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Abstract. The paper describes a technique for
stability analysis of proportional-integral (PI)
controller in linear continuous-time interval
control systems. The stability conditions of
Kharitonov's theorem together with related cri-
terions, such as Routh-Hurwitz criterion for
continuous-time systems, bring out sets of poly-
nomial inequalities. The sets are very di�cult
to solve directly, especially in case of high-order
systems. Direct technique was used for stability
analysis without solving polynomial inequalities.
Solving polynomial equation directly makes its
computing speed low. In the paper, a set theory-
based technique is proposed for �nding robust
stability range of PI controller without solving
any Kharitonov polynomials directly. Computa-
tion results con�rm expected computing speed of
the proposed technique.
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1. Introduction

Stability analysis and design of controllers for
multiple model or uncertain model systems re-
quire many complicated methods [1]-[4]. For
linear continuous-time interval control systems
which are linear continuous-time control systems
with interval parameters, robust stability anal-
ysis is reduced by using Kharitonov's theorem
[5]. The theorem provides an easy-implementing
necessary and su�cient condition for Hurwitz
stability of entire family of a set of polynomi-
als - called interval polynomials [6]. In case
of continuous-time systems, checking stability of
the family is replaced by only checking stability
of 4 or 8 polynomials in case of real-coe�cient
polynomials or complex-coe�cient polynomials.
In case of discrete-time systems, number of poly-
nomials that must be checked for Hurwitz sta-
bility increases with system order and can be
expressed as a sum of Euler functions [7].

Most of feedback controllers in the industrial
processes are PI controllers [8]-[10] such as rotor
speed adaptation mechanism of model reference
adaptive system estimator in speed sensorless
control of induction motor [11], parameter adap-
tions of induction motor [12, 13], fuzzy controller
for intelligent gauge control system [14], pressure
control of high pressure common rail injection
system [15]. Finding robust stability ranges of
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the PI controller is necessary because of parame-
ter uncertainty of the processes. This work con-
sumes considerable time for solving polynomial
inequalities received from Kharitonov's theorem
and Routh-Hurwitz criterion [16].

Direct technique was used for solving the in-
equalities [17]. This technique is easy to under-
stand, to compute, but it does not utilize the
advantage of Routh-Hurwitz criterion: checking
stability without solving characteristic polyno-
mial directly. Therefore, its computing speed is
low because of solving many polynomial equa-
tions, especially in case of high-order systems.
Increasing computing speed is necessary for im-
plementation into real control systems with dig-
ital signal processor. In this paper, a technique
based on steps of checking stability using Routh-
Hurtwitz criterion, is developed to overcome the
disadvantage of direct technique. For implemen-
tation, an algorithm for solving polynomial in-
equality [18], intersections in set theory are de-
scribed.

The remainder of the paper consists of 4 sec-
tions. Kharitonov's theorem and robust stabil-
ity conditions are presented in the �rst section.
Two techniques for �nding stability range are de-
scribed in next section. The third one presents
computation examples. Conclusions and devel-
opments are carried out in the last one.

2. KHARITONOV'S

THEOREM AND

ROBUST STABILITY

CONDITIONS

Kharitonov's theorem. A family F (s) of in-
terval real-coe�cient polynomials of �xed or-
der n is Hurwitz stable if and only if its four
Kharitonov polynomials are Hurwitz stable [5,
6]. Form of F (s) is:

F (s) = f0 + f1s+ f2s
2 + ...+ fns

n (1)

and its Kharitonov polynomials are:

K1(s) = f−0 + f−1 s+ f+2 s
2 + f+3 s

3 + ... (2)

K2(s) = f−0 + f+1 s+ f+2 s
2 + f−3 s

3 + ... (3)

K3(s) = f+0 + f−1 s+ f−2 s
2 + f+3 s

3 + ... (4)

K4(s) = f+0 + f+1 s+ f−2 s
2 + f−3 s

3 + ... (5)

where ficoe�cients, for i = 0, 1, ..., n, are
bounded real numbers, and symbols −,+ respec-
tively denote lower, upper bounders of coe�-
cients. Next, consider the problem of checking
robust stability of feedback linear continuous-
time interval control system with a single input
single output (SISO) plant G(s), and a compen-
sator or a controller GC(s) shown in Fig. 1.
Family of interval transfer functions (FITF) of

Fig. 1: Feedback linear continuous-time interval control

systems.

the plant is given by:

G(s) =
b0 + b1s+ b2s

2 + ...+ bns
n

a0 + a1s+ a2s2 + ...+ ansn
(6)

where degree n of denominator of G(s) is guar-
anteed, and coe�cients bi, ai for i = 0, 1, 2, ..., n
are limited in their given ranges:

a−i 6 ai 6 a+i (7)

b−i 6 bi 6 b+i (8)

For simplicity, the plant's FITF can be expressed
as follow:

G(s) =
[b−0 , b

+
0 ] + [b−1 , b

+
1 ]s+ ...+ [b−n , b

+
n ]sn

[a−0 , a
+
0 ] + [a−1 , a

+
1 ]s+ ...+ [a−n , a

+
n ]sn

(9)

And its Kharitonov transfer functions are given
by:

G1(s) =
b−0 + b−1 s+ b+2 s

2 + b+3 s
3 + ...

a−0 + a−1 s+ a+2 s
2 + a+3 s

3 + ...
(10)

G2(s) =
b−0 + b+1 s+ b+2 s

2 + b−3 s
3 + ...

a−0 + a+1 s+ a+2 s
2 + a−3 s

3 + ...
(11)
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Table 1. Description of used sets on Matlab software.

Set S ∅ R (−∞, α) (α,+∞) (α, β)

Description [inf inf 0] [inf inf 1] [αα 2] [αα 3] [αβ 4]

G3(s) =
b+0 + b−1 s+ b−2 s

2 + b+3 s
3 + ...

a+0 + a−1 s+ a−2 s
2 + a+3 s

3 + ...
(12)

G4(s) =
b+0 + b+1 s+ b−2 s

2 + b−3 s
3 + ...

a+0 + a+1 s+ a−2 s
2 + a−3 s

3 + ...
(13)

The system has family of interval characteristic
equations as follow:

1 +GC(s)G(s) = 0 (14)

The compensator can be one of types: lead,
lag, lead-lag, proportional (P), integral (I),
derivative (D), PI, proportional-derivative (PD),
proportional-integral-derivative (PID). In case
of P, I, PI controllers, they can be described re-
spectively by following transfer functions:

GC(s) = kP (15)

GC(s) =
kI
s

(16)

GC(s) = kP +
kI
s

(17)

Kharitonov polynomials are respectively given
by Eqs. (18)-(21), (22)-(25), (26)-(29)

K1_P (s) = (b−0 kP + a−0 ) + (b−1 kP + a−1 )s

+ (b+2 kP + a+2 )s2 + (b+3 kP + a+3 )s3 + ... (18)

K2_P (s) = (b−0 kP + a−0 ) + (b+1 kP + a+1 )s

+ (b+2 kP + a+2 )s2 + (b−3 kP + a−3 )s3 + ... (19)

K3_P (s) = (b+0 kP + a+0 ) + (b−1 kP + a−1 )s

+ (b−2 kP + a−2 )s2 + (b+3 kP + a+3 )s3 + ... (20)

K4_P (s) = (b+0 kP + a+0 ) + (b+1 kP + a+1 )s

+ (b−2 kP + a−2 )s2 + (b−3 kP + a−3 )s3 + ... (21)

K1_I(s) = (b−0 kI) + (b−1 kI + a−0 )s

+ (b+2 kI + a+1 )s2 + (b+3 kI + a+2 )s3 + ... (22)

K2_I(s) = (b−0 kI) + (b+1 kI + a+0 )s

+ (b+2 kI + a+1 )s2 + (b−3 kI + a−2 )s3 + ... (23)

K3_I(s) = (b+0 kI) + (b−1 kI + a−0 )s

+ (b−2 kI + a−1 )s2 + (b+3 kI + a+2 )s3 + ... (24)

K4_I(s) = (b+0 kI) + (b+1 kI + a+0 )s

+ (b−2 kI + a−1 )s2 + (b−3 kI + a−2 )s3 + ... (25)

K1_PI(s) = (b−0 kI) + (b−0 kP + b−1 kI + a−0 )s

+ (b+1 kP + b+2 kI + a+1 )s2

+ (b+2 kP + b+3 kI + a+2 )s3 + ... (26)

K2_PI(s) = (b−0 kI) + (b+0 kP + b+1 kI + a+0 )s

+ (b+1 kP + b+2 kI + a+1 )s2

+ (b−2 kP + b−3 kI + a−2 )s3 + ... (27)

K3_PI(s) = (b+0 kI) + (b−0 kP + b−1 kI + a−0 )s

+ (b−1 kP + b−2 kI + a−1 )s2

+ (b+2 kP + b+3 kI + a+2 )s3 + ... (28)

K4_PI(s) = (b+0 kI) + (b+0 kP + b+1 kI + a+0 )s

+ (b−1 kP + b−2 kI + a−1 )s2

+ (b−2 kP + b−3 kI + a−2 )s3 + ... (29)

and constraints are respectively given by Eqs.
(30), (31)-(32), (33)-(35):

b−i kP + a−i 6 b+i kP + a+i ,∀i = 0, 1, 2, ..., n.
(30)

b−0 kI 6 b+0 kI (31)
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b−i kI + a−i−1 6 b+i kI + a+i−1,∀i = 1, 2, ..., n.

(32)

b−0 kI 6 b+0 kI (33)

b−n kP + a−n 6 b+n kP + a+n (34)

b−i−1kP + b−i kI + a−i−1 6 b+i−1kP + b+i kI + a+i−1,

(35)

∀i = 1, 2, ..., n. The interval control system is ro-
bust stable if Kharitonov polynomials are Hur-
witz stable. Routh-Hurwitz criterion was used
to check Hurwitz stability of systems [19]-[22].
Necessary and su�cient conditions for stability
is that all the terms of the �rst column of Routh
array or all the determinants of the principal mi-
nors of Hurwitz matrix have the same sign [18].
In next sections, two techniques are used to �nd
sets SP , SI of two parameters kP , kI that make
the system stable.

3. TECHNIQUES FOR

FINDING STABILITY

RANGE

At �rst, two techniques are described for stabil-
ity analysis in case of controllers with one pa-
rameter kP or kI . Assume that all roots of the
terms of the �rst column of Routh array or the
determinants of the principal minors of Hurwitz
matrix were found. First one is the direct tech-
nique (DIT) that does not solve any inequali-
ties which are generated from stability condi-
tions. For each Kharitonov polynomial, pro-
cessed steps of the technique are:

• Step 1: sort in ascending order distinct real
roots of all the terms of the �rst column of
Routh array or all the determinants of the
principal minors of Hurwitz matrix: k1 <
k2 < ... < kl, where k is representative of
kP or kI .

• Step 2: select the points k = pi for i =
0, 1, 2, ..., l as follows:

- interval I0(k < k1) : p0 = 2k1, if k1 <
0, or p0 = −1, if k1 ≥ 0;

- interval Ii (ki < k < ki+1) : pi =
(ki + ki+1) /2, for i = 1, 2, ..., l − 1;

- interval Il (k > kl) : pl = 2kl, if kl >
0 or pl = 1, if kl 6 0.

• Step 3: for each value k = pi, �nd all roots
of each Kharitonov polynomial. If all roots
have negative real parts, interval Ii satis�es
stability condition.

The second technique is the set theory-based on
technique (SBT) that solves the polynomial in-
equalities, and uses basic intersection in set the-
ory. Description of used sets on Matlab software
is shown in Tab. 1. Intersection of two sets is im-
plemented according to basic rules of set theory
(see Tab. 2). Two characters m,M denote min,
max functions respectively. For each Kharitonov
polynomial, it is described by following steps:

• Step 1: assume that each term of the �rst
column of Routh array or each determinant
of the principal minors of Hurwitz matrix,
is a rth-order polynomial P (k), and coef-
�cient cr associates with kr (cr 6= 0). Sort
its distinct odd-multiplicity real roots in as-
cending order: k1 < k2 < ... < kq (q ≤ r).

• Step 2: no loss of generality, solve the in-
equality P (k) > 0 by an algorithm shown
in Fig. 3.

• Step 3: apply intersection to �nd range of
k which satis�es all inequalities.

Two described techniques are applied for all
Kharitonov polynomials. The intersection is
used to obtain the set SP or the set SI that
satis�es the stability conditions. In case of PI
controller, at �rst, the initial value VI , the �nal
value VF , the value of increment ∆V of param-
eter kP or kI are given. Then, for each value of
kP or kI , the set SI or SP is found by checking
stability of 4 Kharitonov polynomials (see Eqs.
(26)-(29)). The intersections of these sets SI or
SP are the �nal results.
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Table 2. Intersection of two sets.

Set S1

Set S2 (−∞, α1) (α1,+∞) (α1, β1)

(−∞, α2) (−∞,m(α1, α2))

(α1, α2) if α1 < α2

∅, otherwise

(α1,m(α2, β1)) if α1 < α2

∅, otherwise

(α2,+∞)

(α2, α1) if α2 < α1

∅, otherwise
(M(α1, α2),+∞)

(M(α1, α2), β1) if α2 < β1

∅, otherwise

(α2, β2)


(α2,m(α1, β2), β1)

if α2 < α1

∅, otherwise


(M(α1, α2), β2)

if α1 < β2

∅, otherwise


∅, ifα2 ≥ β1
orα1 ≥ β2

(M(α1, α2),m(β1, β2)), otherwise

Table 3. Selected plants.

n G(s)

2
[36, 44] + [4.3, 5.7]s

[54, 66] + [5.7, 8.3]s+ [1, 1]s2

3
[3.2, 4.3] + [2.3, 3.7]s+ [1.1, 1.9]s2

[11.7, 14.9] + [7.5, 9.6]s+ [3.3, 5.2]s2 + [1, 1]s3

4
[7.5, 12.5] + [17, 23]s+ [12, 18]s2 + [3.5, 6.5]s3

[10.5, 17.5] + [23, 37]s+ [15, 25]s2 + [3, 7]s3 + [1, 1]s4

5
[46, 54] + [85, 125]s+ [90, 110]s2 + [27, 34]s3 + [4, 6]s4

[63, 77] + [150, 198]s+ [115, 135]s2 + [52, 58]s3 + [8, 10]s4 + [1, 1]s5

6
[320, 380] + [554, 574]s+ [950, 1050]s2 + [225, 245]s3 + [90, 110]s4 + [10, 12]s5

[340, 400] + [1150, 1250]s+ [604, 644]s2 + [470, 530]s3 + [70, 80]s4 + [9, 11]s5 + [1, 1]s6

7 [329,471]+[706,865]s+[558,643]s2+[282,319]s3+[70,83]s4+[12,15]s5+[1.0,1.4]s6

[387,521]+[877,1024]s+[711,889]s2+[326,360]s3+[89,110]s4+[13.3,16.7]s5+[1.2,1.6]s6+[0.1,0.1]s7

Table 4. Sets SP , SI of P and I controllers.

n SP (P controller) SI (I controller)

2 (−1.325581395348837,+∞) (0, 15.792714212416620)

3 (−1.136952577372862,+∞) (0, 10.395928891361976)

4 (−0.071101889488303,+∞) (0, 0.373239166328192)

5 (−0.857142857142857,+∞) (0, 49.784749592528634)

6 (−0.020328133920827,+∞) (0, 0.767612236055811)

7 (−0.079686910635607,+∞) (0, 1.646059600788306)

.
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4. COMPUTATION

EXAMPLES

Two techniques are implemented on Matlab soft-
ware R2014a, version 8.3.0.532 with processor
Intel Core i7-6700HQ CPU 2.6GHz, installed
memory (RAM) 8.00 GB (7.88 GB usable). Hur-
witz matrix is used to avoid the error due to
polynomial division in calculations of Routh ar-
ray. All FITFs of selected plants that listed in
Tab. 3 have relative degree of 1. For P, I con-
trollers, sets SP , SI are calculated and listed in
Tab. 4. Because boundaries αI , βI of all sets SI

are limited (see Tab. 4), so values ∆V ,∆I ,∆F

of parameter kI are chosen as follows:

∆V =
βI − αI

101
(36)

VI = αI + ∆V (37)

VF = βI −∆V (38)

Computing time (CT) is the time that the pro-
cessor executes all steps for 4 Kharitonov poly-
nomials with 100 given values of kI (see Eqs.
(36) � (38)). For comparison of two techniques,
two functions tic, toc are used to measure their
CT. Statistically, two techniques are run 30
times, and minimum, maximum, average values
of CT (CTmin, CTmax, CTavg) are listed in Tab.
5. The CTs of SBT are much smaller than those
of DIT. Ratios of CTs can be de�ned as follows:

Fig. 2: Ratios of CTs.

R1 =
CTmin of SBT

CTmin of DIT
(39)

R2 =
CTavg of SBT

CTavg of DIT
(40)

R3 =
CTmax of SBT

CTmaxof DIT
(41)

Figure 2 shows these ratios that are smaller than
one in all situations. They tend to decrease with
the increase of n, exceptionally for changes of n
from 4 to 5 and from 6 to 7.

For the DIT, in most cases, the higher degree
n, the longer CTs, except for values n = 6, 7.
For each Kharitonov polynomial, the step 3 of
this technique is performed (l + 1) times where
parameter l is number of distinct real roots of
all the determinants of the principal minors of
Hurwitz matrix. For DIT, parameter l, number
of Kharitonov polynomials nl with the same pa-
rameter l, and number of times that step 3 is
performed ns3, are listed in Tab. 6. It can easy
to see that the parameter which a�ects CTs of
DIT most is ns3. Especially, n changes from 6
to 7, ns3 decrease from 8149 to 7209, this makes
CTs shorter. In cases of n = 4, 5, the values
of ns3 are equivalent, therefore CTs increase in-
signi�cantly.

For SBT, order q of inequality, number of qth-
degree inequalities nq, number of times that step
2 is performed (ns2), number of intersections ni
are listed in Tab. 7. It is easy to see that ns2 =
400(n + 1). The higher the ns2 is, the longer
the CTs are. Besides that, CTs is signi�cantly
dependent on the parameter ni. This value of
ni (6956) for n = 6 is larger than that (6207)
for n = 7. This increment makes CTs increase
insigni�cantly although for n = 7, ns2 (3200) is
larger than that (2800) for n = 6.
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Table 5. Values CTmin, CTmax, CTavg [ms].

CTmin CTavg CTmax

n DIT SBT DIT SBT DIT SBT

Sp (PI controller)

2 57.9 30.4 60.1 31.4 64.1 34.3 (−1.325581395348837,+∞)

3 76.5 35.1 78.8 36.3 82.1 37.9 (−1.136952577372862,+∞)

4 124.0 50.6 125.4 51.0 127.6 52.9 (−0.071101889488303,+∞)

5 134.5 58.4 137.0 59.7 146.8 64.7 (−0.857142857142857,+∞)

6 343.1 87.2 346.6 88.1 352.8 89.0 (−0.020328133920827,+∞)

7 329.2 90.8 332.1 91.8 342.0 95.1 (−0.079686910635607,+∞)

Table 7(a)-Parameters of SBT.

n

2 3 4

q nq ns2 ni q nq ns2 ni q nq ns2 ni

1 659

1 400 1 1178

1200 2000 1600 2022 2 1142 2000 3399

2 400

2 800 3 141

3 22

4 58

Table 7(b)-Parameters of SBT.

n

5 6 7

q nq ns2 ni q nq ns2 ni q nq ns2 ni

1 699

0 11 1 400 2 1036

2 400 3 941

1 1596 2400 3207 3 400 2800 6956 4 148 3200 6217

4 1044 5 330

2 789 5 400 6 16

3 4 6 156 7 30
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Table 6. Parameters of DIT (n = 2, 7 ) .
l 3

2 nl 400
ns3 1600
l 4 6

3 nl 389 11
ns3 2022
l 6 8 10

4 nl 259 112 29
ns3 3140
l 5 7 9

5 nl 10 387 3
ns3 3186
l 19 20 21

6 nl 322 7 71
ns3 8149
l 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

7 nl 248 1 19 24 1 26 5 18 6 17 3 4 11 5 2 1 1 1 5 2
ns3 7209

Fig. 3: Algorithm for solving the polynomial inequality

P (k) > 0.

.

.
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5. CONCLUSIONS

Two techniques was developed to �nd stabil-
ity range of proportional-integral controller for
linear continuous-time interval control systems.
Set-based theory technique uses the advantage
of stability criterions: checking stability with-
out solving any Kharitonov polynomials directly.
It gives computing time much shorter than di-
rect technique does, especially with high-order
systems. Therefore, it can be applied to ob-
tain boundaries of PI-based or PID-based intel-
ligent controllers for real systems [3, 23]. Com-
bination with high-accuracy system order re-
duction methods can decrease computing time
[24]. Stability analysis and design of controllers
for fractional-order systems can be done sim-
ilarly to the works for systems with rational-
order transfer functions by approximating the
systems using real interpolation method (RIM)
with high-order models [25]. The main draw-
back of this method that is the uncertainty of ap-
proximation model is overcome by Kharitonov's
theorem. This computing technique can be ex-
tended for �nding stability range of feedback
linear discrete-time interval control systems [7],
nonlinear systems with time-varying delay [4].
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