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Abstract. This paper investigates the design
of decentralized controllers for a class of large
scale switched nonlinear systems under arbitrary
switching laws. A global large scale switched sys-
tem can be split into a set of smaller intercon-
nected switched Takagi-Sugeno fuzzy subsystems.
In this context, to stabilize the overall closed-
loop system, a set of switched non-Parallel-
Distributed-Compensation (non-PDC) output-
feedback controllers is considered. The latter
is designed based on Linear Matrix Inequali-
ties (LMI) conditions obtained from a multiple
switched non-quadratic Lyapunov-like candidate
function. The controllers proposed herein are
synthesized to satisfy H∞ performances for dis-
turbance attenuation. Finally, a numerical ex-
ample is proposed to illustrate the e�ectiveness
of the suggested decentralized switched controller
design approach.
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1. INTRODUCTION

During the last few decades, several complex
systems appeared to meet the speci�c needs of
the world population. In this context, we can
quote as examples networked power systems,
water transportation networks, tra�c systems,
as well as other systems in various �elds. Gen-
erally speaking, establish a mathematical model
for large scale systems is a complex task, espe-
cially when the system is considered as a whole.
Hence, to overcome these di�culties, an alterna-
tive to the global modelling approach has been
explored. It consists in decomposing the over-
all large-scale system in a �nite set of intercon-
nected low-order subsystems [1].

Among these complex systems, switched in-
terconnected large-scale system have attracted
considerable attention since they provide a con-
venient modelling approach for many physical
systems that can exhibit both continuous and
discrete dynamic behavior. In this context, sev-
eral studies dealing with the stability analysis
and stabilization issues for both linear and non-
linear switched interconnected large-scale sys-
tems have been explored [1]-[8]. Hence, the
main challenge to deal with such problems con-
sists in determining the conditions ensuring the
stability of the whole systems with considera-
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tion to the interconnections e�ects between its
subsystems. Nevertheless, few works based on
the approximation property of Takagi-Sugeno
(TS) fuzzy models for nonlinear problems have
been achieved to deal with the stabilization of
continuous-time large-scale switched nonlinear
systems [3], [8]-[12].

The main interest of T-S models is their abil-
ity to accurately represent a nonlinear system as
well as allowing to extend some of linear control
concepts to nonlinear systems. To stabilize T-S
models, the Parallel Distributed Compensation
(PDC) control scheme is often considered. The
basic philosophy of such control scheme is to de-
sign a controller sharing the same fuzzy mem-
bership functions structure as the T-S model
to be controlled. Moreover, to reduce the con-
servatism of the design conditions, an extension
of PDC contrrolers, called non-PDC controllers,
can be considered with non-quadratic Lyapunov
functions, or extended quadratic ones (see e.g.
[13, 14] and references therein for more details).

In the context of T-S fuzzy switched large-
scale systems, an output-feedback decentralized
PDC controller has been developed in [9]. In
the same way, the authors of [10] have studied
the design of an adaptive fuzzy output-feedback
control for a class of switched uncertain nonlin-
ear large-scale systems with unknown dead zones
and immeasurable states. Recently, an observer-
based decentralized control scheme was devel-
oped in [11] for a class switched non-linear large-
scale systems. In the same context, an adap-
tive fuzzy decentralized output-feedback track-
ing control has been explored in [12] for a class
of switched nonlinear large-scale systems un-
der the assumption that the large-scale system
was composed of subsystems interconnected by
their outputs. In this study, the stability of the
whole closed-loop system and the tracking per-
formance were achieved by using the Lyapunov
function and under constrained switching sig-
nals with dwell time. However, such approaches
may be restrictive since they are unsuitable in
a more general case, i.e. when the switching se-
quences are arbitrary or unknown. Moreover,
note that adaptive control approaches are based
one parameter estimations. Therefore they often
require more online computational capabilities

than robust control approaches, which can be a
limitation for several embedded applications.

This paper presents the design of decentral-
ized robust controllers for a class of switched
TS interconnected large-scale systems with ex-
ternal bounded disturbances. More speci�-
cally, the primary contribution of this paper
consists in proposing a LMI based methodol-
ogy, in the non-quadratic framework, for the
design of robust output-feedback decentralized
switched non-PDC controllers for a class of large
scale switched nonlinear systems under arbitrary
switching laws. Moreover, to deals with exter-
nal disturbances applied on the interconnected
nonlinear subsystems, an criterion is considered.
It aims at designing a robust controller, which
attenuates the e�ects of the disturbances, which
can be view as exogenous uncontrolled inputs,
on the overall closed-loop dynamics.

The remainder of the paper is organized as
follows. Section 2 presents the considered class
of switched TS interconnected large-scale sys-
tem, followed by the problem statement. The
design of the decentralized switched non-PDC
controllers is presented in section 3. A numerical
example is proposed to illustrate the e�ciency of
the proposed approach in section 4. The paper
ends with conclusions and references.

2. PROBLEM

STATEMENT AND

PRELIMIARIES

Let us consider the class of nonlinear hybrid sys-
tems S composed of n continuous time switched
nonlinear subsystem Si represented by switched
TS models. The n state equations of the
whole interconnected switched fuzzy system S
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are given as follows; for i = 1, 2, ..., n:

ẋi (t) =
mi∑
ji=1

rji∑
sji=1

ξji (t)hsji (zji (t))

·

 Ahjxi (t) +Bhjui (t) +Bwhjwi (t)

+
n∑

α=1,α 6=i

(
Fi,α,hjxα (t) +Bwαhj wα (t)

)
yi (t) =

mi∑
ji=1

ξji (t)Chjxi (t)

(1)

where xi (t) ∈ Rηi , yi (t) ∈ Rρi , ui (t) ∈ Rυi rep-
resent respectively the state, the measurement
(output) and the input vectors associated to the
ith subsystem. wi (t) ∈ Rυi is an uncontrollable
time-varying L2-norm bounded external distur-
bance associated to the ith subsystem. mi is
the number of switching modes of the ith sub-
system. rji is the number of fuzzy rules associ-
ated to the ith subsystem in the jthi mode; for
i = 1, ..., n, ji = 1, ...,mi and sji = 1, ..., rji ,
Asji ∈ Rηi×ηi , Bsji ∈ Rηi×υi , Bwsji ∈ Rηi×υi
and Clji ∈ Rρi×ηi are constant matrices de-
scribing the local dynamics of each polytopes;
Bwαsji

∈ Rηi×υα and Fi,α,sji ∈ Rηi×ηα express the

interconnections between subsystems. zji (t) are
the premises variables and hsji (zji (t)) are posi-
tive membership functions satisfying the convex

sum proprieties
rji∑
sji=1

hsji (zji (t)) = 1; ξji (t) is

the switching rules of the ith subsystem, con-
sidered arbitrary but assumed to be real time
available. These are de�ned such that the ac-
tive system in the lthi mode lead to:{

ξji (t) = 1 if ji = li
ξji (t) = 0 if ji 6= li

(2)

Notations: In order to lighten the mathemati-
cal expression, one assumes the scalar N = 1

n−1 ,

the index i associated to the ith subsystem to de-
note the mode ji. The premise entries zji will
be omitted when there is no ambiguities and the
following notation is employed for fuzzy matri-
ces:

Ghj =

rji∑
sji=1

hsjiGsji

and

Yhj ,hj =

rji∑
sji=1

rji∑
kji=1

hsjihkjiYsji ,kji

Moreover, for matrices of appropriate dimen-

sions we will denote: Ẋhj =
dXhji
dt and(

Ẋhj

)−1
=

d
(
Xhji

)−1

dt . As usual, a star (∗)

indicates a transpose quantity in a symmetric
matrix and sym (G) = G+GT . The time t will
be omitted when there is no ambiguity. How-
ever, one denotes tj→j+ the switching instants
of the ith subsystem between the current mode
j (at time t) and the upcoming mode j+ (at time
t+ ), therefore we have:{

ξj (t) = 1
ξj+ (t) = 0

and

{
ξj (t+) = 0
ξj+ (t+) = 1

(3)

In the sequel, we will deal with the robust
output-feedback disturbance attenuation for the
considered class of large-scale system S . For
that purpose, a set of decentralized output-
feedback switched non-PDC control laws is pro-
posed as; for i = 1, ..., n:

ui (t) =

mi∑
ji=1

ξji (t)Khj

(
X9
hj

)−1
yi (t) . (4)

where the matrices

Khj =

rji∑
kji=1

hsji (zji (t))Kkji
,

X9
hj =

rji∑
sji=1

hsji (zji (t))X9
sji

are the fuzzy gains to be synthesized withX9
sji

=(
X9
sji

)T
> 0.

Remark 1: When a large scale system is
considered as a whole, i.e. a high-order sys-
tem, the size of the decision matrices (control
gains, Lyapunov matrices. . . ) in the LMI condi-
tions increases the computational cost to check
whether a solution exists. In this case, the avail-
able convex optimisation tools may fail to �nd
a solution to the LMI problem (unfeasibility or
computational crashes). This is mainly why the
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decomposition of large-scale systems into lower-
order interconnected subsystems can be consid-
ered as a good alternative. Indeed, in this case,
decentralized controllers design can be applied
to each lower-order subsystem, i.e. with lower-
sized decision variables and LMIs, helping to re-
duce the computational workload of the convex
optimization algorithms.

Substituting (4) into (1), one expresses the
overall closed-loop dynamics Scl as, for i =
1, ..., n:

ẋi =

mi∑
j=1

ξj


[
Ahj +BhjKhj

(
X9
hj

)−1
Chj

]
xi

+
n∑

α=1,α6=i
Fi,α,hjxα


(5)

Thus, the problem considered in this study can
be resumed as follows:

Problem 1: The objective is to design the
controllers (4) such that the closed-loop inter-
connected large-scale switched TS system (5)
satis�es a robust H∞ performance.

De�nition 1: The switched interconnected
large-scale system (1) is said to have a robust
H∞ output-feedback performance if the follow-
ing conditions are satis�ed:

Condition 1 (Stability condition): With
zero disturbances input condition wi ≡ 0, for
i = 1, . . . , n , the closed-loop dynamics (5) is
stable.

Condition 2 (Robustness condition):
For all non-zero wi ∈ L2[0,∞), under zero
initial condition xi (t0) ≡ 0, it holds that for
i = 1, . . . , n,

Ji =

+∞∫
0

xTi xidt

6 ς2i

+∞∫
0

wTi wi +

n∑
α=1,α 6=i

wTαwα

 dt (6)

where ς2i is a positive scalars which represents
the disturbance attenuation level associated to
the ith subsystem.

From the closed-loop dynamics (5), it can
be seen that several crossing terms among the

gain controllers Khj and the system's matrices(
BhjKhj(Xhj)

−1
Chj

)
are present. Hence, in

view of the wealth of interconnections charac-
terizing our system, these crossing terms lead
surely to very conservative conditions for the de-
sign of the proposed controller. In order to de-

couple the crossing terms
(
BhjKhj(Xhj)

−1
Chj

)
appearing in the equation (5), and to provide
LMI conditions, we use an interesting property
called the descriptor redundancy [13]-[16]. In
this context, the closed-loop dynamics (5) can
be alternatively expressed as follows. First,
from the output equation of (1) and the con-
trol law (4), we introduce null terms such that,
for i = 1, . . . , n:

0ẏi = −yi + Chjxi (7)

and:

0 = ui −Khj

(
X9
hj

)−1
yi (8)

Then, by considering the augmented state vec-
tors x̃Ti =

[
xTi yTi uTi

]
, x̃Tα =

[
xTα yTα uTα

]
and

disturbances w̃Ti,α =
[
wTi wTα

]
, the closed-loop

dynamics of the large-scale system (1) under the
non-PDC controller (4) can be reformulated as
follows, for i = 1, . . . , n:

E ˙̃xi = Ãhj,hj x̃i

+

n∑
α=1,α 6=i

(
F̃i,α,hj x̃α + B̃wαhj w̃i,α

)
(9)

E =

I 0 0
0 0 0
0 0 0

 , F̃i,α,hj =

Fi,α,hj 0 0
0 0 0
0 0 0


B̃wαhj =

NBwhj 0

0 Bwαhj
0 0



Ãhj,hj =

Ahj 0 Bhj

0 −I Khj

(
Xγ
hj

)−1
Chj 0 −I


Note that the system (9) is a large scale switched
descriptor. Hence, it is worth pointing out that
the output-feedback stabilization problem of the
system (1) can be converted into the stabiliza-
tion problem of the augmented system (9).
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Remark 2: It may be hard to work with the
�rst formulation of the closed-loop dynamics (5),
due to the large number of crossing terms. How-
ever, the goal of our study can now be achieved
by considering the augmented closed-loop dy-
namics (9) expressed in the descriptor form. In
this context, the second condition of De�nition
1, given by equation (6), can be reformulated as
follows:

+∞∫
0

ỹTi Qỹidt 6 ς2i

+∞∫
0

n∑
α=1,α6=i

w̃Ti,αΞw̃i,αdt (10)

with Ξ =

[
NI 0
0 I

]
, Q =

0 0 0
0 I 0
0 0 0

 .
To conclude the preliminaries, let us introduce
the following lemma, which will be used in the
sequel.

Lemma 1. [17]: Let us consider two matrices
A and B with appropriate dimensions and a pos-
itive scalar τ , the following inequality is always
satis�ed:

ATB +BTA 6 τATA+ τ−1BTB (11)

3. LMI Based

Decentralized

Controller Design

In this section, the main result for the design of
a robust decentralized switched non-PDC con-
troller (4) ensuring the closed-loop stability of
(5) and the H∞ disturbance rejection perfor-
mance (10) is presented. It is summarized by
the following theorem.

Theorem 1. Assume that for each subsys-
tem i of (1), the active mode is denoted by
ji and, for ji = 1, ...,mi and sji = 1, ..., rji ,

ḣsji (z (t)) > λsji . The overall interconnected
switched TS system (1) is stabilized by a set of
n decentralized switched non-PDC control laws
(4) according to the De�nition 1, if there exists,
for all combinations of i = 1, ..., n, ji = 1, ...,mi,
ji

+ = 1, ...,mi, sji = 1, ..., rji , kji = 1, ..., rji ,
k1ji = 1, ..., rji and lji = 1, ..., rji , the matrices

X1
kji

=
(
X1
kji

)T
> 0, X5

kji
=
(
X5
kji

)T
> 0;

X9
kji

=
(
X9
kji

)T
> 0, W 1

sjisjikji
, Kkji

, and the

scalars, τ1,i, ..., τi−1,i, τi+1,i, ..., τn,i (excepted τi,i
which don't exist since there is no interaction be-
tween a subsystem and himself), such that the
LMIs described by (12), (13), (14) and (15) are
satis�ed.

X1
k′ji

+Wsjikji lji
> 0 (12)

[
−µji→ji+X1

kji
X1
kji

X1
kji

−X1
kji+

]
6 0 (13)

[
Γsji ljikji (∗)
Xkji

I

]
< 0 (14)


Λsjikji ∗
Xkji

−τα,iI(
B̃w,αsji

)T
0

Nς2i I 0
0 −I

 < 0

(15)

with

Λsji ljikji =


∗

Γsji ljikji ∗
∗

X2
kji

0 0 −I



B̃wαkj =

NBwkj 0

0 Bwαkj
0 0



Φsji ljikjik
′
ji

=

rji∑
lji=1

λlji

(
X1
lji

+Wsjikjik
′
ji

)
,

Xkji
=

X
1
kji

0 0

0 X5
kji

0

0 0 X9
kji


I = (−1)

· diag
[
τ1,iI ... τi−1,iI τi+1,iI ... τn,iI

]
Xkji

=
[
Xkji

· · · Xkji
Xkji

· · · Xkji

]
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Γsji ljikji =



sym
(
X1
kji
ATsji

)
+τi,αFi,α,sjiF

T
i,α,sji

(∗) (∗)
−Φsji ljikjik

′
ji

Γsji ljikji (∗)
0 −sym(X5

kji
) (∗)

X9
kji

(
Bsji

)T
+CsjiX

1
kji

(
Klji

)T −sym(X9
kji

)


.

Proof. The present proof is divided in two parts
corresponding to the Conditions 1 and 2 given
in De�nition 1.
Part 1 (Stability Condition 1, De�nition 1):
With zero disturbances input condition w̃i,α ≡
0, for i = 1, . . . , n. Let us de�ne the following
multiple switched non-quadratic Lyapunov-like
candidate functional:

V (x1, x2, ..., xn) =

n∑
i=1

mi∑
ji=1

ξjivji (xi) > 0,

(16)

where

vji = x̃Ti E(Xhj)
−1
x̃i

= x̃Ti E

 rji∑
sji=1

hsjiXsji

−1x̃i
and with EXhj = XhjE > 0, Xhj =

diag
[
X1
hj X5

hj X9
hj

]
, X1

hj = X1T
hj .

The augmented system (9), and implicitly the
closed-loop interconnected switched system (5),
is asymptotically stable if:

∀t 6= tj→j+ , V̇ (x1, x2, ..., xn) < 0 (17)

and:

vji+
(
tj→j+

)
6 µj→j+vji

(
tj→j+

)
(18)

where µj→j+ are positive scalars.

First, let us focus on the inequalities (18).
Their aim is to ensure the global decreasing
behavior of the Lyapunov-like function (16) at
the switching time tj→j+ . These inequalities
are veri�ed if, for i = 1, ..., n, ji = 1, ...,mi,
ji

+ = 1, ...,mi and sji = 1, ..., rji :

E
(
Xhj+

)−1 − µj→j+E(Xhj)
−1 6 0 (19)

That is to say:(
X1
hj+

)−1 − µj→j+(X1
hj

)−1
6 0. (20)

Left and right multiplying by X1
hj , then using

Schur complement, (20) is equivalent to:[
−µj→j+X1

hj X1
hj

X1
hj −X1

hj+

]
6 0 (21)

Now, let us deal with (17), with the above de-
�ned notations, it can be rewritten as, ∀t 6=
tj→j+ :

n∑
i=1

[
sym

(̇̃
xTi E(Xhj)

−1
x̃i

)
+ x̃Ti E

(
Ẋhj

)−1
x̃i

]
< 0. (22)

Substituting (9) into (22), we can write, ∀t 6=
tj→j+ :

n∑
i=1

x̃
T
i

[
sym

(
(Xhj)

−1
Ãhj,hj

)
+ E

(
Ẋhj

)−1]
x̃i

+
n∑

α=1,α6=i
sym

(
x̃TαF

T
i,α,hj(Xhj)

−1
x̃i

)


< 0 (23)

From (11), the inequality (23) can be bounded
by, ∀t 6= tj→j+ :

n∑
i=1


x̃Ti

 sym((Xhj)
−1
Ãhj,hj) + E(Ẋhj)

−1

+
n∑

α=1,α 6=i
τi,α(Xhj)

−1
F̃i,α,hjF̃

T
i,α,hj(Xhj)

−1

 x̃i
+

n∑
α=1,α 6=i

τ−1i,α x̃
T
α x̃α


< 0. (24)

Moreover, since

n∑
i=1

n∑
α=1,α6=i

τ−1i,αx
T
αxα =

n∑
i=1

n∑
α=1,α6=i

τ−1α,ix
T
i xi, ∀xi,
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(24) is satis�ed if, for i = 1, ..., n and ∀t 6= tj→j+ :

sym
(

(Xhj)
−1
Ãhj,hj

)
+ E

(
Ẋhj

)−1
+

n∑
α=1,α6=i

[
τi,α(Xhj)

−1
F̃i,α,hjF̃

T
i,α,hj(Xhj)

−1

+τ−1α,i I

]
< 0. (25)

Note that EXhj = XhjE > 0, left and right
multiplying the inequalities (25) respectively by
Xhj , the inequality (25) can be rewritten as:

sym
(
Ãhj,hjXhj

)
+ EXhj

(
Ẋhj

)−1
Xhj

+

n∑
α=1,α 6=i

[
τi,αF̃i,α,hjF̃

T
i,α,hj + τ−1α,iXhjXhj

]
< 0. (26)

Now, the aim is to obtain the inequality (14)
from (26). This can be achieved with usual
mathematical developments. First, note that

−E
(
Ẋhj

)−1
= E(Xhj)

−1
Ẋhj(Xhj)

−1

6 −Φsji ljikjik
′
ji

(see [13] for more details on similar develop-
ments). Then, to deals with the term XhjXhj ,
one applies the Schur complement. This ends
that part of the proof.

Part 2 (Robustness Condition 2, De�nition
1): For all non-zero w̃i,α ∈ L2(0,∞), under
zero initial condition x̃i (t0) ≡ 0, it holds for
i = 1, . . . , N :

n∑
i=1

v̇i + x̃Ti Qx̃
T
i − ς2i

N∑
α=1,α6=i

w̃i,αΞw̃Ti,α

 < 0

(27)

which is equivalent to:

n∑
i=1


sym

(
˙̃xTi E(Xhj)

−1
x̃i

)
+x̃Ti

(
E
(
Ẋhj

)−1
+Q

)
x̃i

−ς2i
N∑

α=1;α6=i
w̃Ti,αΞw̃i,α

 < 0 (28)

Substituting (9) into (28), we can write, ∀t 6=
tj→j+ :

n∑
i=1


x̃Ti

sym
(
ÃThj,hj(Xhj)

−1
)

+Q+ E
(
Ẋhj

)−1
 x̃i

+
n∑

α=1,α6=i

 sym(x̃TαF
T
i,α,hj(Xhj)

−1
x̃i)

−ς2i w̃Ti,αΞw̃i,α

+sym(w̃Ti,α(B̃wαhj )
T

(Xhj)
−1
x̃i)




< 0 (29)

From (11), the inequality (23) can be bounded
by, ∀t 6= tj→j+ :

x̃Ti Y
∗x̃i

+
n∑

α=1,α 6=i
sym

(
w̃Ti,α

(
B̃wαhj

)T
(Xhj)

−1
x̃i

)
+

n∑
α=1
α6=i

(
τ−1i,α x̃

T
α x̃α − ς2i w̃Ti,αΞw̃i,α

)


< 0, (30)

where Y ∗ = sym
(

(Xhj)
−1
Ãhjhj

)
+Q+ E

(
Ẋhj

)−1
+

n∑
α=1,α6=i

τi,α(Xhj)
−1
F̃i,α,hjF̃

T
i,α,hj(Xhj)

−1

 .
Since

n∑
i=1

n∑
α=1,α 6=i

τ−1i,αx
T
αxα =

n∑
i=1

n∑
α=1,α 6=i

τ−1α,ix
T
i xi, ∀xi

and ∀t 6= tj→j+ , (24) is satis�ed if:

n∑
i=1

n∑
α=1,α6=i

 x̃Ti Y
∗∗x̃i

+sym
(
w̃Ti,αB̃

T
w,α,hji

(
Xhji

)−1
x̃i

)
−ς2i w̃Ti,αΞw̃i,α


< 0, (31)

where Y ∗∗ =N
(
sym

(
(Xhj)

−1
Ãhjhj

)
+Q+ E

(
Ẋhj

)−1)
+τi,α

(
Xhji

)−1
F̃i,α,hji F̃

T
i,α,hji

(
Xhji

)−1
+ τ−1α,i I


The previous equation can be rewritten as fol-
low:[

x̃i
w̃i,α

]T [ Υhj,hj,hj ∗(
B̃wαhj

)T
(Xhj)

−1 −ς2i Ξ

] [
x̃i
w̃i,α

]
< 0 (32)
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With: Υhj,hj,hj =

N

(
sym

(
(Xhj)

−1
Ãhj,hj

)
+Q+ E

(
Ẋhj

)−1)
+ τi,α(Xhj)

−1
F̃i,α,hjF̃

T
i,α,hj(Xhj)

−1
+ τ−1α,i I.

Left and right multiplying the inequalities (25)

respectively by

[
Xhj 0

0 I

]
it yields for i = 1, ..., n

and α = 1, ..., n with α 6= i:



Nsym
(
ÃhjhjXhj

)
+NXhjQXhj

+NEXhj

(
Ẋhj

)−1
Xhj ∗

+
(
τi,αF̃i,α,hjF̃

T
i,α,hj + τ−1α,iXhjXhj

)
Xhji

(
B̃wαhj

)T
−ς2i Ξ


< 0 (33)

Finally, to obtain the LMI condition (15), sim-
ilarly to the �rst part of this proof, from the

property −E
(
Ẋhj

)−1
= E(Xhj)

−1
Ẋhj(Xhj)

−1
,

we can major the derivative −EẊhj by
−Φsji ljikjik

′
ji
and then apply the Schur comple-

ment.

Remark 3: In this paper, one suppose that
the whole system S is decomposed into n in-
terconnected subsystems Si, i = 1, 2, ..., n. The
deal is to ensure the robust control of each sub-
system despite of the interconnection between
him and the others subsystems. Hence, the
global problem is divided to low-order problems.
However, when subsystems are high-order, then
LMIs are high dimensional matrix so it is hard
to be solved using Matlab LMI toolbox.

4. Numerical example

This section is dedicated to illustrate the e�ec-
tiveness of the proposed LMI conditions. We
consider the following system composed of two
interconnected switched TS subsystems given
by:

Subsystem 1:


ẋ1 =

2∑
j1=1

2∑
sj1=1

ξj1hsj1

 Asj1x1 +Bsj1u1
+Bwsj1w1 + F1,2,sj1

x2
+Bw2

sj1
w2


y1 =

2∑
j1=1

2∑
sj1=1

ξj1hsj1Csj1x1

(34)

with x1 =

[
x11
x12

]
, Asj1 =

[
- 2 Abj
0.1 Aasj

]

Bsj1 =

[
Bbj Basj

0 1

]
, Csj1 =

[
Casj 0.1
−1 1

]
,

Bwsj1 =

[
wasj wbj
−.01 .01

]
, Bw2sj1 =

[
.01 αbj
αasj .01

]
,

Fsj1 =

[
.01 .01 Fasj
Fbj .01 .1

]
.

In the mode 1, the values of variables are given
by: Ab1 = 1, Aa11 = −2.1, Aa21 = −1.1,
Bb1 = −1.2, Ba11 = 0, Ba21 = 1.2, Ca11 = −.1,
Ca12 = 1, Fb1 = 0.01, Fa11 = .01, Fa21 = .1,
wb1 = 0.01, wa11 = −.01, wa21 = −.02, αb1 =
0.01, αa11 = .02, αa12 = .01.

In the mode 2, the values of variables are given
by: Ab2 = 0.2, Aa12 = −2, Aa22 = −3, Bb2 =
−1.5, Ba12 = 1, Ba22 = 3, Ca21 = 1, Ca22 = .1,
Fb2 = −0.01, Fa21 = .2, Fa22 = .02, wb2 =
−0.05, wa12 = −.05, wa22 = .01, αb2 = −0.05,
αa21 = .04, αa22 = .03.

The membership functions: h111 (x1 (t)) =

sin2 (x11 (t)), h211 (x1 (t)) = sin2 (x12 (t)),
hi21 (x1 (t)) = 1− hi11 (x1 (t)).

Subsystem 2:


ẋ2 =

2∑
j2=1

2∑
sj2=1

ξj2hsj2

 Asj2x2 +Bsj2u2
+Bwsj2w2 + F2,1,sj2

x1
+Bw1

sj2
w1


y2 =

2∑
j2=1

2∑
sj2=1

ξj2hsj2Csj2x2

(35)
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with x2 =
[
x21 x22 x23

]T
,

Asj2 =

 - 2 Abj 0
0 Aasj 0
0 .1 - 1.1

 ,
Bsj2 =

 - .1 .5 .1
- .01 .5 .01
- .01 Basj .1

 ,
Csj2 =

 .01 Casj .1
- 1 .1 1
.1 .1 .1

 ,
Fsj2 =

[
.01 .001 Fasj
.01 .01 Fbj

]
,

Bw1sj2 =

αbj .05 αasj
.001 .001 .001
.001 .001 .001

 ,
Bwsj2 =

wbj .05 wasj
.001 .001 .001
.001 .001 .001

 .
In the mode 1, the values of variables are given
by: Ab1 = 2, Aa11 = −1, Aa21 = −1.1, Ba11 =
.01, Ba21 = .02, Ca11 = −.1, Ca12 = −.2,
Fb1 = 0.1, Fa11 = .2, Fa21 = .02, wb1 = −0.01,
wa11 = .01, wa21 = .001, αb1 = −.01, αa11 =
.01, αa12 = .001.

Fig. 1: Closed-loop state responses of the intercon-

nected switched Takagi-Sugeno systems.

In the mode 2, the values of variables are given
by: Ab2 = 1, Aa12 = −2, Aa22 = −3, Ba12 =
0.03, Ba22 = 0.04, Ca21 = −.4, Ca22 = −.3,
Fb2 = 0.2, Fa21 = Fa22 = .4, wb2 = 0.01,
wa12 = .02, wa22 = .05, αb2 = .01, αa21 =

Fig. 2: Outputs trajectories of the overall closed-loop

interconnected switched Takagi-Sugeno system.

.02, αa22 = .05 and the membership functions
h112 (x2) = sin2 (x21), h212 (x2) = sin2 (x22),
hi22 (x2) = 1−hi12 (x2). Let us assume that each
subsystem switches under within the frontier de-
�ned by H11 = 0.9x11 + x12, H12 = −0.2x11 +
9x12, H21 = −x21 + x22 and H22 = x21 − 2x22.
The external disturbances w1 and w2 are con-
sidered as white noise sequences.

A set of decentralized switched controllers (4)
is synthesized based on Theorem 1 via the Mat-
lab LMI toolbox. To do so, the lower bounds of
the derivatives of the membership functions are
pre�xed as λ111 = λ121 = λ112 = λ122 = −6, and

the disturbance attenuation level by ς21 = 1.7,
ς22 = 1.5. The solution of the proposed theo-
rem leads to the synthesis of two decentralized
non-PDC switched TS controllers (4) with the
following gain matrices:

1rst TS switched sub-controller:

K111
= K211

= 10−2 ∗
[
- 9.04 - 0.72
- 0.72 - 4.21

]
K121

= K221
= 10−2 ∗

[
- 15.37 5.90
5.90 - 14.14

]
X9

111
=

[
0.2427 - 0.1589
- 0.1589 0.1892

]
,

X9
211

=

[
0.2494 - 0.1589
- 0.1589 0.1936

]
,
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X9
121

=

[
0.2449 - 0.1056
- 0.1056 0.3855

]
,

X9
221

=

[
0.2826 - 0.125
- 0.125 0.42

]
.

2sd TS switched sub-controller:

K112
= K212

=−0.7586 0.3474 0.1388
0.3475 −0.6394 0.0852
0.1389 0.0853 −1.0686

 ,
K122

= K222
= - 0.8513 0.1899 0.0906

0.1899 - 0.8347 0.0661
0.0906 0.0661 - 0.9930

 ,
X9

112
=

 2.0615 - 1.4032 - 0.9036
- 1.4032 1.4636 - 0.0925
- 0.9036 - 0.0925 4.035

 ,
X9

212
=

 2.0064 - 1.361 - 0.7552
- 1.361 1.5038 - 0.0975
- 0.7552 - 0.0975 3.7587

 ,
X9

122
=

 2.1295 - 0.8043 - 0.2885
- 0.8043 2.1742 - 0.1705
- 0.2885 - 0.1705 2.9487

 ,
X9

122
=

 2.1104 - 0.8093 - 0.2917
- 0.8093 2.1822 - 0.1628
- 0.2917 - 0.1628 2.9275

 .
The close-loop subsystems' dynamics are shown
in Fig. 1 and Fig. 2, for the ini-

tial states x1 (0) =
[
2 2

]T
and x2 (0) =[

- 1 1.5 - 1
]T
. Moreover, Fig. 3 and Fig. 4

shows the control signals as well as the switching
modes' evolution. As expected, the synthesized
decentralized switched controller stabilizes the
overall large scale switched system composed of
(33) and (34).

5. CONCLUSIONS

This study has focused on large scale switched
nonlinear systems where each nonlinear mode
has been represented by a fuzzy TS system.
To ensure the stability of the whole system in
closed-loop, a set of decentralized switched non-
PDC controllers has been considered. Therefore,
LMI based conditions for the design of decen-
tralized controllers have been proposed through

Fig. 3: Control signal and switched laws' evolutions of

the �rst subsystem.

Fig. 4: Control signal and switched laws' evolutions of

the second subsystem.

the consideration of a multiple switched non-
quadratic Lyapunov-like function candidate and
by using the descriptor redundancy formulation.
Finally, a numerical example has been proposed
to show the e�ectiveness of the proposed ap-
proach. An extension of the proposed approach
to general switched systems under asynchronous
switches will be the focus of our future works.
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