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Abstract. In this paper, we propose two novel
approaches in the �eld of feature description and
matching. The �rst approach concerns the fea-
ture description and matching part, where we
proposed an orientation invariant feature de-
scriptor without an additional step dedicated to
this task. We exploited the information provided
by two representations of the image (intensity
and gradient) for a better understanding and
representation of the feature point distribution.
The provided information is summarized in two
cumulative histograms and used in the feature
description and matching process. In the context
of object detection, we introduced an unsuper-
vised learning method based on k-means cluster-
ing. Which we used as an outlier pre-elimination
phase after the matching process to improve our
descriptor precision. Experiments shown its ro-
bustness to image changes and a clear increase
in terms of precision of the tested descriptors af-
ter the pre-elimination phase.
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1. Introduction

Feature description and image matching are
two important problems in machine vision and
robotics. An ideal feature descriptor should be
robust to image transformations such as scale,
illumination, rotation, noise and a�ne trans-
formations. The ability to match correspond-
ing points between two or more images of a
scene is an important component of many com-
puter vision tasks such as structure from mo-
tion [1], visual SLAM (simultaneous localization
and mapping) [2], object recognition, image reg-
istration, 3D reconstruction and object track-
ing. Scale-invariant feature transform (SIFT)
introduced by Lowe [3] is a successful approach
in the �eld of feature detection and descrip-
tion, several variants and extension were pro-
posed to improve its computational complexity
like in [4], [5]. The speeded-up robust features
(SURF) [6] is also based on local histograms
of gradient orientations, which uses integral im-
age representations to speed up the computa-
tion. Binary robust independent elementary fea-
ture (BRIEF) [7], is one of the proposed alter-
natives for SIFT which requires less complex-
ity, with almost similar matching performance.
Rublee et al. proposed the oriented FAST and
rotated BRIEF (ORB) [8], the binary robust
invariant scalable keypoints (BRISK) [9], and
fast retina keypoint (FREAK) [10] are either
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good examples. Binary descriptors are robust
to local changes and computationally e�cient
since the Euclidean distance has been replaced
by Hamming distance. However, they remain
sensitive to small disturbance of sample point's
locations added to the fact that pairwise inten-
sity comparisons capture very limited informa-
tion of a local image region. Moreover, most of
the local binary features are handcrafted, that
require strong prior knowledge and are heuris-
tic. Shape based feature descriptors where also
widely studied and used. Such as, DAISY [11],
LIOP [12] and GSURF [13]. Several learning
approaches have been proposed based on con-
volutional neural networks (CNNs). Such as
AlexNet [14], VGG [15], GoogLeNet [16] and
ResNet [17]. Recently, multiple combinations of
the CNN's discriminative power with low-cost
computational binary descriptors were proposed
for multiple applications. Such as DeepBit [18],
where compact binary descriptors are unsuper-
visedly learned and achieved the state-of-the-art
of binary feature descriptors. Optimization ap-
proaches have been proposed in order to reach
or outperform state-of �the-art binary feature
descriptors such as in [19], where authors pro-
posed an online adaptive binary descriptor, opti-
mized for each image patch independently. Or in
[20], where authors proposed a general-purpose
learning to rank formulation that optimizes local
feature descriptors for nearest neighbor match-
ing. In [21], a context-aware local binary fea-
ture learning method has been proposed for face
recognition applications. A supervised convo-
lutional replacement of SIFT was proposed by
[22], which is a pipeline with feature point detec-
tion, orientation estimation and feature descrip-
tion. In [23], authors proposed a self-supervised
feature detector and descriptor that operates on
full-sized images and jointly computes pixel-level
interest point locations and associated descrip-
tors in one forward pass. Even if the e�ciency
of learning methods isn't debatable, the need of
an e�cient and costly training phase in addition
to the necessary availability of large annotated
datasets in order to reach traditional state-of-
the-art feature descriptors performances remain
a drawback. Moreover, their important sensitiv-
ity to orientation changes is a real inconvenient
for real word vision application. Therefore, an
additional step dedicated to the orientation esti-

mation is added to the pipeline in order to rem-
edy to this inconvenient. Our main objective
over this work is to propose an orientation in-
variant feature descriptor, which doesn't require
any additional step dedicated to this task.

We propose an e�cient histogram based ori-
entation invariant feature descriptor, based on
a simple combination of intensity and gradient
images. Unlike state-of-the-art, our descriptor
is free from the orientation estimation and com-
pensation step, since its structure o�ers him the
invariance property. Experimental results show
the e�ciency of our descriptor against rota-
tion, JPEG compression, viewpoint, multiview
and deformation changes. That makes it well
adapted for Multiview or surveillance cameras.
Moreover, we proposed an unsupervised outliers
pre-elimination method in order to enhance the
matching accuracy of our descriptor. Based on
k-means clustering, this step was added in the
context of object detection, after the matching
process and before the RANSAC operation. We
evaluated our descriptor on multiple datasets
and compared it to the most used state-of-the-
art feature descriptors and the obtained results
show the e�ciency of the proposed method.

This paper is organized as follow. Section 2
is dedicated to related work. A presentation of
our descriptor in Section 3. Followed by exper-
imental results in Section 4 and conclusions in
Section 5.

2. Related work

2.1. Rotation invariant

descriptors

An e�cient estimation of a discriminative ori-
entation is a critical step that a�ect the match-
ing results as shown in [43]. However, it hasn't
received consequent attention as in the case of
feature detection or description. The estimation
method introduced by SIFT is then actually the
dominant solution for assigning an orientation
to a feature point. A small improvement was
introduced in ORB, by using the intensity cen-
troid in order to speed-up the estimation pro-
cess. The drawback of this method as pointed
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out by [44] is its fragility against arbitrary posi-
tions, which negatively a�ect the descriptor per-
formances [27]. Some rotation invariant descrip-
tors have then been proposed in the literature
such as, MROGH [45], which uses intensity order
pooling with rotation invariant gradients. LIOP
[12] applied another approach on the same way
in order to aggregate the gradient information.
Even if BRISK [9] and FREAK [10] claims to be
rotation invariant, they remain dependent of the
orientation estimation that is included in the de-
scriptor extraction process. Learning-based de-
scriptors still rely on the orientation estimation
of the used feature detector. An approach has
been proposed by [46], that used Deep Learning
to predict stable orientations which result to sig-
ni�cant gain over state-of-art. However, it still
an additional step dedicated to independently
estimating the feature point orientation.

2.2. Feature Matching

A correspondence between two patches or patch
matching is an important process in many com-
puter vision applications, such as multi-view
reconstruction, object recognition or structure
from motion. The SIFT approach and its vari-
ants [47], [48] are based on conventional dis-
tance, e.g Euclidian distance to measure the sim-
ilarity between two patches. These methods re-
main largely dependent on human expertise and
does not provide optimal solution. Recently,
numerous learning based approaches have been
proposed [34], [40] in order to adapt similarity
functions for given datasets.

2.3. k-Means clustering with

Outlier Removal

The main objective over data clustering is the
identi�cation of homogeneous clusters over a set
of objects. Authors in [49] made an interest-
ing work by summarizing several outliers detec-
tion techniques. In [50], Yu et al. proposed
the OEDP k-means, where outliers are removed
from dataset before applying the k-means algo-
rithm. Authors in [51], proposed a method that
choose initial centers that are not outliers by
using two initialization methods. In [52], au-

thors used an additional cluster to the k-means
algorithm to eliminate outliers. The CHB-K-
Means [61], detected outliers by using attribute-
weighted matrix.

3. Proposed keypoint

descriptor

We �rst used the MSER [53] detector in order
to get the feature point positions. MSER is a
blob detector, this last extract from the image
a number of covariant regions, called MSER: an
MSER is a connected stable component of a few
sets of a gray level image. This one is based on
the idea of taking regions that remain almost the
same across a wide range of thresholds. So,

• All pixels below a given threshold are blank
and all those are equal or above are black.

• If we are shown a sequence of thresholded
images It. where the threshold is de�ned by t,
a black image will appear �rst, then white spots
corresponding to the minimum intensity will ap-
pear and then increase.

• These white dots will eventually merge, until
the entire image is white.

• All of the connected components in the se-
quence are the set of all the extremal regions.

Optionally, elliptical frames are attached to
MSERs by inserting ellipses into regions. These
regions are retained as features for the descrip-
tors. Word extremal refers to the property that
all pixels within the MSER have (regions bril-
liant extremes) or inferior (dark extremal re-
gions). For the description part, we took advan-
tage of image intensity and gradient information
to get a better understanding and description of
the feature point and its surroundings distribu-
tion.

3.1. Description

Motivation

Our motivation was to �nd another represen-
tation of the selected patches in order to com-
pare them without any orientation estimation
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and compensation process. In this optic, we
used two bi-dimensional histograms containing
the intensities and the gradient magnitudes and
orientations of the feature point surroundings.
We made the choice of using bi-dimensional his-
tograms in order to capture the intensity and
gradient orientation change around the patch
edges since only the position of the patch edges
change in the case of orientation transformation.
Considering the gradient magnitude as the best
way to localize image edges, we used it in both
intensities and gradient orientations histograms.

We chose to use a two-dimensional histogram
of intensity and gradient to capture the most
important intensity changes around the edges of
the patch, as experiments show that better re-
sults in terms of pairing accuracy were obtained
using two-dimensional histograms.

Histograms creation process

The �rst step of the histograms creation pro-
cess is to compute the gradient magnitude Im
and gradient orientation Iθ images from the orig-
inal image I, such as:

Im(x, y) =

[
(I(x+ 1, y)− I(x− 1, y))2

+ (I(x, y + 1)− I(x, y − 1))2
]1/2
(1)

Iθ(x, y) = tan−1 I(x, y + 1)− I(x, y − 1)

I(x+ 1, y)− I(x− 1, y)
(2)

Each keypoint and its surroundings in I, is
described using three image patches, which are
gradient orientations patch Pθ, gradient mag-
nitudes patch Pm and intensities patch PI , all
centered at the keypoint position (xi,yi) and re-
spectively extracted from Iθ, Im and I.

We quanti�ed the original values in the three
patches as shown in Fig.1. Intensities and gradi-
ent magnitudes are ranged over �ve values (1-5),
corresponding to the lowest until highest inten-
sity values and from weakest to strongest edges
in the case of gradient magnitudes. The gradi-
ent orientations are ranged over eight directions
(22◦-337◦), with a shift of 45◦.

The next step is the creation of the two cu-
mulative histograms HI,m and Hθ,m, which will
constitute our descriptor such as:

- Hθ,m Contains the gradient orientations and
magnitudes of Pθ andPm.

- HI,m Contains the intensities and gradient
magnitudes of PI and Pm.

Fig.2 shows three examples of the obtained
histograms from di�erent regions of the moon
surface. Intensities are ranged over the X-
axis, gradient magnitudes on the Y-axis and Z-
axis contain the cumulative votes of all the ele-
ments with the same (intensity, magnitude) val-
ues from the patches (PI and Pm). The same
goes for Hθ,m, where the X-axis is now contain-
ing the gradient orientations.

By observing the intensities patch P 1
I , we can

clearly see that it is composed of two dominant
black, white and a small gray areas. P 1

m con-
tains one clear edge surrounded by a black re-
gion. This distribution is perfectly re�ected in
H1, where the intensities are mainly distributed
over two values which are one and �ve, with
some votes for four representing the gray re-
gion. The gradient magnitudes are essentially
distributed around one representing the black re-
gion and some votes are assigned to higher values
corresponding to the unique edge in the patch.

In the case of P 2
I , intensities �uctuate between

certain black and gray regions without a clear
separation between them. P 2

m is also composed
of small �uctuant edges with di�erent magni-
tudes. As in the �rst case, the votes of inten-
sities and magnitudes are distributed over mul-
tiple small values in H2, corresponding to the
patch description presented above.

Finally, in P 3
I we can clearly see that it is es-

sentially composed of three gray, white and black
regions. The patch of gradient magnitudes, P 3

m

is composed of several small edges. This patch
description is well summarized in the last his-
togram H3, where most of the votes are divided
into three values namely three, four and �ve rep-
resenting the three previous intensity regions.
On the other hand, the gradient magnitudes are
distributed over di�erent low values between one
and three.
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 All pixels below a given threshold are blank and all those are equal or above are black. 
 

 If we are shown a sequence of thresholded images 𝐼t. where the threshold is defined by 𝑡, a black 
image will appear first, then white spots corresponding to the minimum intensity will appear and 
then increase. 
 These white dots will eventually merge, until the entire image is white. 
 All of the connected components in the sequence are the set of all the extremal regions. 

 
Optionally, elliptical frames are attached to MSERs by inserting ellipses into regions. These regions 

are retained as features for the descriptors. Word extremal refers to the property that all pixels within the 
MSER have (regions brilliant extremes) or inferior (dark extremal regions). For the description part, we 
took advantage of image intensity and gradient information to get a better understanding and description 
of the feature point and its surroundings distribution.  

3.1   Description 
Motivation 

Our motivation was to find another representation of the selected patches in order to compare them 
without any orientation estimation and compensation process. In this optic, we used two bi-dimensional 
histograms containing the intensities and the gradient magnitudes and orientations of the feature point 
surroundings. We made the choice of using bi-dimensional histograms in order to capture the intensity 
and gradient orientation change around the patch edges since only the position of the patch edges change 
in the case of orientation transformation. Considering the gradient magnitude as the best way to localize 
image edges, we used it in both intensities and gradient orientations histograms.  

We chose to use a two-dimensional histogram of intensity and gradient to capture the most important 
intensity changes around the edges of the patch, as experiments show that better results in terms of 
pairing accuracy were obtained using two-dimensional histograms. 

Histograms creation process 

The first step of the histograms creation process is to compute the gradient magnitude mI  and gradient 

orientation I  images from the original image I , such as: 
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Each keypoint and its surroundings in I , is described using three image patches, which are gradient 
orientations patch P , gradient magnitudes patch mP  and intensities patch IP , all centered at the keypoint 

position ( ix , iy ) and respectively extracted from I , mI  and I .  

We quantified the original values in the three patches as shown in Fig.1. Intensities and gradient 
magnitudes are ranged over five values (1-5), corresponding to the lowest until highest intensity values 
and from weakest to strongest edges in the case of gradient magnitudes. The gradient orientations are 
ranged over eight directions (22°-337°), with a shift of 45°.  

 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Patches content quantification and histograms creation process.  

Quantification process of IP , mP  and P  

Quantify  
IP  & mP  

 

Rang all the values to    

51  
Max Min 

Replace all the  
Values from 

 450  to 
22  

Quantify  

P  

 

Origi
n 

Quant 

P  

mP  

I
P  

mH ,  

mIH ,  

Feature surroundings 
extraction and 
quantification 

Histograms 
creation 

Fig. 1: Patches content quanti�cation and histograms creation process.

The next step is the creation of the two cumulative histograms mIH ,  and mH , , which will constitute 

our descriptor such as:   
- mH ,  Contains the gradient orientations and magnitudes of P  and mP . 

- mIH ,  Contains the intensities and gradient magnitudes of IP  and mP . 

 

 
 
 
 
 
 
 
 
 

Fig. 2. Three Histograms obtained from different regions of the moon surface. 

Fig.2 shows three examples of the obtained histograms from different regions of the moon surface. 
Intensities are ranged over the X-axis, gradient magnitudes on the Y-axis and Z-axis contain the 
cumulative votes of all the elements with the same (intensity, magnitude) values from the patches 
( IP and mP ). The same goes for mH , , where the X-axis is now containing the gradient orientations.  

By observing the intensities patch 1
IP , we can clearly see that it is composed of two dominant black, 

white and a small gray areas. 1
mP contains one clear edge surrounded by a black region. This distribution is 

perfectly reflected in 1H , where the intensities are mainly distributed over two values which are one and 
five, with some votes for four representing the gray region. The gradient magnitudes are essentially 
distributed around one representing the black region and some votes are assigned to higher values 
corresponding to the unique edge in the patch. 

In the case of 2
IP , intensities fluctuate between certain black and gray regions without a clear 

separation between them. 2
mP  is also composed of small fluctuant edges with different magnitudes. As in 

the first case, the votes of intensities and magnitudes are distributed over multiple small values in 2H , 
corresponding to the patch description presented above.  

Finally, in 3
IP  we can clearly see that it is essentially composed of three gray, white and black 

regions. The patch of gradient magnitudes, 3
mP  is composed of several small edges. This patch description 

is well summarized in the last histogram 3H , where most of the votes are divided into three values namely 
three, four and five representing the three previous intensity regions. On the other hand, the gradient 
magnitudes are distributed over different low values between one and three. 

Orientation invariance property 

By observing patches from the original image in Fig.3 and its rotated version. We remarked that the 
edges and intensities distribution is the same over the two patches, only their positions changed.  
 

 

 

 

 

Fig. 3. A comparison of two patches surrounding the same feature point from the original image and its rotated 
version from VanGogh dataset. 
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Fig. 2: Three Histograms obtained from di�erent regions of the moon surface.

Orientation invariance property

By observing patches from the original image
in Fig.3 and its rotated version. We remarked
that the edges and intensities distribution is the
same over the two patches, only their positions
changed.

Our intuition was to say that, even if we per-
form a rotation on the original image. The edges
distribution over it will remain unchanged and
by the same, the intensities and gradient orien-
tations distribution around them won't change
either. This was con�rmed by the obtained
histograms from Fig.3 patches, where we can
clearly see in Fig.4, that the obtained histograms
of the feature points in the original and rotated
images are the same.

3.2. Matching

In the matching part, our objective is to get
the highest percentage of similarity between the
selected keypoint pairs by comparing their his-
tograms (H1

θ,m, H
1
I,m) and (H2

θ,m, H
2
I,m). Re-

spectively obtained from the test I1 and refer-
ence I2 images. We performed a subtraction
operation between the pairs of histograms in or-
der to get their similarity scores. The resulting
histograms are respectively given by, Hθ,m and
HI,m.

We consider that, if the jth element in the
resulting histograms hjθ,m ∈ Hθ,m and hjI,m ∈
HI,m is less than its corresponding thresholded

element in H1
θ,m and H1

I,m, such as: hjθ,m <?

Th ∗ h1,j
θ,m and hjI,m <? Th ∗ h1,j

I,m with Th < 1,
we add one to the matching scores (Sθ and Sp).
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The next step is the creation of the two cumulative histograms mIH ,  and mH , , which will constitute 

our descriptor such as:   
- mH ,  Contains the gradient orientations and magnitudes of P  and mP . 

- mIH ,  Contains the intensities and gradient magnitudes of IP  and mP . 

 

 
 
 
 
 
 
 
 
 

Fig. 2. Three Histograms obtained from different regions of the moon surface. 

Fig.2 shows three examples of the obtained histograms from different regions of the moon surface. 
Intensities are ranged over the X-axis, gradient magnitudes on the Y-axis and Z-axis contain the 
cumulative votes of all the elements with the same (intensity, magnitude) values from the patches 
( IP and mP ). The same goes for mH , , where the X-axis is now containing the gradient orientations.  

By observing the intensities patch 1
IP , we can clearly see that it is composed of two dominant black, 

white and a small gray areas. 1
mP contains one clear edge surrounded by a black region. This distribution is 

perfectly reflected in 1H , where the intensities are mainly distributed over two values which are one and 
five, with some votes for four representing the gray region. The gradient magnitudes are essentially 
distributed around one representing the black region and some votes are assigned to higher values 
corresponding to the unique edge in the patch. 

In the case of 2
IP , intensities fluctuate between certain black and gray regions without a clear 

separation between them. 2
mP  is also composed of small fluctuant edges with different magnitudes. As in 

the first case, the votes of intensities and magnitudes are distributed over multiple small values in 2H , 
corresponding to the patch description presented above.  

Finally, in 3
IP  we can clearly see that it is essentially composed of three gray, white and black 

regions. The patch of gradient magnitudes, 3
mP  is composed of several small edges. This patch description 

is well summarized in the last histogram 3H , where most of the votes are divided into three values namely 
three, four and five representing the three previous intensity regions. On the other hand, the gradient 
magnitudes are distributed over different low values between one and three. 

Orientation invariance property 

By observing patches from the original image in Fig.3 and its rotated version. We remarked that the 
edges and intensities distribution is the same over the two patches, only their positions changed.  
 

 

 

 

 

Fig. 3. A comparison of two patches surrounding the same feature point from the original image and its rotated 
version from VanGogh dataset. 
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Fig. 3: A comparison of two patches surrounding the same feature point from the original image and its rotated
version from VanGogh dataset.

Our intuition was to say that, even if we perform a rotation on the original image. The edges 
distribution over it will remain unchanged and by the same, the intensities and gradient orientations 
distribution around them won’t change either. This was confirmed by the obtained histograms from Fig.3 
patches, where we can clearly see in Fig.4, that the obtained histograms of the feature points in the 
original and rotated images are the same. 

3.2   Matching 

In the matching part, our objective is to get the highest percentage of similarity between the selected 

keypoint pairs by comparing their histograms ( 1
,mH , 1

,mIH ) and ( 2
,mH , 2

,mIH ). Respectively obtained 

from the test 1I  and reference 2I  images. We performed a subtraction operation between the pairs of 
histograms in order to get their similarity scores. The resulting histograms are respectively given by, 

mH , and mIH , .  

 
 
 
 
 
 
 
 
 
 

 

 

Fig.4. Resulting histograms from two patches surrounding the same feature point in the original image and its rotated 
version. 

We consider that, if the thj  element in the resulting histograms m
j

m Hh ,,    and mI
j
mI Hh ,,   is less 

than its corresponding thresholded element in 1
,mH  and 1

,mIH , such as: j
m

j
m hThh ,1

,
?

, *    and 

j
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j
mI hThh ,1

,
?

, *  with 1Th , we add one to the matching scores  ( S  and pS ).  

In other terms, if we subtract the histograms ( 2
,mH , 2

,mIH ) of the reference image from ( 1
,mH , 1

,mIH ), 

the corresponding histograms of test image. A perfect match should correspond to resulting histograms 
( mH ,  and mIH , ) with all zeros elements. Or, at least all the resulting elements ( mh ,  and mIh , ) are less 

than their corresponding thresholded elements ( 1
,mh , 1

,mIh ) in the histograms of test image. The matching 

scores are then given by: 
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Where, N  and IN  are respectively, the total number of elements in mH ,  and mIH , . The final score of 

a given keypoint pair is the mean of the obtained matching scores (%)S  and (%)IS , such as:  

)4(),((%) IF SSmeanS   

We consider in the context of our work that a correspondence between two points is correct if the final 
score is greater than the matching threshold (%)ThM , which we fixed to 70%. Such as: 
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Fig. 4: Resulting histograms from two patches surrounding the same feature point in the original image and its
rotated version.

In other terms, if we subtract the histograms
(H2

θ,m, H
2
I,m) of the reference image from (H1

θ,m,

H1
I,m), the corresponding histograms of test im-

age. A perfect match should correspond to re-
sulting histograms (Hθ,m and HI,m) with all ze-
ros elements. Or, at least all the resulting ele-
ments (hθ,m and hI,m) are less than their corre-
sponding thresholded elements (h1

θ,m, h
1
I,m) in

the histograms of test image. The matching

scores are then given by:


SI(%) =

[∑
j(h

j
I,m < Th ∗ h1,j

I,m)/NI

]
∗ 100

Sθ(%) =
[∑

j(h
j
θ,m < Th ∗ h1,j

θ,m)/Nθ

]
∗ 100

(3)

Where, Nθ and NI are respectively, the total
number of elements in Hθ,m and HI,m. The �nal
score of a given keypoint pair is the mean of
the obtained matching scores Sθ(%) and SI(%),
such as:

SF (%) = mean (Sθ, SI) (4)
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We consider in the context of our work that
a correspondence between two points is correct
if the �nal score is greater than the matching
thresholdThM(%), which we �xed to 70%. Such
as:{

if SF (%) ≥ ThM(%), Correct Match
if SF (%) < ThM(%), Incorrect Match

(5)
We summarized the proposed method above in
the algorithm 1, such as.

A perfect match is equivalent to a �nal score
(or percentage of similarity) of 100%. In order to
illustrate the matching process in a better way,
we illustrated it on the example of Fig.4,

We can clearly see in Fig.6 that all the ele-
ments hjθ,m ∈ Hθ,m and hjI,m ∈ HI,m in the
resulting histogram pair are near to zero. Or
at least all the resulting elements are less than
their corresponding thresholded elements in the
histograms of test image, which corresponds to
a perfect match. If two or more feature points
in the test image, match a single point in the
reference image, we keep the pair with the best
match and discard the other(s).

Fig.7 shows some visual results obtained by
our descriptor under di�erent angle changes and
without any orientation compensation step.

For a �rst attempts, we used a simple di�er-
ence between histograms in the matching part.
That said, there are other much more sophisti-
cated methods for doing histograms comparison
such as Kullback Leibler divergence or Earth-
movers-distance, which we will explore for fur-
ther searches.

3.3. Object detection

3.3.1 Scaling Process

As in the case of SIFT, we used pyramids to
get the scale with one di�erence. In our case, we
directly applied them on the patch level where
the SIFT descriptor use image pyramids. We ap-
plied di�erent scales on the patch of object im-
age. As shown in Fig.8, we increased the patch
size surrounding the key point to cover a larger
space in the image. We then resized it to the ini-

tial patch size by down sampling for the match-
ing operation.

This method allows us to get better results in
the matching part as shown by the example in
Fig.8, where we can see the similarity between
the histograms of the selected keypoints pair.
For each pair, we applied three di�erent scales
[Scale1, Scale2, Scale3] on the reference image
patch and we keep the best matching score from
the obtained results using these scales.

3.3.2 Outliers Pre-elimination Process

In order to achieve better object detection re-
sults, while preserving the simplicity of our sys-
tem. We added a pre-elimination phase based on
the unsupervised learning method of K-means,
in order to eliminate false matches. The clus-
tering method K-means clustering (MacQueen,
1967-kmeans) is a commonly used method to au-
tomatically partition a dataset in k groups. It
proceeds by selecting k initial groups, then these
are re�ned from iteratively as follows:

1. Each group consists of several instances di.

2. The center of each group Cj is updated to
become the average of its instances constituent.

Then, the algorithm converges when there is no
more change in the assignment of instances to
clusters.

The main objective of this operation in our
case is to segment the obtained matches in test
image to k regions (k groups of correspondences)
with a probability for each region to contain the
object. This step is performed after the match-
ing process and before the RANSAC test be-
tween the two images. Fig.9 shows an example
of this process, for k = 3.

The choice of k = 3 was made empirically after
an important number of tests, where we found
that the best results were obtained with it. That
said, this parameter will be the subject of further
investigation in future work.

We estimate that the group with the highest
number of good matching scores de�nes the most
likely region containing the object in the test im-
age. The rest of groups are then automatically
eliminated. This helps to squeeze out a consid-
erable amount of false matches.
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Algorithm 1: Description and Correspondence prcess

Input:
The intensity image I
The patch size s
Total number of elements in the histograms NI and Nθ.

Description :
1: Compute the gradient orientation and magnitude Iθ, Im of the input image I.
2: Find the feature points positions (xi, yi) by the MSER detector.
For each feature point do

Extract the patches Pθ, Pm and PI of size (s x s), surrounding the feature point at
position (xi, yi), from Iθ, Im and I.
Quantify the selected patches Pθ, Pm andPI .
Construct the cumulated histograms HI,m and Hθ,m such as:
For i : 1 to s do

For k : 1 to s do
HI,m (PI (i,k), Pm (i,k)) = HI,m (PI (i,k), Pm (i,k)) +1;
Hθ,m (Pθ (i,k), Pm (i,k)) = Hθ,m (Pθ (i,k), Pm (i,k)) +1;

endfor

endfor

endfor
Correspondence :
1: Subtract the histograms of the reference image (H2

θ,m, H
2
I,m) from the test image

histograms (H1
θ,m, H

1
I,m) giving the resulting histograms (Hθ,m and HI,m).

2: Compute the correspondence scores Sθ and Sp such as :
For i : 1 to size (HI,m,1) do

For j : 1 to size (HI,m,2) do
If HI,m (i , j) < = Th * H1

I,m(i , j) do
PI = PI + 1;

endIf

endfor

endfor
SI = (PI / NI) * 100;
For i : 1 to size (Hθ,m,1) do

For j : 1 to size (Hθ,m,2) do
If Hθ,m (i , j) < = Th * H1

θ,m (i , j) do
Pθ = Pθ + 1;

endIf

endfor

endfor
Sθ = (Pθ / Nθ) * 100;
3: Compute the �nal score SF, which is the mean of the correspondence scores Sθ and Sp.
4: Classify the correspondence as a correct or false match by comparing the �nal score to
the correspondence threshold ThM.

Fig. 5: The proposed method algorithm.

This step is ignored in the case of image align-
ment. Experimental results showed a clear in-
crease in accuracy using this module.
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A perfect match is equivalent to a final score (or percentage of similarity) of 100%. In order to illustrate 
the matching process in a better way, we illustrated it on the example of Fig.4, 
 
 
 
 
 

 

 

 
 

 

 

Fig. 6. Example showing the matching process of our descriptor.  
 

We can clearly see in Fig.6 that all the elements m
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mI Hh ,,  in the resulting 

histogram pair are near to zero. Or at least all the resulting elements are less than their corresponding 
thresholded elements in the histograms of test image, which corresponds to a perfect match. If two or 
more feature points in the test image, match a single point in the reference image, we keep the pair with 
the best match and discard the other(s).     

Fig.7 shows some visual results obtained by our descriptor under different angle changes and without 
any orientation compensation step. 

 
 
 
 

 

 
 
 
 
 
 
 
Fig. 7. Visual results obtained by our descriptor under rotation change, without any orientation estimation step. 
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scales on the patch of object image. As shown in Fig.8, we increased the patch size surrounding the key 
point to cover a larger space in the image. We then resized it to the initial patch size by down sampling 
for the matching operation. 

This method allows us to get better results in the matching part as shown by the example in Fig.8, 
where we can see the similarity between the histograms of the selected keypoints pair. For each pair, we 
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Fig. 7: Visual results obtained by our descriptor under rotation change, without any orientation estimation step.

4. Experimental results

4.1. Image matching

We tested our descriptor in comparison to the
widely used SIFT and SURF descriptors. We
also compared it to BRIEF descriptor, which
is free from orientation assignment. As ours,

DAISY is a histogram-based descriptor, we then
added it to the comparison process. Finally, we
compared our descriptor to a learning based de-
scriptor [36]. For simplicity, we named our de-
scriptor ADOCH, for absolute di�erence of cu-
mulated histograms. Our tests were performed
under Matlab R2015a.
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Fig. 8. Illustration of scaling process under the context of object detection. 

3.3.2   Outliers Pre-elimination Process 

In order to achieve better object detection results, while preserving the simplicity of our system. We 
added a pre-elimination phase based on the unsupervised learning method of K-means, in order to 
eliminate false matches. The clustering method K-means clustering (MacQueen, 1967-kmeans) is a 
commonly used method to automatically partition a dataset in k groups. It proceeds by selecting k initial 
groups, then these are refined from iteratively as follows: 

1. Each group consists of several instances 𝑑i. 

2. The center of each group 𝐶j is updated to become the average of its instances constituent. 

Then, the algorithm converges when there is no more change in the assignment of instances to clusters. 
The main objective of this operation in our case is to segment the obtained matches in test image to k 

regions (k groups of correspondences) with a probability for each region to contain the object. This step is 
performed after the matching process and before the RANSAC test between the two images. Fig.9 shows 
an example of this process, for 3k . 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Fig. 9. Example illustrating the outliers pre-elimination process.  
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We selected four popular datasets to test our
descriptor. In each sequence, a known increas-
ing amount of transformations are performed
between the �rst and the rest of images. The
�rst one is the well-known (Oxford) dataset in-
troduced by Mikolajczyk and Schmid [54]. It
contains image sequences with six to nine im-

ages of rotation, illumination, scale and blur
change. Salzmann's dataset [55] has been used
to evaluate our descriptor performance for 3D
deformable objects. The Strecha's dataset [56]
were applied for the multiview stereo case and
Heinly's dataset [57] for illumination, pure cam-
era rotation, and pure scale change. We also
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computed the generation time of our descriptor
comparing to the rest of descriptors.

The descriptors performances are highly re-
lated to the combination detector/descriptor,
since some descriptors are more discriminant for
blobs than corners. Nevertheless, the global
ranking of their performances remain the same
regardless to the selected detector.

In [58], [59], authors shows that MSER is the
best a�ne-invariant region detector in terms of
accuracy and repeatability. We then used it in
combination of our descriptor, about 500 to 1000
keypoints were detected for all tests.

We empirically chosen the optimum patch size
after multiple tests, which we �xed to s = 34 pix-
els. That said, an optimization of this parame-
ter could be subject to further investigations in
future works.

In the matching part, we �xed the threshold
Th to, Th = 0.25 since we estimate that a result-
ing elements hjθ,m ∈ Hθ,m and hjI,m ∈ HI,m from
the subtraction operation that are 75% inferior
to their corresponding elements h1

θ,m, h
1
I,m in the

test histograms are considered as near to zero.
Therefore, we consider that if hθ,m<0.25*h1

θ,m

or hI,m<0.25*h1
I,m, this is equivalent to a very

small di�erence between test and reference his-
tograms, we then add one to the matching scores
Sθ and Sp.

We used the recall vs 1-precision curves to
evaluate our descriptor performances under dif-
ferent constraints like blur, brightness, rotation
and scale change. Such that

Re call =
Number of trueMatch

Number of Correspondences
(6)

1− precision

=
Number of falseMatch

Number of trueMatch + Number of falseMatch
(7)

We estimate that a match is correct if the
�nal correspondence score SF (%) is superior
to the similarity threshold, which we �xed to
ThM(%) = 70%. Only few number of incorrect
matches have a similarity score which is supe-
rior to the �xed threshold. Nevertheless, these
ones are not quantized as true Matches. Fig.10

shows our descriptor performances on the (Ox-
ford) dataset, the obtained results illustrate the
resistance of our descriptor for di�erent kind of
changes.

Even if the sensitivity of the gradient magni-
tude to blur change a�ect negatively the perfor-
mances of our descriptor. For the viewpoint, ro-
tation and JPEG compression changes, our de-
scriptor performance is high. Our descriptor also
performs well under illumination and rotation-
&-scale change.

Fig.11 shows that our descriptor performs well
in the case of 3D deformable objects. In the
case of deformable objects, the edges distribu-
tion over the patch isn't highly a�ected and the
strong aspect of our descriptor is precisely the
fact that it's based on histograms which con-
tains all important changes around the patch
edges. This property makes it very resistant to
this kind of changes. The same goes for Fig.12,
where it shows our descriptor results under mul-
tiview for the stereo case.

The obtained results are extremely satisfac-
tory and even better than some state-of-the-art
descriptors. Moreover, we should note in this
case that our descriptor doesn't need any prepro-
cessing phase such as pattern creation in the case
of binary descriptors, training phase for CNN
descriptors or the orientation computation and
compensation step for the histograms-based de-
scriptors.

Finally, we tested our descriptor for pure angel
and scale changes on Heinly's dataset, as shown
in Fig.13 our descriptor performs extremely well.

This not only con�rms our �rst intuition for
the rotation invariance property of our descrip-
tor, but also shows its resistance to pure scale
change.

Fig.15 shows some visual results of our de-
scriptor on the four datasets proposed before.
We can clearly see the performances of our de-
scriptor under di�erent types of changes.

4.2. Object recognition

For the last investigation, we tested our descrip-
tor in the context of object detection with the
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Fig. 10. Our descriptor performances on the (Oxford) dataset under view point (Graffiti), rotation and scale (Boat), 
blur (Bikes), luminance (Leuven) and JPEG compression change (Ubc). 

Fig. 10: Our descriptor performances on the (Oxford) dataset under view point (Gra�ti), rotation and scale (Boat),
blur (Bikes), luminance (Leuven) and JPEG compression change (Ubc).
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Even if the sensitivity of the gradient magnitude to blur change affect negatively the performances of 

our descriptor. For the viewpoint, rotation and JPEG compression changes, our descriptor performance is 
high. Our descriptor also performs well under illumination and rotation-&-scale change.  
 
 

 
 

 

 

 

 

 

 

 

 

 
 
 

 

 
Fig. 11. Performance of our descriptor on the Salzmann’s dataset for deformable objects.  
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Fig. 12. Shows the obtained results from our descriptor on the multiview case. 
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The obtained results are extremely satisfactory and even better than some state-of-the-art descriptors. 
Moreover, we should note in this case that our descriptor doesn’t need any preprocessing phase such as 
pattern creation in the case of binary descriptors, training phase for CNN descriptors or the orientation 
computation and compensation step for the histograms-based descriptors.  

Finally, we tested our descriptor for pure angel and scale changes on Heinly’s dataset, as shown in  
Fig.13 our descriptor performs extremely well.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Performances of our descriptor on the Heinly’s dataset. 
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Fig. 14. Quantitative performance of the descriptors using the 5.0F . 

Fig. 13: Performances of our descriptor on the Heinly's dataset.

pre-elimination step. We tested our descriptor
on two publicly available datasets, which are
the 53 Objects [62] and Home Objects 06 [63]
datasets composed of multiple objects with dif-
ferent declinations of each one of them. We also
tested it on our own dataset that consist on real
word images of multiple home objects under dif-
ferent f luminance, scale and orientation change,
some samples images of it are shown in Fig.16.

In order to test the e�ciency of the pre-
elimination phase, we computed the accuracy
rate of our descriptor, with and without this

step. Such as,



Object Accuracy Rate

=
Number of objects correctly recognized

Total number of declinations
Total Accuracy Rate(%)

= Mean (Object Accuracy Rate)× 100

(8)

Object accuracy rate (AR) re�ect all the cases
where the object is correctly detected under
its di�erent declinations. Total accuracy rate
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using the F 0.5.

(TAR) is the mean of all the obtained rates for
all objects in the dataset.

These rates are computed with and without
the pre-elimination phase. The obtained results
are summarized in Tab.1, we took in this case
k = 3.

Data
set

TAR with-
out cluster-
ing

TAR with
clustering

Home
Objects

46.425 % 52.361 %

53 Ob-
jects

32.913 % 43.785 %

Our
dataset

45.325% 53.784%

Tab. 1: Total accuracy rates with and without cluster-
ing.

Tab.1 show an enhancement of about 10% in
the total accuracy rate, which is considerable in
terms of precision. The modularity of this step
is its main advantage, since it can be added to
any descriptor and can be activated for object
detection and deactivated otherwise.

Fig.17 illustrate some visual results of our de-
scriptor before and after the pre-elimination
phase,

We can clearly see in Fig.17 that a consider-
able reduction of outliers have been performed
after the clustering operation.

Table 2 contains comparison of descriptors
computation time. As reference, we took the

computation time of descriptors which were pro-
cessed on similar or faster machines. The ta-
ble contains timings per keypoint. All presented
experiments were run on Intel Core i7-2720QM
2.2GHz, 16GB of RAM.

Results with * were obtained in experiments re-
ported in this paper.

Name Descriptor gen-
eration time
(ms)

ADOCH
SIFT
SURF
BRIEF

0.86*
6.156 [11], 2.5 [12],
2.071 [46]
1.4 [12], 0.67 [27],
0.81 [46]
0.046 [46]

DAISY 0.012 [46]
CNN -

Tab. 2: Descriptor computation time (per keypoint).

The obtained results show that our descriptor
generation time is less than SIFT and near to
the SURF descriptors. The BRIEF descriptor is
faster, since that the sampling pattern creation
time is not included here. The DAISY descriptor
is also faster than ours. It is important to note
that the orientation computation and compen-
sation time is not included in the case for the
SIFT, SURF and DAISY descriptors, whereas
this step is skipped for our descriptor.

If we look to the ADOCH computation steps,
we can clearly conclude that they are mainly
independent, e.g., histograms can be processed
independently, which makes the descriptor easy
to parallel. Therefore, some further improve-
ments in shortening the computation time are
expected.

Experiments show that our descriptor is
very e�cient for high rotation, viewpoint,
3D deformable objects and JPEG compression
changes. It also performs well in the case of
blur and scale change. These properties makes
it very attractive for large use applications such
as, Multiview stereo vision or surveillance cam-
eras, considering its ease of implementation.

c© 2018 Journal of Advanced Engineering and Computation (JAEC) 265



VOLUME: 2 | ISSUE: 4 | 2018 | December
Fig.15 shows some visual results of our descriptor on the four datasets proposed before. We can 

clearly see the performances of our descriptor under different types of changes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. Some visual performances of our descriptor on the four proposed datasets. 

4.2 Object recognition 

For the last investigation, we tested our descriptor in the context of object detection with the pre-
elimination step. We tested our descriptor on two publicly available datasets, which are the 53 Objects 
[62] and Home Objects 06 [63] datasets composed of multiple objects with different declinations of each 
one of them. We also tested it on our own dataset that consist on real word images of multiple home 
objects under different f luminance, scale and orientation change, some samples images of it are shown in 
Fig.16.  

 
 
 
 
 
 

 
Fig. 16. Sample omages of our home object dataset composed of four object with two test images for each one. 
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Table 1.  Total accuracy rates with and without clustering.   
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Fig. 15: Some visual performances of our descriptor on the four proposed datasets.

Fig.15 shows some visual results of our descriptor on the four datasets proposed before. We can 
clearly see the performances of our descriptor under different types of changes. 
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4.2 Object recognition 

For the last investigation, we tested our descriptor in the context of object detection with the pre-
elimination step. We tested our descriptor on two publicly available datasets, which are the 53 Objects 
[62] and Home Objects 06 [63] datasets composed of multiple objects with different declinations of each 
one of them. We also tested it on our own dataset that consist on real word images of multiple home 
objects under different f luminance, scale and orientation change, some samples images of it are shown in 
Fig.16.  
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Tab.1 show an enhancement of about 10% in the total accuracy rate, which is considerable in terms of 
precision. The modularity of this step is its main advantage, since it can be added to any descriptor and 
can be activated for object detection and deactivated otherwise.  
 
Fig.17 illustrate some visual results of our descriptor before and after the pre-elimination phase, 
 
 
 
 
 
 
 
 
 
Fig. 17. Visual illustration of the pre-elimination phase showing sime examples of object detection before and after 
the pre-elimination phase.  
 

We can clearly see in Fig.17 that a considerable reduction of outliers have been performed after the 
clustering operation.  

Table 2 contains comparison of descriptors computation time. As reference, we took the computation 
time of descriptors which were processed on similar or faster machines. The table contains timings per 
keypoint. All presented experiments were run on Intel Core i7-2720QM 2.2GHz, 16GB of RAM.  

Results with * were obtained in experiments reported in this paper. 

 

 

 
 
 

Table 2.  Descriptor computation time (per keypoint).  

The obtained results show that our descriptor generation time is less than SIFT and near to the SURF 
descriptors. The BRIEF descriptor is faster, since that the sampling pattern creation time is not included 
here. The DAISY descriptor is also faster than ours. It is important to note that the orientation 
computation and compensation time is not included in the case for the SIFT, SURF and DAISY 
descriptors, whereas this step is skipped for our descriptor.  

If we look to the ADOCH computation steps, we can clearly conclude that they are mainly 
independent, e.g., histograms can be processed independently, which makes the descriptor easy to 
parallel. Therefore, some further improvements in shortening the computation time are expected. 

Experiments show that our descriptor is very efficient for high rotation, viewpoint, 3D deformable 
objects and JPEG compression changes. It also performs well in the case of blur and scale change. These 
properties makes it very attractive for large use applications such as, Multiview stereo vision or 
surveillance cameras, considering its ease of implementation.  

 5   Conclusions 

In this paper, we proposed two contributions in the field of feature description and matching. The 
main property of our descriptor is its rotation invariance without the need to an orientation compensation 
step. Moreover, we added an outliers pre-elimination step, based on k-means clustering under the context 
of object detection, in order to enhance our descriptor detection accuracy. The ease of implementation of 
our descriptor and its resistance to different image changes makes it very attractive for wide use 
applications such as stereo Multiview or surveillance cameras. Experiments show a clear increase of 
precision with the pre-elimination step in the context of object detection. 

Name Descriptor generation time (ms) 
ADOCH 
SIFT  
SURF  
BRIEF  

0.86* 
6.156 [11], 2.5 [12], 2.071 [46] 
1.4 [12], 0.67 [27], 0.81 [46] 
0.046 [46] 

DAISY 0.012 [46] 
CNN - 

Fig. 17: Visual illustration of the pre-elimination phase showing sime examples of object detection before and after
the pre-elimination phase.

5. Conclusions

In this paper, we proposed two contributions
in the �eld of feature description and match-
ing. The main property of our descriptor is
its rotation invariance without the need to an
orientation compensation step. Moreover, we
added an outliers pre-elimination step, based on

k-means clustering under the context of object
detection, in order to enhance our descriptor de-
tection accuracy. The ease of implementation of
our descriptor and its resistance to di�erent im-
age changes makes it very attractive for wide use
applications such as stereo Multiview or surveil-
lance cameras. Experiments show a clear in-
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crease of precision with the pre-elimination step
in the context of object detection.
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