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Abstract. This paper presents an observer
output-feedback load frequency control for power
systems with uncertain parameters and time
delays in communication networks. First, an
observer-based controller is designed dependent
on only the observer output. Therefore, the
conservatism is reduced and the robustness is
enhanced. It also both save computing time
and make the control method simpler. Second,
the stability of both the observer error system
and closed-loop control system is proven via
the Lyapunov direct method. Moreover, simu-
lation results show that the proposed observer
output-feedback load frequency controller results
in shortening the frequency's transient response,
maintaining required control quality in the
wider operating range, and being more robust
to uncertainties as compared to some existing
control methods.
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I. INTRODUCTION

In a power system, both active and reactive
power demands are never steady and they con-
tinually change with the rising or falling trend.
Steam input to turbo-generators or water input
to hydro-generators must, therefore, be contin-
uously regulated to match the active power de-
mand, failing which the machine speed will vary
with consequent change in frequency and it may
be highly undesirable. Therefore, it is necessary
to design a load frequency control (LFC) sys-
tem, which deals with the control of loading of
the generator depending on the frequency.

Frequency control is constructed by three lev-
els: primary, secondary, and tertiary control
[1]. The objective of primary control is to re-
establish a balance between generation and de-
mand within the synchronous area at a fre-
quency di�erent from the nominal value. Pri-
mary control responds within few seconds. Un-
der normal operation, the primary control can
reduce small frequency deviation, but for larger
deviation, secondary control is required. Sec-
ondary control is used to steer frequency devia-
tion to zero. Following a serious situation, if the
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frequency is rapidly dropped to a critical value,
tertiary control may be required to reestablish
the nominal frequency.

In the literature, the load frequency con-
trollers commonly used in the industry are a pro-
portional�integral (PI) type or a PI�di�erential
(PID) type [2]�[4]. This is because of their sim-
ple structure and possibility of their online tun-
ing based on trial-and error approaches. Re-
cently developed approaches in LFC have been
proven to be more robust using some new control
techniques. Robust control [5]�[10], pole shift-
ing [11]-[13], model predictive algorithms control
[14] [15], genetic algorithms [16] [17], robust lin-
ear matrix inequality control [18]-[20], active dis-
turbance rejection control [21]-[23]. The above
approaches are achieved under that power sys-
tem is operated with all the parameters on their
nominal values without considering parameter
uncertainties. In real power system, parameter
uncertainties always exist because of the vari-
ations of internal and external conditions. In
order to solve this problem, the LFC of power
system with parameter uncertainties using slid-
ing mode control technique is developed in [24]-
[28]. The solutions proposed in previous stud-
ies necessarily require that all state variables are
available for measurements. However, in many
interconnected power system, the state variables
are not accessible for direct measurement or the
number of measuring devices is limited. In this
situation, there are two approaches in design-
ing the load frequency controllers for intercon-
nected power system. One is to use state ob-
servers to provide an estimate of the unmea-
sured states [29]-[31]. The other is to utilize
the output-based controllers, such as static gain
and dynamic compensator types [20], [32]. How-
ever, these approaches given in [29]-[32] can not
be applied for the interconnected power system
with time delayed and parametric uncertainties.
Motivated by the previous works, in this pa-
per, a new observer output-feedback load fre-
quency controller is proposed in order to con-
trol the frequency of a two-area interconnected
power system with time delayed and parametric
uncertainties. The observer and integral control
are employed to improve power-system perfor-
mance. The main contributions of this paper
are as follows.

• The proposed controller design is dependent
on only the observer output (u = -Kŷ(t)).
Therefore, the conservatism is reduced and
the robustness is enhanced. It also both
save computing time and make the control
method simpler.

• The stability of both the observer error
system and closed-loop control system is
proven via the Lyapunov direct method.

• Simulation results show that the proposed
observer output-feedback load frequency
controller results in shortening the fre-
quency's transient response, maintaining
required control quality in the wider operat-
ing range, and being more robust to uncer-
tainties as compared to some existing con-
trol methods.

II. TWO-AREA INTERCONNECTED

POWER SYSTEM

The load frequency control (LFC) system in-
vestigated is composed of an interconnection of
a two-area power system[24]-[26]. The control
block diagram of the linearized system model
is shown in Fig. 1. For the sake of conve-
nience, each control area can be represented by
an equivalent turbine, generator and governor
system. The tie line power must be accounted
for the incremental power balance equation of
each area. The balance between connected con-
trol areas is achieved by detecting the frequency
and tie-line power deviations in order to gen-
erate the area control error (ACE). Under this
circumstance, three levels of frequency control
attempt to remove the frequency and tie-line
power deviations. The ACE for each control
area can be expressed as a linear combination of
tie-line power change and frequency deviation:

ACE1 = −∆Ptie −B1∆f1 (1)

and
ACE2 = −∆Ptie −B2∆f2 (2)

The dynamic equations of two area of a multi-
area power system are as follows:

∆ẊG1 =
−1

Tg1
∆Xg1 +

−1

R1Tg1
∆f1

+
1

Tg1
∆E1 +

1

Tg1
u1 (3)
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Fig. 1: Two control areas interconnected through a sin-
gle tie line

∆ṖT1 =
1

Tt1
∆Xg1 +

−1

Tt1
∆Pt1

∆ḟ1 =
KP1

Tp1
∆Pt1 +

−1

Tp1
∆f1

− KP1

Tp1
∆Ptie −

KP1

Tp1
∆Pd1

∆Ṗtie = Ps(∆f1 −∆f2)

∆Ẋg2 =
−1

Tg2
∆Xg2 +

−1

R2Tg2
∆f2

+
1

Tg2
∆E2 +

1

Tg2
u2

∆ṖT2 =
1

Tt2
∆Xg2 +

−1

Tt2
∆Pt2

∆ḟ2 =
KP2

Tp2
∆Pt2 +

−1

Tp2
∆f2

+
KP2

Tp2
∆Ptie −

KP2

Tp2
∆Pd2

∆Ė1 = −KE1[B1∆f1 + ∆Ptie]

∆Ė2 = −KE2[B2∆f2 + ∆Ptie]

where ∆fi(t) is the incremental change in fre-
quency for ith area subsystem (Hz), ∆Pti(t)

is the incremental change in generator output
power for the ith area subsystem (p.u.MW),
∆Xgi(t) is the incremental change in gover-
nor valve position for the ith area subsystem
(p.u.MW), ∆Pdi(t) is the incremental change in
load demand for the ith area, ∆Ptie(t) is tie-line
power deviation, ∆Ei(t) is the integral control,
Tti is the governor time constant for the ith area
subsystem (s), Tti is the turbine time constant
for the ith area subsystem (s), TPi is the plant
model time constant for the ith area subsystem
(s), Ps is the synchronizing coe�cient between
the ith and j th area subsystem (p.u.MW), KPi
is the plant gain for the ith area subsystem, KEi
is the integral control gain, Bi is the bias con-
stant for the ith area, Ri is the speed regulation
due to governor action for the ith area subsys-
tem (Hz p.u. MW−1), ACEi is the area control
error of the ith area. The two-area power system
can be written in state-space form as follows:

ẋ = Āx+ B̄u+ Fd

where
x=[∆Xg1 ∆Pt1 ∆f1 ∆Ptie ∆Xg2 ∆Pt2 ∆f2 ∆E1

∆E2]
T is the state variables, u=[u1 u2]

T is the
control input. The system matrices for the
two-area interconnected power system are given
as below (equations (4)-(5)), and ∆P=[∆Pd1
∆Pd2]

T .

The matrix form of system dynamic model
with parameter uncertainties is as

ẋ(t) = (A+ ∆A)x(t) +Bu(t) + F∆P (6)

and

y(t) = Cx(t) =

[
ACE1

ACE2

]
(7)

where A∈Rm×n and B∈Rn×m are matrices of
the nominal parameters; ∆A represent paramet-
ric uncertainties; y(t) is output and

C =

[
0 0 −B1 −1 0 0 0 0 0
0 0 0 1 0 0 −B2 0 0

]
.

To guarantee the asymptotic stability of overall
system, the observer output-feedback controller
is designed based on the following assumptions.
Assumption 1: Assuming that the incremental
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Ā =



−1

Tg1
0

−1

Tg1R1
0 0 0 0

1

Tg1
0

1

Tt1

−1

Tt1
0 0 0 0 0 0 0

0
Kp1

Tp1

−1

Tp1

−Kp1

Tp1
0 0 0 0 0

0 0 Ps 0 0 0 −Ps 0 0

0 0 0 0
−1

Tg2
0

−1

Tg2R2
0

1

Tg2

0 0 0 0
1

Tt2

−1

Tt2
0 0 0

0 0 0
Kp2

Tp2
0

Kp2

Tp2

−1

Tp2
0 0

0 0 −B1KE1 −KE1 0 0 0 0 0
0 0 0 KE2 0 0 −B2KE2 0 0



, (4)

B̄ =


1

Tg1
0 0 0 0 0 0 0 0

0 0 0 0
1

Tg2
0 0 0 0


T

, F =

0 0
−Kp1

Tp1
0 0 0 0 0

0 0 0 0 0 0
−Kp2

Tp2
0 0


T

(5)

change in load demand ∆P is bounded and there
exist a constant ε>0 such that∥∥∆P

∥∥ ≤ ε (8)

Assumption 2: Assuming that parametric un-
certainties ∆A satisfy the following condition

∆A = MH(t)N,
∥∥∆H(t)

∥∥ ≤ 1

where M and N are known constant real matri-
ces with appropriate dimensions; H(t) is a norm-
bounded unknown matrix.
The main objective of this paper is to develop
an observer output-feedback controller such that
the stability of both the observer error system
and closed-loop control system is asymptotically
stable in spite of the existence of the parametric
uncertainties.

III.DESIGNING OBSERVER OUT-

PUT FEEDBACK LOAD FREQUENCY

CONTROLLER

In practice, the load frequency control (LFC)
controller structure is traditionally a PI type
controller using the ACE as its input. In this
section, the output-feedback control design algo-
rithm for such a load�frequency controller using
the observer technique is presented. The pro-

posed design is to minimize the frequency de-
viations and the tie-line power exchanges. A
suitable dynamic observer-based control for the
system (6)- (7) is given by

˙̂x(t) = Ax̂(t) +Bu(t) + L[t(t)− ŷ(t)] (9)

ŷ(t) = Cx̂(t) (10)

u(t) = −KCx̂(t) = −Kŷ(t) (11)

where x̂∈Rn is the estimation of x (t), ŷ(t)∈Rp is
the observer output, K∈Rm×n is the controller
gain, and L∈Rn×p is the observer gain. By equa-
tions (9)-(11), equation (6) can be rewritten as

ẋ(t) = (A−BKC)x(t) + ∆Ax(t)

+BKCe(t) + F∆P (12)

and

ė(t) = ẋ(t)− ˙̂x(t)

= (A− LC)e(t) + ∆Ax(t) + F∆P (13)

where e(t)=x(t)-x̂(t) is the estimated error of
system. From equation (12)-(13) and we have[
ẋ(t)
ė(t)

]
=

[
A−BKC + ∆A BKC

∆A A− LC

] [
x(t)
e(t)

]
+

[
F∆P
F∆P

]
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Now we are in position to derive su�cient condi-
tions in terms of linear matrix inequalities (LMI)
such that the two-area interconnected power sys-
tem (6) is robustly stabilizable. Let us begin
with considering the following LMI:[

Ω + α5N
TN P1BKC

(BKC)TP1 Ξ

]
< 0 (14)

where P1∈Rn×n>0, P2∈Rn×n>0,
Ω = P1(A - BKC) + (A-BKC)T + α4P1FF

TP1

+ α2P1MMTP1,
Ξ = P2(A - LC) + (A - LC)TP2 + α3P2FF

TP2

+ α1P2MMTP2

the scalar α1>0, α2>0, α3>0 and α4>0. Then,
we can establish the following theorem.

Theorem 1: The system is bounded stable by
the observer output-feedback controller - pro-
vided that there exist some positive constants
α1>0, α2>0, α3>0 and α4>0, two positive def-
inite symmetric matrices P1∈Rn×n, P2∈Rn×n
and matrices K∈Rm×n, L∈Rn×p such that[

Ω + α5N
TN P1BKC

(BKC)TP1 Ξ

]
< 0

where
Ω = P1(A - BKC) + (A-BKC)T + α4P1FF

TP1

+ α2P1MMTP1,
Ξ = P2(A - LC) + (A - LC)TP2 + α3P2FF

TP2

+ α1P2MMTP2

Before proving Theorem 1, we recall the follow-
ing Lemmas:
Lemma 1 [34]: Let X and Y are real matrices
of suitable dimension then, for any scalar ϕ>0,
the following matrix inequality holds:

XY + Y TXT ≤ ϕ−1XXT + ϕY TY.

Lemma 2 [34]: Let X,Y and F be matrices of
compatible dimension then

XH(t)Y + Y TH(T )(t)XT ≤ ϕ−1XXT + ϕY TY.

for any H(t) satisfying ||H(t)|| and a scalar ϕ>0.
Proof Theorem 1: Let us choose the Lya-
punov functional as

V (x(t), e(t)) =

[
x(t)

e(t)

]T [
P1 0

0 P2

][
x(t)

e(t)

]
(15)

where P1 ∈ Rn×n > 0 and P2 ∈ Rn×n > 0.
Then, we have

V̇ (x(t), e(t)) =

[
x(t)

e(t)

]T
{[

P1 0

0 P2

] [
A−BKC + ∆A BKC

∆A A− LC

]

+

[
A−BKC + ∆A BKC

∆A A− LC

]T [
P1 0

0 P2

]} [
x(t)

e(t)

]

+

[
x(t)

e(t)

]T [
P1 0

0 P2

][
F∆P

F∆P

]
+

[
F∆P

F∆P

]T [
P1 0

0 P2

][
x(t)

e(t)

]

+

[
x(t)

e(t)

]T {[
0

P2M

]
H(t) [N 0] +

[
NT

0

]
HT (t)

[
0 MTP2

]

+

[
P1M

0

]
H(t) [N 0] +

[
NT

0

]
HT (t)

[
MTP1 0

]}[x(t)

e(t)

]

+

[
x(t)

e(t)

]T [
P1F∆P

P2F∆P

]
+
[
(F∆P )

T
P1 (F∆P )TP2

] [x(t)

e(t)

]

=

[
x(t)

e(t)

]T [
P1(A−BKC) + (A−BKC)TP1 P1BKC

(BKC)TP1 P2(A− LC) + (A− LC)TP2

]
[
x(t)

e(t)

]

+

[
x(t)

e(t)

]T {[
0

P2M

]
H(t) [N 0] +

[
NT

0

]
HT (t)

[
0 MTP2

]
+

[
P1M

0

]
H(t) [N 0] +

[
NT

0

]
HT (t)

[
MTP1 0

]}[x(t)

e(t)

]
+ eT (t)P2F∆P + ∆PTFTP2e(t) + xT (t)P1F∆P

+ ∆PTFTP1x(t). (16)

Applying Lemma 1 and Lemma 2 to equation
(16), we obtain

V̇ (x(t), e(t)) 6

[
x(t)

e(t)

]T {
α1

[
0

P2M

] [
0 MTP2

]
+ α2

[
P1M

0

] [
MTP1 0

]
+ α5

[
NT

0

]
[N 0]
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+

[
P1(A−BKC) + (A−BKC)TP1 P1BKC

(BKC)TP1 P2(A− LC) + (A− LC)TP2

]}
[
x(t)

e(t)

]

+ α3e
T (t)P2FF

TP2e(t) + α4x
TP1FF

TP1x

+ τ∆P∆PT

=

[
x(t)

e(t)

]T [
Ω + α5N

TN P1BKC

(BKC)TP1 Ξ

][
x(t)

e(t)

]
+ τ‖∆P‖2. (17)

where τ=α3
−1+α4

−1, α5=α1
−1+α2

−1

Ω = P1(A - BKC) + (A-BKC)T + α4P1FF
TP1

+ α2P1MMTP1,
and
Ξ = P2(A - LC) + (A - LC)TP2 + α3P2FF

TP2

+ α1P2MMTP2

Letting

Π = −
[
Ω + α5N

TN1 P1BKC
(BKC)TP1 Ξ

]
> 0,

the equation (17) yields

V̇ (x(t), e(t)) ≤ −λmin(Π)

∥∥∥∥[x(t)
e(t)

]∥∥∥∥2 + µ

where the constant value µ=ε2τ and the eigen-
value µmin(Π)>0. Using the results of [23], [28],
we have V̇ (x(t), e(t)) < 0 with∥∥∥∥[x(t)

e(t)

]∥∥∥∥ >√ µ

λmin(Π)

Hence, the system is bounded stable.

Remark 1: The observer based load frequency
control for interconnected power system can be
seen in [21]-[23] and [26]-[27]. However, these
approaches only considered the estimation error
of the observer based full state feedback control,
which increases the computation of burden due
to the associated closed-loop system, possessing
a dynamical order double that of the actual sys-
tems.
Remark 2: In this approach, we use the out-
put estimate to substitute the original state to
construct a direct output feedback controller to
solve the load frequency control of power system.

Therefore, the conservatism is reduced and the
robustness is enhanced. It also both save com-
puting time and make the control method sim-
pler.

IV. EXTENSION ON DESIGNING

OBSERVER OUTPUT FOR LOAD FRE-

QUENCY CONTROL WITH COMMU-

NICATION DELAYS

The linearized model of the governor valve
position of a two-area power system with time
delayed would be as [19], [28], [33]

∆ẊG1(t) =
−∆Xg1(t)

Tg1
+
−∆f1(t)

R1Tg1

+
∆E1(t− d)

Tg1
+
u1(t)

Tg1

and

∆Ẋg2(t) =
−∆Xg2(t)

Tg2
+
−∆f2(t)

R2Tg2

+
∆E2(t− d)

Tg2
+
u2(t)

Tg2

The governor gets a delayed ACE signal, and the
third term represents the impact of the former
state. Thus, the matrix form of system dynamic
model with communication delays can be rewrit-
ten as

ẋ(t) = (A+ ∆A)x(t) +Adx(t− d)

+Bu+ F∆P (18)

and

y(t) = Cx(t) =

[
ACE1

ACE2

]
(19)

where the term x(t−d) represents delayed states.
The known function d = d(t) is the time-
varying delay which is assumed to be continu-
ous, non-negative and bounded in R+, that is,
d̄ = supt∈R+d(t) <∞. The initial conditions for
the system is given by x(t) = φ(t), (t ∈ [−d, 0])
where φ(t) are continuous in [−d, 0] and the de-
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layed matrix

Ad =



0 0 0 0 0 0 0
1

Tg1
0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1

Tg2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


.

A dynamic observer-based output feedback con-
trol for the delayed system (18)-(19) is given by

˙̂x(t) = Ax̂(t) +Adx̂(t− d)

+Bu(t) + L[y(t)− ŷ(t)] (20)

ŷ(t) = Cx̂(t) (21)

u(t) = −KCx̂(t) = −Kŷ(t) (22)

where x̂(t−d) ∈ Rn is the estimation of x(t−d),
ŷ(t) ∈ Rp is the observer output, K ∈ Rm×n is
the controller gain, and L ∈ Rn×p is the observer
gain. According to equations (20)-(22), equation
(18) can be rewritten as

ẋ(t) =(A−BKC)x(t) + ∆Ax+Adx(t− d)

+BKCe(t) +D∆P (23)

and

ė(t) =ẋ(t)− ˙̂x(t)

= (A− LC)e(t) +Ade(t− d)

+ ∆Ax+ F∆P (24)

where e(t) = x(t)− x̂(t) is the estimated error of
system. Using equations (23)-(24) and we obtain[
ẋ(t)
ė(t)

]
=

[
A−BKC + ∆A BKC

∆A A− LC

] [
x(t)
e(t)

]
+

[
Ad 0
0 Ad

] [
x(t− d)
e(t− d)

]
+

[
F∆P
F∆P

]
(25)

Then, we can establish the following theorem.
Theorem 2: The delayed system is bounded
stable by the observer-based output feedback
controller (20)-(22) provided that there exist
some positive constants α1>0, α2>0, α3>0 and

α4>0, four positive de�nite symmetric matrices
P3 ∈ R×n, P4 ∈ Rn×n, P5 ∈ Rn×n, P6 ∈ Rn×n
and matrices , K ∈ Rm×n, and L ∈ Rn×p such
that
[

Ω P3BKC
(BKC)TP3 Ξ2

] [
P3Ad 0

0 P4Ad

]
[
ATd P3 0

0 ATd P4

]
−
[
P5 0
0 P6

]
 < 0

where

Ω =P3(A−BKC) + (A−BKC)TP3

+ α4P3FF
TP3 + α5N

TN

+ α2P3MMTP3 + P5

and

Ξ =P4(A− LC) + (A− LC)TP4+

α3P4FF
TP4 + α1P4MMTP4 + P6

Proof Theorem 2: We �rst construct the fol-
lowing the Lyapunov functional candidate

V (x(t), e(t)) =

[
x(t)
e(t)

]T [
P3 0
0 P4

] [
x(t)
e(t)

]
+

∫ t

t−τ

[
x(s)
e(s)

]T [
P5 0
0 P6

] [
x(s)
e(s)

]
ds

where P3 ∈ R×n > 0, P4 ∈ Rn×n > 0, P5 ∈
Rn×n > 0, P6 ∈ Rn×n > 0. Then, we get

V̇ (x, e) =

[
x(t)

e(t)

]T [
P3 0

0 P4

][
ẋ(t)

ė(t)

]

+

[
ẋ(t)

ė(t)

]T [
P3 0

0 P4

][
x(t)

e(t)

]

+

[
x(t)

e(t)

]T [
P5 0

0 P6

][
x(t)

e(t)

]

−

[
x(t− d)

e(t− d)

]T [
P5 0

0 P6

][
x(t− d)

e(t− d)

]

=

[
x(t)

e(t)

]T {[
P3(A−BKC) + (A−BKC)TP3 P3BKC

(BKC)TP3 P4(A− LC) + (A− LC)TP4

]

+

[
0

P4M

]
H(t) [N 0] +

[
NT

0

]
HT (t)

[
0 MTP4

]
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+

[
P3M

0

]
H(t) [N 0] +

[
NT

0

]
HT (t)

[
MTP3 0

]}
(26)[

x(t)

e(t)

]

+

[
x(t)

e(t)

]T [
P3Ad 0

0 PAd

][
x(t− d)

e(t− d)

]

+

[
x(t− d)

e(t− d)

]T [
ATd P3 0

0 ATd P

][
x(t)

e(t)

]

+

[
x(t)

e(t)

]T [
P5 0

0 P6

][
x(t)

e(t)

]

−

[
x(t− d)

e(t− d)

]T [
P5 0

0 P6

][
x(t− d)

e(t− d)

]
+ eT (t)P2F∆P + ∆PTFTP2e(t)

+ xTP1F∆P + ∆PTFTP1x. (27)

Applying Lemma 1 and Lemma 2 to equation
(27), we achieve

V̇ (x(t), e(t)) 6

[
x(t)

e(t)

]T {
ε1

[
0

P4M

] [
0 MTP4

]
+ ε5

[
NT

0

]
[N 0] + ε2

[
P3M

0

] [
MTP3 0

]
+

[
P3(A−BKC) + (A−BKC)TP3 P3BKC

(BKC)TP3 P4(A− LC) + (A− LC)TP4

]}
[
x(t)

e(t)

]

+

[
x(t)

e(t)

]T [
P3Ad 0

0 P4Ad

][
x(t− d)

e(t− d)

]

+

[
x(t− d)

e(t− d)

]T [
ATd P3 0

0 ATd P4

][
x(t)

e(t)

]
+ α3e

T (t)P4FF
TP4e(t)

+ α4x
TP3FF

TP3x+ τ∆P∆PT

+

[
x(t)

e(t)

]T [
P5 0

0 P6

][
x(t)

e(t)

]

−

[
x(t− d)

e(t− d)

]T [
P5 0

0 P6

][
x(t− d)

e(t− d)

]

= χ(t)T


[

Ω P3BKC

(BKC)TP3 Ξ2

] [
P3Ad 0

0 P4Ad

]
[
ATd P3 0

0 ATd P4

]
-

[
P5 0

0 P6

]
χ(t)

+ τ‖∆P‖2, (28)

where

χ(t) =
[
xT (t)eT (t)xT (t− d)eT (t− d)

]T
τ = α−13 + α−14 , α5 = α−11 + α−12

Ω = P3(A−BKC) + (A−BKC)TP3

+ α4P3FF
TP3 + α5N

TN

+ α2P3MMTP3 + P5

and

Ξ = P4(A− LC) + (A− LC)TP4

+ α3P4FF
TP4

+ α1P4MMTP4 + P6

Letting Π =

−


[

Ω P3BKC
(BKC)TP3 Ξ

] [
P3Ad 0

0 P4Ad

]
[
ATd P3 0

0 ATd P4

]
−
[
P5 0
0 P6

]
 > 0,

the equation (28) yields

V (x(t), e(t)) ≤ −λmin(Π)
∥∥χ(t)

∥∥2 + µ

where the constant value µ = ε2τ and the eigen-
value λmin(Π) > 0. Using the results of [23],
[28], we have V̇ (x(t), e(t)) < 0 with

||χ(t)|| >
√

µ

λmin(Π)
.

Hence, the delayed system is bounded stable.
Remark 3: LMI-based load frequency control
for power systems with communication delays
can be seen in papers [18]-[20]. However, the
approaches given in [18]-[19] need to �nd the so-
lution of two LMI equations. In papers [20] the
number of matrix variables in LMI equations are
seven and the number of LMI equations are two.
Thus, the proposed approach o�ers less number
of matrix variables in LMI equations making it
easier to �nd a feasible solution.
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Remark 4: Output feedback load frequency
control for power systems can be seen in pa-
pers [29]-[32]. Unlike the previous approaches,
this study can be applied for the interconnected
power system with time delayed and parametric
uncertainties.

V. SIMULATION RESULTS

In order to evaluate the performance of the
proposed observer output-feedback controller,
the simulation results are compared with
those of methods given in [10] and [35]. The
investigated system parameters are given as
follows [10] and [35]: speed regulation R1=0.05
and R2=0.0625 ; Frequency-sensitive load co-
e�cient D1=0.6 and D2=0.9 ; Frequency bias
factors B1=20.6 and B2=16.9 ; Inertia constant
H1=5 and H2=4 ; Governor time constant
Tg1=0.2 sec and Tg2=0.3 sec; Turbine time
constant Tt1=0.5 sec and Tt2=0.6 sec; Integral
control gain KE1=KE2=0.3 ; the synchronizing
coe�cient between two areas Ps=2. The nomi-
nal plant models for the two areas are as follows:

Case 1: In order to test the robustness of the
proposed observer output-feedback controller,
the system with nominal parameters is used
(∆A=MH(t)N=0) and the step load distur-
bances are applied as + 0.015 p.u. for area 1
at 5 s, +0.015 p.u. for area 2 at 5 s. By solving
LMI it is easy to verify that conditions in The-
orem 1 are satis�ed with positive matrices (see
Equations (29)-(31)) and the scalars α3=0.1 and
α4=1.1.

Fig. 2: Frequency deviation of area-1 (Case 1)

The simulation results of ∆f1(t), ∆Ptie(t),
∆f2(t), ACE1 and ACE2 using the proposed
controller are shown in Fig. 2 to Fig. 6. It is

Fig. 3: Frequency deviation of area-1 (Case 1)

Fig. 4: Tie-line power deviation (Case 1)

Fig. 5: ACE in control area 1 (Case 1)

observed that the frequency deviation, the tie-
line power deviation and the area control error
converge to zero. The simulation results indi-
cate that the controller given in [10], [35] results
in considerably larger oscillating overshoots and
larger transient frequency deviation in both
area 1 and area 2, comparing with the results
from the proposed observer output-feedback
controller.
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A =



−5 0 −100 0 0 0 0 5 0
2 −2 0 0 0 0 0 2 0
0 0.1 −0.06 −0.1 0 0 0 0 0
0 0 2 0 0 0 −2 0 0
0 0 0 0 −3.33 0 −53.33 0 −3.33
0 0 0 0 1.667 −1.667 0 0 0
0 0 0 0.125 0 0.125 −0.115 0 0
0 0 6.18 −0.3 0 0 0 0 0
0 0 0 0.3 0 0 −5.7 0 0


,

B =



5 0
0 0
0 0
0 0
0 3.333
0 0
0 0
0 0
0 0


, F =



0 0
0 0
−0.1 0

0 0
0 0
0 0
0 −0.125
0 0
0 0


, C =



0 0
0 0

−20.6 0
−1 1
0 0
0 0
0 −16, 9
0 0
0 0



T

.

Fig. 6: ACE in control area 2 (Case 1)

Case 2: In Case 1, the two-area power system
is operated with all the parameters on their
nominal values without considering parameter
uncertainties. In real power system, parame-
ter uncertainties always exist because of the
variations of internal and external conditions.
In this case, we study the LFC problem of the
two-area power system with load changes and
parameter uncertainties by using the proposed
observer output-feedback controller. The uncer-
tain parameters in the two-area power system
are assumed to satisfy ∆A=MH(t)N with
M=I, H(t)=sin(t) and N=0.5I. The step load

disturbances are applied as + 0.03 p.u. for area
1 at 5 s, -0.03 p.u. for area 2 at 10 s. By solving
LMI it is easy to verify that conditions in
Theorem 1 are satis�ed with positive matrices
(see Equations (32)-(34)) and the scalars α1=5,
α2=5, α3=0.1, α4=1.1 and α5=0.4.

The simulation results of ∆f1(t), ∆Ptie(t),

Fig. 7: Frequency deviation of area-1 (Case 2)

∆f2(t), ACE1 and ACE2 using the proposed
controller are shown in Fig. 7 to Fig. 11. From
Fig. 7 to Fig. 11, it can be found that the
designed observer output-feedback controller
stabilizes the LFC system even when the
uncertainties exist, which shows the robustness
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P1 =



1.02 −0.26 11.8 −0.04 −0.88 0.48 −4.41 −0.96 0.31
−0.26 1.04 2.11 1.67 0.05 −0.73 −0.8 −1.09 0.21
11.8 2.11 239 1.33 −6.18 −2.17 −10.0 −22.5 6.73
−0.04 1.6 1.33 39.4 −0.16 −2.66 1.18 9.31 −8.6
−0.88 0.05 −6.18 −0.16 2.13 −1.10 17.4 0.75 −1.19
0.48 −0.73 −2.17 −2.66 −1.1 2.24 −6.23 0.48 −1.45
−4.41 −0.8 −10.0 1.18 17.4 −6.23 194 4.87 −17.9
−0.96 −1.09 −22.5 9.31 0.75 −0.48 4.87 9.17 −1.39
0.31 0.21 6.73 −8.63 −1.19 −1.45 −17.9 −1.39 9.99


, (29)

P2 =



100 −38.7 −8.88 −27, 6 20.5 8.14 −0.43 −6.11 −29.3
−38.7 250 15.1 −169 18.3 47.8 −8.47 −210 −63.5
−8.88 15.1 980 37.3 6.12 −10.8 −118 −30.8 11.1
−27.6 −169 37.3 414 52.6 113 −23.9 202 −190
20.5 18.3 6.12 52.6 127 −30.4 −5.73 −38.3 −96.7
8.14 47.8 −10.8 113 −30.4 176 26.4 −50.6 −166
−0.42 −8.47 −118 −23.9 −5.73 26.4 986 11.4 −58.5
−61.1 −210 −30.8 202 −38.3 −50.6 11.4 272 84.8
−29.3 −63.5 11.1 −190 −96.7 −166 −58.5 84.8 291


(30)

L = 103



0.6543 −1.5006
0.7380 −1.6966
−0.0345 0.0771
0.7146 −1.5866
−0.6277 1.3789
−0.7390 1.6221
0.0424 −0.0949
−0.0753 0.1093
0.0955 −0.2298


,K =

[
0.000001 −0.07
−0.061 0.00001

]
(31)

Fig. 8: Frequency deviation of area-2 (Case 2)

of controller against parameter uncertainties.

Case 3: As the time delay will degrade the
dynamic performance and cause instability of

Fig. 9: Tie-line power deviation (Case 2)

augmented power system. In this case, we
analyze the stability of two-area LFC schemes
with time delays using the proposed observer
output-feedback controller. The delayed time
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P1 =



0.90 −0.46 10.5 −0.17 −0.56 0.36 −1.74 −0.51 0.20
−0.42 0.36 −4.4 0.12 0.15 −0.2 −0.39 −0.03 0.04
10.5 −4.4 146.3 −2.03 −3.86 1.64 6.89 −7.62 2.21
−0.17 0.12 −2.03 2.52 0.14 −0.15 0.92 0.7 −0.78
−0.56 0.15 −3.86 0.14 1.14 −0.71 9.08 0.42 −0.5
0.36 −0.20 −1.64 −0.15 −0.71 0.72 −5.06 −0.20 −0.16
−1.74 −039 6.89 0.92 9.08 −5.06 93.04 2.18 −5.75
−0.51 −0.03 −7.62 0.7 0.42 −0.20 2.18 1.41 −0.18
0.20 0.04 2.21 −0.77 −0.50 −0.16 −5.75 −0.18 91.83


, (32)

P2 =



73.7 −19.8 2.77 43.3 12.2 −3.21 −2.86 −54.0 −9.05
−19.8 19.3 −2.02 3.11 −0.42 4.78 0.15 0.59 −4.30
2.77 −2.02 408 20.3 −7.99 4.29 −71.4 −2.0 4.09
−43.3 3.11 20.3 65.0 21.9 −0.2 −27.9 40.1 −21.5
12.24 −0.42 −7.99 21.9 46.0 −10.0 9.50 −11.8 −35.3
−3.21 4.78 4.29 −0.2 −10.0 9.71 −8.16 −1.40 −0.19
−2.86 0.15 −71.4 −27.9 −9.5 −8.16 467.4 3.1 −3.76
−54.0 0.59 −2.0 40.1 −11.8 −1.40 3.16 53.4 13.2
−9.05 −4.3 4.09 −21.5 −35.3 −0.19 −3.79 13.2 35.7


(33)

L = 103



0.6543 −1.5006
0.7380 −1.6966
−0.0345 0.0771
0.7146 −1.5866
−0.6277 1.3789
−0.7390 1.6221
0.0424 −0.0949
−0.0753 0.1093
0.0955 −0.2298


,K =

[
0.000001 −0.07
−0.061 0.00001

]
(34)

Fig. 10: ACE in control area 1 (Case 2)

is chosen to be as d=d(t)=0.1s. The step load
disturbances are applied as + 0.02 p.u. for area
1 at 5 s, +0.02 p.u. for area 2 at 10 s. The
uncertain parameters in the two-area power

Fig. 11: ACE in control area 2 (Case 2)

system are the same with Case 2.
From Fig. 12 to Fig. 16, it is obvious that

time delays have e�ected the closed-loop system
performance, however, in spite of this, the
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Fig. 12: Frequency deviation of area-1 (Case 3)

Fig. 13: Frequency deviation of area-2 (Case 3)

Fig. 14: Tie-line power deviation (Case 3)

system is still stable and that the steady-state
values of frequency deviation and tie-line power
deviation still converge to zero. Remark 5:
The proposed observer output-feedback load
frequency controller results in shortening the
frequency's transient response, maintaining
required control quality in the wider operating
range, and being more robust to uncertainties
as compared to the methods given in [10] and
[35].

Fig. 15: ACE in control area 1 (Case 3)

Fig. 16: ACE in control area 2 (Case 3)

VI. CONCLUSION

In this paper, the observer output-feedback
controller is proposed in order to control the fre-
quency of a two-area interconnected power sys-
tem. The observer and integral control are em-
ployed to improve power-system performance.
The proposed controller design is dependent
on only the observer output. Therefore, the
conservatism is reduced and the robustness is
enhanced. It also both save computing time
and make the control method simpler. More-
over, simulation results show that the proposed
controller ensures better disturbance rejection,
maintains required control quality in the wide
range of operating conditions, shortens the fre-
quency's transient response avoiding the over-
shoot and is more robust to system uncertain-
ties.
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