ)2

sar
,

(10)

Q1y = −c0R2sϕ ± s0
√
R2

1 − (R2sϕ)2, (11)

Q1z = s0R2sϕ ± c0
√
R2

1 − (R2sϕ)2, (12)

s0: sin θ0, c0: cos θ0.

When cutting, pipe R2 must be re-applied an
angle −ar◦ so that the center line of R2 coin-
cides with Z−1 axis. The cutting path of pipe
R2 is given by Eq. (13), Eq. (14), Eq. (15) and
Eq. (16).

Q2 =

1 0 −1
0 c−ar −s−ar
0 s−ar c−ar

Q1x

Q1y

Q1z

 =

Q2x

Q2y

Q2z

 ,
(13)

where

Q2x = d0 −
−R2cϕ ± car

√
R2

1 − (R2sϕ)2

sar
,

(14)

Q2y = car(−c0R2sϕ ± s0
√
R2

1 − (R2sϕ)2)

+ sar(s0R2sϕ ± c0
√
R2

1 − (R2sϕ)2), (15)

Q2z = −sar(−c0R2sϕ ± s0
√
R2

1 − (R2sϕ)2)

+ car(s0R2sϕ ± c0
√
R2

1 − (R2sϕ)2). (16)

Equation (9), Eq. (10), Eq. (11), Eq. (12),
Eq. (13), Eq. (14), Eq. (15) and Eq. (16) de-
scribe the paths in which the end-e�ector moves
on them in the coordinate frame {0} when cut-
ting.

2.2. Cutting Direction

Beside cutting path, we must pay attention to
the cutting direction. With each cutting point

which many directions to go through, but only
one direction is reasonable with the require-
ments about pipe welding conditions [3], de-
pending on the cutting angle [4] and the position
of the point, shown in Fig. 2. Cutting direction
changes continuously during cutting process.

{-1}Z

Y

X

Q1

X-YM-CY-Z

R1

e

α

a
c0

Fig. 2: Cutting direction of pipe R1.

In the coordinate frame {−1}, plane (M,C)
contains Y−1 axis and passes cutting point Q1.
In plane (M,C), e is the line that contains cut-
ting direction and passes cutting point Q1, α
is the angle between e and Y−1 axis (given by
Eq. (17) and Eq. (18)). β is the angle between
plane (M,C) and (Y, Z).

α = ̂Y−1O−1Q1 + ac, (17)

̂Y−1O−1Q1 = arctan2(
√
Q2

1x +Q2
1z, Q1y).

(18)

ac: the standard cutting angle is given be-
fore [4] (see Fig. 1 and Fig. 2).

e is found by rotating an imaginary line
through Q1 and paralleling Y−1 axis with an an-
gle β around Y−1 axis, and then rotating this
line with an angle α around Q1. e is the line
containing the direction we need.

The cutting direction in the coordinate frame
{−1} is a 3x3 matrix and given by Eq. (19):

H−1 = RY (α) RX(β) =

 cβ sαsβ cαsβ
0 cα −sα
−sβ sαcβ cαcβ

 .
(19)
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From Eq. (19), we obtain the cutting direction
in the coordinate frame {0} as Eq. (20):

H0 =−10 R H−1

=

 sβ −sαcβ −cαcβ
−c0cβ −c0sαsβ + s0cα −c0cαsβ − s0sα
s0cβ s0sαsβ + c0cα s0cαsβ − c0sα

 .
(20)

2.3. Cutting Method

There are two general cases of cutting: static
pipe while moving end-e�ector [2] and rotat-
ing pipe while moving end-e�ector. Especially,
the end-e�ector moves on a straight section
with cutting direction following to Eq. (20).
The combination of rotating pipe while mov-
ing end-e�ector on a straight section is given by
Eq. (21) and Eq. (22). It will create Hyperbolic
Paraboloid Pringles like the reality. This case is
described in Fig. 3.

Fig. 3: The combination of rotating pipe while moving

end-e�ector on a straight section.

Trajectory of end-e�ector is a parallel straight
section with X0 axis, and is located right at the
top of the pipe. The straight section belongs to
plane (X0, Z0), in which Y0 = 0 and Z0 = R1.
From Eq. (9), Eq. (10), Eq. (11) and Eq. (12),
we infer:

0
−1Q1 =

d0 −
−R2cϕ ± car

√
R2

1 − (R2sϕ)2

sar
−c0R2sϕ ± s0

√
R2

1 − (R2sϕ)2

s0R2sϕ ± c0
√
R2

1 − (R2sϕ)2



=

d0 −
−R2cϕ ± car

√
R2

1 − (R2sϕ)2

sar
0
R1

 .
(21)

From Eq. (21), we obtain:

θ0 = arctan2(∓R2cϕ,
√
R2

1 − (R2sϕ)2). (22)

While the end-e�ector moves on a straight line
in Eq. (21) with direction in Eq. (20), the pipe
rotate an angle θ0 in Eq. (22). This combination
of motion will create the Hyperbolic Paraboloid
Pringles in real.

3. Robot Model

The Robot model used in this paper includes 5
degrees of freedom robot arm and a degree of
freedom created by the rotating motion of the
pipe. This model is shown in Fig. 4.
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Fig. 4: The model of Robot.

3.1. Forward Kinematics

The coordinate frame {0} is the global coordi-
nate frame of Robot system. Robot system is
divided into two parts in which they combina-
tion movements together: a part includes 5 de-
grees of freedom robot arm and a part created
by the rotating motion of a pipe. Parameters of
the model are given in Tab. 1.

Based on the Denavit-Hartenberg conven-
tion, we �nd these transformation matrices
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Tab. 1: Denavit-Hartenberg parameters of Robot.

i αi ai di θi Operating range
deg mm mm deg deg

0 90 0 260 θ0 −180 to 180
1 90 0 371 θ1 −140 to 140
2 0 157 0 θ2 −45 to 45
3 0 120 0 θ3 −90 to 90
4 90 50 0 θ4 −145 to 90
5 0 0 210 θ5 −180 to 180

0
−1T,

0
1T,

1
2T,

2
3T,

3
4T and 4

5T . The transforma-
tion matrix 0

−1T describe position of the pipe in
global coordinate frame {0}, given by Eq. (23):

0
−1T =


0 0 −1 d0
−c0 s0 0 0
s0 c0 0 0
0 0 0 1

 . (23)

Matrix 0
5T describes the end-e�ector direction

and position in the coordinate frame {0} (see [2]
or [5]) is given by Eq. (24):

0
5T =0

1 T
1
2T

2
3T

3
4T

4
5T =


nx ax ox px
ny ay oy py
nz az oz pz
0 0 0 1

 ,
(24)

where

nx = c1c234c5 + s1s5, (25)

ny = s1c234c5 − c1s5, (26)

nz = s234c5, (27)

ax = −c1c234s5 + s1c5, (28)

ay = −s1c234s5 − c1c5, (29)

az = −s234s5, (30)

ox = c1s234, (31)

oy = s1s234, (32)

oz = −c234, (33)

px = d5c1s234 + a4c1c234 + a3c1c23 + a2c1c2,
(34)

py = d5s1s234 + a4s1c234 + a3s1c23 + a2s1c2,
(35)

pz = −d5c234 + a4s234 + a3s23 + a2s2 + d1,
(36)

si: sin θi, ci: cos θi,
si...k: sin(θi + · · ·+ θk), ci...k: cos(θi + · · ·+ θk).

3.2. Inverse Kinematics

Inverse kinematics results in exact positions of
joints when position and direction of end-e�ector
is known.

Equating entries (1,4) and (2,4) in the matrix
(Eq. (24)), we have tan θ1 ([2] or [6]) as Eq. (37):

py
px

= tanθ1. (37)

We obtain the �rst angle as Eq. (38).

θ1 = arctan2(py, px). (38)

By multiplying s1 and c1 with elements (1,1),
(2,1), (1,2) and (2,2) in Eq. (24) then shorten
them, we �nd tan θ5 as Eq (39):

s1nx − c1ny
s1ox − c1oy

= tan θ5. (39)

Infer θ5 as Eq (40):

θ5 = arctan2(s1nx − c1ny, s1ox − c1oy). (40)

To �nd θ3, we need to �nd θ234 = θ2 + θ3 +
θ4. Equating entries (1,3), (2,3) and (3,3) in the
matrix Eq. (24), we obtain Eq (41):

c1ax + s1ay
−az

= tan θ234. (41)

Infer θ234 as Eq (42):

θ234 = arctan2(c1ax + s1ay,−az). (42)

After we have θ1 and θ5, we calculate the value
of the transformation matrix 0

1T and 4
5T . Based

on the value of the transformation matrix 0
1T ,

we �nd 1
4T as Eq. (43):

1
4T = 0

1T
−1 0

5T
4
5T
−1

=


c234 0 s234 a4c234 + a3c23 + a2c2
s234 0 −c234 a4s234 + a3s23 + a2s2

0 1 0 0
0 0 0 1

 .
(43)

We set:{
x41 = a4c234 + a3c23 + a2c2,
y41 = a4s234 + a3s23 + a2s2.

(44)
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Rearranging the two equations in Eq. (44),
squaring them and then adding the squares gives
Eq. (45) and Eq. (46):

c3 =
(x41 − a4c234)2 + (y41 − a4s234)2 − a23 − a22

2a3a2
,

(45)

s3 = ±
√

1− c23. (46)

Infer θ3 as Eq (47):

θ3 = arctan2(s3, c3). (47)

Set: {
k1 = a3c3 + a2,

k2 = a3s3.
(48)

From Eq. (44) and Eq. (48), we obtain:{
x41 − a4c234 = k1c2 − k2s2,
y41 − a4s234 = k1s2 + k2c2.

(49)

Set: {
k3 =

√
k21 + k22,

γ = arctan2(k2, k1).
(50)

Based on Eq. (49) and Eq. (50), we obtain
Eq. (51).

cos(γ + θ2) =
x41 − a4c234

k3
,

sin(γ + θ2) =
y41 − a4s234

k3
.

(51)

From Eq. (51), we obtain θ2 ([2] or [7]) as
Eq. (52):

θ2 = arctan2(y41 − a4s234, x41 − a4c234)

− arctan2(k2, k1). (52)

And we have θ4 as Eq. (53):

θ4 = θ234 − θ3 − θ2. (53)

3.3. Trajectory Planning

Links will be moved concurrently and corpo-
rately so that end-e�ector will follow cutting
equation in de�ned duration t.

In Cartesian space, cutting path will be di-
vided into set of points in which the space be-
tween these points is very small and equal ∆p.
Inverse kinematics is used to de�ne joint vari-
ables in joint space corresponding to set of points
in Cartesian space ([8], [9] or [10]).

Joint path planning must ensure the continu-
ity of position, velocity, acceleration and cubic
polynomial is a suitable choice.

Suppose that nth joint rotates angles θi and
θi+1 in durations tk and tk+1 respectively, the
cubic polynomial of the form of nth joint:

θi(t) = ai3t
3 + ai2t

2 + ai1t+ ai0. (54)

Velocity:

θ̇i(t) = 3ai3t
2 + 2ai2t+ ai1. (55)

Parameters of the cubic polynomial must be
de�ned based on constraints so that joint path
satisfy the continuity of position, velocity and
acceleration.

Position constraints:

θi(0) = θk−1, (56)

θi(tk) = θi+1(0) = θk, (57)

θi+1(tk+1) = θk+1. (58)

Velocity constraints:

θ̇i(0) = θ̇k−1, (59)

θ̇i(tk) = θ̇i+1(0) = θ̇k, (60)

θ̇i+1(tk+1) = θ̇k+1. (61)

Acceleration constraints:

θ̈i(tk) = θ̈i+1(0) = θ̈k. (62)

The durations are equal: tk = tk+1 = ∆t,
solving Eq. (56), Eq. (57), Eq. (58), Eq. (59),
Eq. (60), Eq. (61) and Eq. (62), we obtain:

ai3 =
−2(θk − θk−1) + (θ̇k + θ̇k−1)∆t

∆t3
, (63)

ai2 =
6(θk − θk−1)− 2(θ̇k + 2θ̇k−1)∆t

2∆t2
, (64)

ai1 = θ̇k−1, (65)

ai0 = θk−1. (66)
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Plugging Eq. (63), Eq. (64), Eq. (65) and (66)
into Eq. (54) and Eq. (55), we �nd that:

θi(t) =
−2(θk − θk−1) + (θ̇k + θ̇k−1)∆t

∆t3
t3

+
6(θk − θk−1)− 2(θ̇k + 2θ̇k−1)∆t

2∆t2
t2

+ θ̇k−1t+ θk−1, (67)

θ̇i(t) = 3
−2(θk − θk−1) + (θ̇k + θ̇k−1)∆t

∆t3
t2

+ 2
6(θk − θk−1)− 2(θ̇k + 2θ̇k−1)∆t

2∆t2
t

+ θ̇k−1. (68)

4. Simulation and Control

Trajectory and direction were planned in Carte-
sian space. They will be transformed into the
joint space. The robot is controlled in the joint
space so that the end-e�ector follows the trajec-
tory and the expected direction. Control �ow
chart algorithm is given by Fig. 5.

Fig. 5: Control �owchart algorithm.

The robot is drawn by SolidWorks as Fig. 6.
This Robot system is imported into Matlab
Simulink as Fig. 7.

PID transfer function of the �rst order �lter
([11] and [12]) is given by Eq. (69):

V (s)

E(s)
=
Kds+Kp +

Ki

s
τfs+ 1

=

Kd

τf
s2 +

Kp

τf
s+

Ki

τf

s2 +
s

τf

,

(69)

Fig. 6: The 3D system of Robot.

Fig. 7: The Robot system in Matlab Simulink.

where

• V : The output of the controller,

• E: Error between the input value and the
feedback value,

• Kp,Kd,Ki: Proportional gain, derivative
gain, integral gain and

• τf : The time constant of the �rst order �l-
ter.

1
s

1
s

p

iK

d

1
tf

tf

K
tf

K
tf

x&1 x2&x1 x2

V

Er

f

Fig. 8: PID controller with �rst order �lter.
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From Fig. 8, we have:

ẋ1 = − 1

τf
x1 + e, (70)

ẋ2 = x1, (71)

V =
Ki

τf
x2 +

Kp

τf
x1 +

Kd

τf
ẋ1

=

(
Kp

τf
− Kd

τ2f

)
x1 +

Ki

τf
x2 +

Kd

τf
e. (72)

In state space, Eq. (70), Eq. (71) and Eq. (72)
are given by Eq. (73) and Eq. (74):

[
ẋ1
ẋ2

]
=

− 1

τf
0

1 0

[x1
x2

]
+

[
1
0

]
e, (73)

V =

[
Kp

τf
− Kd

τ2f

Ki

τf

] [
x1
x2

]
+
Kd

τf
e. (74)

Set:

X =

[
x1
x2

]
; Ẋ =

[
ẋ1
ẋ2

]
, (75)

A =

− 1

τf
0

1 0

 ; B =

[
1
0

]
, (76)

C =

[
Kp

τf
− Kd

τ2f

Ki

τf

]
; D =

Kd

τf
. (77)

From Eq. (75), Eq. (76) and Eq. (77), we �nd
that:

Ẋ = AX +Be, (78)

V = CX +De. (79)

The simulated results:

The simulation time is the 30 s. Figure. 9 and
Fig. 10 give trajectory and response of six joints
in the joint space.

Figure 11 and Fig. 12 are the error graphs of
six joints in the joint space. In Fig. 11: Since the
static pipe leads to the joint 0 is motionless and
errorless, the maximum error belongs to joints
3, 4 and 5 with a maximum value of 0.04◦. The
best activity is joint 1 with a maximum error
of 0.0075◦. In Fig. 12: Since the end-e�ector
moves on the straight section, joint 1 stays still.
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Fig. 9: Trajectory and response of six joints in the case

of static pipe.
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Fig. 10: Trajectory and response of six joints in the case

of rotary pipe.
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Fig. 11: Joint errors of six joints in the case of static

pipe.
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Fig. 12: Joint errors of six joints in the case of rotary

pipe.

The maximum error belongs to joint 3 with a
value of 0.009◦. The best activity is joint 4 with
a maximum error of 0.0006◦.

Figure 13 and Fig. 14 are the error graphs of
the end-e�ector in the three axes of X−Y −Z in
the Cartesian space corresponding to two cases:
standing and rotating. In Fig. 13: Position error
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Fig. 13: Position errors of the end-e�ector in the case

of static pipe.
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Fig. 14: Position errors of the end-e�ector in the case

of rotary pipe.

ranges from −0.022 to 0.026 mm. In Fig. 14:
Position error ranges from −0.021 to 0.020 mm.

Discussion: The simulated results showed that
the case of a static pipe cutting was not as good
as the case of a rotary pipe cutting.

5. Experiment

Figure 15 is the real robot system. Time to �n-
ishing work of Robot is set to 30 s. Two micro-
controllers will control �ve harmonic driver mo-
tors corresponding to �ve joints of Robot and a
rotary motor. Data obtained from Robot will be
transmitted to the computer.

The experimental results:

Figure 16 and Fig. 17 are the error graphs of
six joints in the joint space. In Fig. 16: The
maximum error belongs to joints 3 and 4; the
error ranges from −0.072◦ to 0.079◦. In Fig. 17:
The maximum error belongs to joints 3 and 4;
the error ranges from −0.058◦ to 0.045◦. These
errors are smaller in Fig. 16.

Figure 18 and Fig. 19 are the error graphs of
the end-e�ector in the three axes of X−Y −Z in
the Cartesian space corresponding to two cases:

Fig. 15: Experimental Robot system.
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Fig. 16: Joint errors of six joints in the case of static

pipe.
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Fig. 17: Joint errors of six joints in the case of rotary

pipe.

standing and rotating. We see that the errors
in the two graphs range from −0.2 to 0.2 mm.
Fig. 18 has a larger error graph and is more os-
cillating than Fig. 19.

Discussion: The experimental results showed
that the case of a rotary pipe cutting was better
than the case of a static pipe cutting, with less
error and less oscillation error.

6. Conclusion

The paper has solved the whole problem: build-
ing the cutting trajectory, solving the inverse
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Fig. 18: Position errors of the end-e�ector in the case

of static pipe.
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Fig. 19: Position errors of the end-e�ector in the case

of rotary pipe.

kinematics, planning the trajectory of motion,
simulating and controlling Robot in reality.
More importantly, this paper has developed two
di�erent pipe cutting solutions, and gives the
comparative results between the two ones in
both simulation and experiment. These com-
parative results show that method of the end-
e�ector moves on a straight line while the rotat-
ing pipe to create the cutting path and direction
for better than method of the end-e�ector moves
on cutting path and direction while the station-
ary pipe. This conclusion is an important note
that we should design the robot arm and the
pipe coordinate movement together, bring the
best e�ect.
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