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Abstract. Our main objective is in antago-
nizing the performance of two approaches: the
Newton-Raphson (N-R) algorithm and mazLik
function in the statistical software R to obtain
optimization roots of estimating functions. We
present the approach of algorithms, examples
and discussing about two approaches in detail.
Besides, we prove that the N-R algorithm can
perform if our data set contain missing values,
while maxLik function cannot execute in this sit-
uation. In addition, we also compare the results,
as well as, the time to run code to output the
result of two approaches through an example is
introduced in [1].
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1. Introduction

In statistical inference and applied mathemat-
ics, estimating functions play an extremely vi-
tal position in researches. If having the esti-
mating function we can execute some of ap-
proaches to figure out this issue. Compre-
hensive theory and its applications can be ob-
tained from numerous reference books on statis-
tics. In [2], Godlambe presented about esti-

(© 2018 Journal of Advanced Engineering and Computation (JAEC)

mating functions in which a function includes
the data set and parameters need to be es-
timated. An overview, the estimating func-
tion can be described by H with provided that
H(data,v) = 0, where ¢ € ¥ and ¥ is a param-
eter space. The issues are associated with find-
ing an optimization root to estimating functions
are exceedingly crucial in several areas, such as:
statistical inferences, mathematics, technology
and economics, etc. Therefore, it is extremely
meaningful to study of these problems. There
are numerous approaches to obtain optimization
roots for instance: the secant method, gradient
method, Newton-Raphson algorithm, etc where
the repetitive Newton-Raphson algorithm is one
of the most widespread executed. About this
regard, there are several scholars had researched
and performed it. For example: Riks [3] pre-
sented the application of Newton’s method to
the problem of elastic stability, Broyden [4] in-
troduced about quasi-Newton methods and their
application to function mini-misation, Polyak [7]
researched about the N-R method and its ap-
plication in optimization, Chalco et al. [6] pre-
sented about on the Newton method for solving
fuzzy optimization problems. Bakari et al. [7]
introduced the application of Newton-Raphson
method to non-linear models, Wu et al. [g] re-
searched about a regularized Newton method
for computing ground states of Bose-Einstein
condensates, Chin et al. [9] presented an ef-
ficient alternating newton method for learning
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factorization machines, Ferreira et al. [L0] intro-
duced about inexact Newton method for non-
linear functions with values in a cone, Mokhtari
et al. [11] researched about IQN: An incremen-
tal quasi-Newton method with local superlinear
convergence rate, etc.

Furthermore, there are several available func-
tions in R to obtain optimization roots, for ex-
ample: the maxLik function is first introduced
by Henningsen et al. [12]. Nash [13] developed
an optim function. This function is derived from
the algorithm of Zhu et al. [14]. Hasselman [17]
proposed about Nlegslv function, etc. Although
the problem about finding the optimization solu-
tion of estimating functions has been extensively
studied and widely applied in various fields,
the issue about comparing the performance of
these approaches has not been yet researched.
To circumvent the difficulty, in this paper, our
main objective is in comparing the performance
of two approaches: Newton-Raphson algorithm
and maxLik function. In this study, we are in-
terested in the following issues: basically, the
maxLik function is an available function in the
statistical software R, so it is convenient to use,
but can maxLik function be executed if our data
set contain missing values? When using two ap-
proaches to obtain the optimization root for the
same model, are the results of two approaches
similar? Time to run code to output the re-
sults from two approaches, which the approach
is faster?

The rest of the paper is structured as fol-
lows. We present the procedure and examples
of two approaches in Section 2. In Section 3, we
review of three widespread methods to handle
with missing data to compare the performance
of two methods if our data set contain missing
values. In Section 4, comparing the results
and the time to run code to output the result of
two approaches through an simulation study is
introduced in [1]. Eventually, some concluding
remarks and work extension are stated in the
last section.
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2. The procedure and

examples

We introduce the procedure and examples of two
approaches: Newton-Raphson algorithm and
Maxlik function to obtain the optimization root
to estimating functions. We present the Maxlik
function owing to the fact that it is an avail-
able widespread function to get the optimiza-
tion root and it does not use the Hessian matrix
in formula. In numerical analysis, the Newton-
Raphson is an ubiquitous repetitive algorithm to
get roots to a target function g(u) (solutions of
g(u) = 0). In Statistics and optimization, the N-
R algorithm is one of the most widespread per-
formed algorithms to find roots of the derivative
of function g(u) (solutions of ¢'(u) = 0). Our
main objective is comparing the performance of
two approaches to obtain the optimization root.
Hence, we do not introduce about how to set up
algorithms in detail. We only present formulas
and some examples of two approaches.

2.1. Newton-Raphson algorithm

(a) Case 1: One-dimension

Let g(u) be a target function need to be
found its roots by performing the Newton-
Raphson algorithm. The expression root of
the N-R algorithm can be described as fol-
lows:

g(un)
g (un)

(1)

Un4+1 = Up —

To obtain optimization roots by executing
the Newton-Raphson algorithm. Usually
we reiterate the expression (1) until the dif-
ference of two adjacent roots is smaller than
v (where v a very small value provided).
Example 1:  Performing the Newton-
Raphson algorithm to obtain the root of the
following equation: 3u®+7u—9 = 0. Utiliz-
ing an initial value ug = 1. Executing three
iterations.

Solution:

Let g(u) = 3u®+Tu—9. It can be seen that
9(0)g(1) = =9 < 0. Therefore g(u) = 0 has
root in the (0,1) interval, ¢’(u) = 9u? + 7.
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We construct an expression {u,, }:

_ 3qu + Tu, — 9
uZ +7

g(un) _
g’ (un)
With uy = 1, we have

Un41 = Up —

uy = 0.937500, f(up) = 0.0344238
uy = 0.935191, f(uz) = 0.0000449
us = 0.935188, f(ug) =0

Remark: if the target function is ¢'(u) then
the expression (1) can be rewritten:

Un+1 = Up — g/,(Un)

Case 2: Multi-dimension

The expression (2) can be extrapolated to
the N-R algorithm in numerous dimensions
by substituting the derivative of the target
function by a gradient, Vg(u), and substi-
tuting the reciprocal of the second deriva-
tive by the inverse of the Hessian matrix
Hg(u). The expression root of the N-R al-
gorithm in multi-dimension can be then il-
lustrated by:

WMD) _ () _ [ Hg(um))} vy (um))

where
9 9 dg(u)]”
Vg(u) = Q(U); g(u) - g(u)
8U1 8U2 8un
and
g(w)  9g(w) 9%g(u)
au% Ouq0us Ou10Unp
9%g(u) %g(u) %g(u)
Hg(u) _ Ouz20u OuZ Ouz0uy,
8257.(71) 325;(70 329-(10
Oy Oul Oun Ous e ou?

Likewise in one dimension, to get the opti-
mization root by the Newton-Raphson al-
gorithm in multi-dimension. We need to
reiterate the above expression until a suf-
ficiently accurate value is reached.

Example 2: Performing the N-R algorithm
to minimize the following function:

g(u1,u2,us, us) = (u1 + 10uz)*+
+5(us — ua)? + (uz — 2uz)* + 10(u1 — ua)?

Choosing as an initial value
u® = [1;-0.5;0.5;0.5]7

Executing four iterations.

We have,
g(u®) = 21.6875
and,
(09 99 99 99"
g (U) _8u1 k 8uz ’ 8U3 ’ aU4
[ 2(u1 + 10ug) + 40(uy — uy)?
20(uy + 10u2) + 4(us — 2uz)?
o 10(U3 — ’LL4) — S(UQ — 2’LL3)3
_—10(’&3 — U4) — 40(U1 — U4)3
Let

Hg(u) = [Hg1(u); Hga(u); Hgs(u); Hga(u)]

where Hgy(u);...; Hga(u) be the first, sec-
ond, third and fourth column of Hg(u).
then

2 + 120(u1 — U4)2

20
| —120(u1 — ug)?
i 20
_ 200 + 12(U2 — 27.L3)2
H92(0) =17 94y — 2u5)°
i 0
- 0 -
. —24(’[1,2 — 2U3)2
Has(u) =44 4 48(ug — 2us)?
L _10 -
[ —120(uy — uy)? ]|
0
Hga(u) = ~10
_10 =+ 120(U1 — U4)2_

Iteration 1

Vg(u®) = [-3;-93.5,27;-5] ",

[ 32 20 0 —-30
oy _ | 20 227 =54 0
Ho(™)=1"0" 54 118 —10]|°
-30 0 —10 40
(130 —10 3 98
-1 —10 5 2 =7 _3
[Hg(u(o))] = 3 9 9 5 %1073,
98 -7 5 100
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Therefore
uD = @ _ [Hg(u(m)] V)
= [0.7937; —0.0794; 0.4603; 0.4603] ",
g (u(1>) — 1.1234.

Iteration 2,
-1
u@ = @ _ [Hg(uu))] Vg(u)
= [0.5291; —0.0529; 0.3069; 0.3069]T ,
g (u(Q)) — 0.2219.

Iteration 3,
(3 _, @ _ @] 2)
u' =u Hg(uw™)|  Vg(u'™)

— [0.3527; —0.0353; 0.2046; 0.2046] ",
g (u(3)> — 0.0438.

Iteration 4,
—1 .
u® = 43 _ [Hg(u(3))] Vg(u(3>)
= [0.2352; —0.0235; 0.1364; 0.1364]T ,
g (u(4)) — 0.0086.

2.2. MaxLik function

The maxLik function is an ubiquitous available
function to obtain the optimization root. This
function is first introduced by Henningsen et
al. [12]. Similarly, the other R packages, the
maxLik package needs to be installed and loaded
before using. The command to install and load
maxLik function are as follows:

>install.packages ("maxLik")
>library (maxLik)

The simplest formula of the maxLik function
is: maxLik(logLik, start), where logLik is the
log-likelihood function of a target function, start
is a starting value of parameters need to be es-
timated, which can get the real value or vector.

Its whole formula as follows: maxLik(logLik,
grad = NULL, hess = NULL, start, method, con-
straints=NULL, ...). In which grad is a gradi-
ent of an objective function. If NULL, numeri-
cal gradient will be performed, hess is a hessian
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matrix of an objective function. If NULL, nu-
merical Hessian will be executed, method: we
can select “NM" (Nelder-Mead), “CG" (Con-
jugate Gradients), “BFGS" (Broyden-Fletcher-
Goldfarb-Shanno), etc, constraints: if we can se-
lect NULL for unconstrained maximization. It
can be seen that: To apply a maxLik function,
we need to have an objective function (a log-
likelihood function) and an initial value.

Next, we investigate an example in article of
Henningsen et al. [12].
Example 3: Assuming that x is generated from
a standard normal distribution and the sample
size is (n = 500). We need to estimate param-
eters of the standard normal distribution is de-
rived from this data set.

The log-likelihood function can be written as
follows:

In (L p,0)) = - 2T
~ Nln(o) — Z %

Choosing a starting value is (1,2) vector and ex-
ecute the statistical software R to write code:

>x = rnorm (500, mean = 0, sd = 1)
>logLikFun = function (parameter) {
mu = parameter([1l]
sigma = parameter[2]
sum (dnorm(x, mean = mu,
sd = sigma,
log = TRUE)) }
>mle = maxLik (logLik = logLikFun,
start = c¢c(mu = 1, sigma = 2))

To see the full results of mle, executing the fol-
lowing command: summary(mle)

For simplicity’s sake, let coef be parameters
need to be estimated and stdEr be standard er-
rors, we can use coef(mle) and stdEr(mle) to see
the result of the estimated parameter and its
standard error.

> summary (mle)

> coef (mle)
mu sigma
0.03542 1.02518

> stdEr (mle)
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mu
0.04585

sigma
0.03242

3. Comparison of the
performance of two
approaches when data
set having missing
values

For comparison of the performance of two ap-
proaches: Newton-Raphson algorithm and max-
Lik function, it is necessary to review of three
widespread approaches to handle the issues hav-
ing missing data, they are: complete-case (CC),
inverse probability weighting (IPW) and joint
conditional likelihood (JCL) estimator.

3.1. Complete cases (CC)

estimator

Assuming that our data set having missing val-
ues. The complete case (CC) estimator is only
performed on the data set no missing values,
while the data set having missing values will be
removed. As a result, the sample size in our data
set will be reduced significantly. This issue will
seriously affect the results in researches. Let 7;
be a missing-ness status of X; i.e. 1; = 1 when
X, is observed and n; = 0 otherwise. Let T" be a
surrogate variable of X and T is independent of
Y given (X, Z). The validation data set (n; = 1)
includes (Y;, X;, V;) and non-validation data set
(n; = 0) includes (Y;,V;), with V; = (ZF, T1)T.
The general estimating function by CC estima-
tors of the regression model parameters when co-
variates are missing at random (MAR), denoted
by Ucc,n(a), can be represented as follows:

Zm i

where « are interested parameters and S;(«a) is
the first derivative of the log-likelihood function
of P(Y; = 11X;,V;) with respect to a.

By figuring out Ucc (o) = 0 can be acquired
&coc which is an estimator of a.

(3)

Uccon(a
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It has been seen that, E[Uccn(a)] # 0. so it
is called a biased estimating function. Wang et
al. [16] and Lukusa et al. [17] also stated that
the complete-cases estimator is not a trustwor-
thy approach.

3.2. Inverse probability

weighting (IPW) estimator

The inverse probability weighting (IPW) estima-
tor is an improvement to complete case (CC) es-
timator. Zhao and Lipsitz [18] proposed an IPW
estimator. Basically how this approach works as
the complete case estimator, i.e. it only consid-
ers and works on data set with no missing values.
Nevertheless this approach is based on wighting
observations. The authors have shown that this
is a reliable method. Below MAR mechanism.
Assuming that 7(Y;,V;) = P(n; = 1|Y;, X;, V)
is a selection probability of covariates X;. The
general its formula can be illustrated as follows:

(4)

UWnOéﬂ'

fz vy i)

where « are interested parameters and S;(«a) is
the first derivative of the log-likelihood function
of P(Y; = 1]X;,V;) with respect to a.

Let aw be an estimator of « that can be ac-
quired by figuring out Uw ., (c, ) = 0.

In general, we have E[Uw,,(a,m)] = 0. There-
fore, Uw (e, m) is an unbiased estimating func-
tion.

In practice, 7(Y;, V;) is usually unknown and it is
usually estimated by non-parametrically method
[16]. If 7 (Y;, Vi) is a correctly estimated, dyy will
usually be a consistent estimator of a.

Let v1,vs, ..., v, be distinct values of the V;s.
The non-parametric estimator of «(y,v) is pro-
vided as follows:

b1 Ml (Y =y, Vie = v)
Z?:lI(Yi =y, Vi=v) ’
where I(A) is an indicator function of A, y are

natural numbers and v € {vy,va,...,0m}.
The function (4) can be expressed as follows:

T(y,v) = ()

n

Uwsn (o, ) *LZ

n
=1

Si(a) (6)

T y’uvz)
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Joint conditional likelihood
(JCL) estimator

3.3.

The joint conditional likelihood (JCL) estima-
tor is first introduced by Wang et al. [19]. This
approach is based on both the validation and
non-validation data set. The general its formula
can be described as follows:

Usn(a,m) = % Z [iS1i(a) + (1 = n;)S2i ()]
i=1
(7)

Where « are interested parameters and Sy;(«)
and Sa;(v) is the first derivative of the log-
likelihood function of P(Y; = 1|X;,Vi,m; =
1) and P(Y; = 1|V;,m; = 0) with respect to
a, respectively. The authors have shown that
ElUjn(a,m)] = 0 as a result, Uy, (o, 7) is an
unbiased estimating function.

Missing data is an ubiquitous issue is usu-
ally encountered in, e.g., health, education and
transportation, etc. This issue arises by numer-
ous reasons, such as: respondents do not re-
sponse to a certain item in the survey questions,
nonacceptance to response, incomprehensible re-
sponse, etc. [20]. The issues are associated with
missing data can also be classified by 2 different
types: missing outcome and missing covariates.
The problems about estimate parameters in re-
gression models with missing data have been ex-
tensively studied and widely applied in various
fields by several scholars. for instance: Wang et
al. [19] performed an JCL estimator to estimate
parameters in logistic regression with missing co-
variates. This method aslo extended by Hsieh
et al. [21] and Lee et al. [22] in their studies.
All above authors performed a Newton-Raphson
algorithm to estimate parameters in regression
models with missing data. Lukusa et al. [17]
introduced a semiparametric inverse probabil-
ity weighting (SIPW) estimator and the authors
also executed a Newton-Raphson algorithm to
estimate parameters of a zero-inflated Poisson
(ZIP) regression model with missing covariates.
Diallo et al. [1] presented an IPW estimator and
performed a maxLik function to estimate param-
eters in the zero-inflated Binomial (ZIB) model
with missing covariates.
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Derived from the general estimating function
by CC and IPW estimator. It is possible to ob-
serve that two approaches only deliberate on val-
idation data set (n; = 1) but they do not delib-
erate on non-validation data set (1; = 0). Con-
sequently, two approaches can be executed to
obtain the optimization root. Notwithstanding,
both CC and IPW estimator are not a trustwor-
thy approach.

The joint conditional likelihood (JCL) estima-
tor is applied in regression models with miss-
ing data to estimate parameters which deliber-
ates both validation and non-validation data set.
The three articles: Wang et al. (2002), Hsieh et
al. (2009) and Lee et al. (2012) have shown that
the JCL estimator executes better than other
approaches (CC and IPW). Owing to the fact
that this approach deliberates both the valida-
tion data set (n; = 1) and non-validation data
set (n; = 0), i.e. our data set contain missing val-
ues. Therefore, the maxLik function and some
available functions in the statistical software can
not perform in this situation.

It has been seen that, if the data set no miss-
ing values then the N-R algorithm and maxLik
function can be executed to find the optimiza-
tion root. Notwithstanding, in numerous appli-
cations, the data set often contain missing val-
ues. Therefore, maxLik function and some avail-
able functions in the statistical software are no
longer acceptable in practice, the N-R algorithm
still can execute in this situation. Although the
algorithm of this approach is more unintelligi-
ble than some available functions in the statis-
tical software, the N-R algorithm is regarded as
a vigorous apparatus to find the optimization
solution and parameters need to be estimated
in researches. This method can be performed if
the data set contain missing values that max-
Lik function and some available functions in the
statistical software are unworkable. We compare
the results of two approaches in the next section.

4. Comparing about the

results of two methods

In this section, we compare about the results of
two approaches: the Newton-Raphson algorithm

(© 2018 Journal of Advanced Engineering and Computation (JAEC)
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and maxLik function, when both approaches are
employed to estimate parameters to the same re-
gression model (the zero-inflated binomial (ZIB)
regression model). This model is introduced in
article of Diallo et al. [1].

Example 4: Generating data set from the ZIB
regression model:

logit(m) = OélXil -+ QQXZ'Q —+ OégXig
+ Oz4XZ‘4 + Oé5Xi5 + OéGXfL'(; + O£7XZ‘7

and

logit(pi) = f1Zi1 + B2Zia + £3Z:3
+ BaZia + BsZis,

where Xil = ]., Xi2 ~ N(O,l), Xig ~ U(2,5),
Xy ~ N(1,1.5), Xi5 ~ E(1), X6 ~ B(1,0.3)
and X;7 ~ N(—1,1) are independently. As-
suming that Z; = 1, Zyy ~ N(-1,1) and
Zis ~ B(1,0.5) are independently. In this study,
we assume that Z,, = X;9 and Z;3 = X, and
choosing initial values as follows:

a=(-0.3,1.2,0.5,-0.75,—1,0.8,0)”

and
B = (—0.55,-0.7,—1,0.45,0)

Investigating numerous sample sizes (n =
150,300, 500) and h; € {4,5,6}. The numbers
h; are allowed to change across subjects.

Let

(ky, k5, ko) =(card{i : h; = 4},
card{i: h; =5}, card{i: h; =6}

)
With n = 150, using (kq4, k5, ks) = (60, 50, 40).
When n = 300, performing (ky,ks,ks) =
(120,100,80) and with n = 500, choosing
(ka, ks, k) = (200,170, 130).

Utilizing above values, the average proportion
of zero-inflation in our data set is 25%. The
number of repetitions in simulation is chosen
N = 5000 times and figure out the maximum

R T
likelihood estimation (MLE) 3, = (az BT ) .

In this study, we execute two approaches: the
Newton-Raphson method and maxLik function
to estimate parameters. These results are pro-
vided in Tab. 1 and Tab. 2, respectively (in
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Appendix). It can seen be that, the biases of
estimators are very small, the values of SD and
ASE are very close and the values of CP are very
close to 0.95. These prove that our estimated
results are very trustworthy. In addition, it has
been seen that the bias, SE, SD, and [(CI) of all
estimators decrease as the sample size increases.
Furthermore, it can be seen that the normal Q -
Q plots are provided in Figs. 1-4 (in Appendix)
that the Gaussian approximation of the distri-
bution of the MLE in the zero-inflated Binomial
(ZIB) regression model is reasonably satisfied.

About the results, the authors in article of
Diallo et al. (2017) have executed a maxLik
function to study simulation. The results in
this paper is performed by utilizing two ap-
proaches: maxLik function and N-R method. It
can be observed from the above results of two
approaches most are the same. We employed
the HP desktop computer is configured with In-
tel Core i5, 8GB of RAM, 1TB of hard drive
to check the time to run code to output the re-
sult of two approaches. To obtain the above re-
sults, it takes 60 minutes for maxLik function
while the Newton-Raphson method is only 30
minutes. Thus the Newton-Raphson algorithm
provides the results is faster than the maxLik
function.

5. Concluding Remarks
and Inference

It can be observed that, in general, maxLik func-
tion and some available functions in the statis-
tical software only can be performed to get the
optimization root in case of the data set with no
missing values. Furthermore, its structure is eas-
ier than the N-R algorithm. Notwithstanding,
the N-R algorithm is a robust apparatus to get
the optimization root and to estimate parame-
ters in regression models. It can be executed if
our data set contain missing values that some
available functions in the statistical software are
unworkable. These functions only can perform
if our data set with no missing values (the vali-
dation data set (n = 1), they can not execute in
case of the non-validation data set (n = 0)). In
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the meantime, the Newton-Raphson algorithm
can employ in all situations.

For the results, the authors in article of Diallo
et al. (2017) have performed a maxLik function
to study simulation. The results in this article is
employed by utilizing two approaches: maxLik
function and N-R algorithm. It can be observed
from the results of two approaches in Section 4
most are the same. For the time to run code
to output these results of two approaches. It
takes 60 minutes for maxLik function while the
Newton-Raphson algorithm is only 30 minutes.
Thus the Newton-Raphson algorithm provides
the results is faster than the maxLik function.

About the extension of the Newton-Raphson
algorithm, we can execute this algorithm to
estimate parameters to regression models with
missing covariates data, for example: the zero-
inflated power series (ZIPS) regression models,
zero-inflated generalized Poisson (ZIGP) re-
gression models, zero-inflated negative binomial
(ZINB) regression models, or multivariate
zero-inflated regression models, etc. All the
structures can look at in Lukusa et al. [23] and
the authors also stated that all of these models
have not yet been researched with missing
covariates data. These are interesting research
directions in the hereafter.
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Tab. 1: The results by performing Newton-Raphson algorithm

The results of estimator of «

Qn
n dLn d27n dB,n CAV4,n d57n dﬁ,n d?,n
150
bias -0.0118 0.0287 0.0125 -0.0235 -0.0323 0.0281 0.0010
SD 0.5676 0.1674 0.1425 0.1019 0.1635 0.2743 0.1263
ASE  0.5552 0.1642 0.1443 0.0996 0.1598 0.2715 0.1242
Cp 0.9458 0.9419 0.9427 0.9449 0.9466 0.9485 0.9467
I(CI) 2.1652 0.6369 0.5689 0.3873  0.6228 1.0575 0.4849
300
bias -0.0112 0.0145 0.0065 -0.0109 -0.0145 0.0088 -0.0017
SD 0.3881 0.1136 0.1005 0.0705 0.1116 0.1871 0.0856
ASE  0.3799 0.1127 0.0993 0.0689 0.1098 0.1857 0.0859
CP 0.9473  0.9497 0.9489 0.9508 0.9427 0.9458 0.9429
I(CI) 1.4856 0.4417 0.3916 0.2668 0.4328 0.7181 0.3307
500

bias  0.0013 0.0105 0.0031 -0.0061 -0.0097 0.0085 -0.0017
SD 0.2925 0.0854 0.0776 0.0519 0.0823 0.1425 0.0668
ASE  0.2922 0.0851 0.0769 0.0525 0.0837 0.1419 0.0652
CP 09511 0.9496 0.9481 0.9499 0.9495 0.9438 0.9520
[(CI) 1.1398 0.3356 0.2995 0.2045 0.3197 0.5493  0.2541

The results of estimator of 3

B
n ﬁl,n BZ,n ﬂS,n 54771 ﬂB,n

150

bias -0.0759 -0.0507 -0.0735 0.0513 0.0079

SD 0.5202 0.3576  0.7386 0.3156 0.5809

ASE  0.5035 0.3483  0.7723 0.3078 0.5778

CPp 0.9603 0.9529 0.9643 0.9573 0.9581

[(CI) 19368 1.3243 2.8927 1.1751 2.2243
300

bias -0.0352 -0.0205 -0.0731 0.0243 0.0121

SD 0.3401  0.2281 0.5012 0.2067 0.3807

ASE  0.3353 0.2249 0.4952 0.2016 0.3799

Cp 0.9508 0.9512  0.9591 0.9508 0.9573

[(CI) 1.2811 0.8792 1.8905 0.7823 1.4827
500

bias -0.0170 -0.0096 -0.0397 0.0151 0.0015
SD  0.2497 0.1723 0.3681 0.1552 0.2914
ASE  0.2491 0.1701 0.3646 0.1525 0.2862
CP 09501 0.9458 0.9509 0.9515 0.9512
I(CI) 09767 0.6659 14272 05893 1.1219

SD: empirical standard deviation, ASE: asymptotic standard error.
CP: Empirical confidence intervals at 95% level and [(CI): the average of the length of the
confidence intervals. All of results are executed the number of repetitions N = 5000 times.

290 (© 2018 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 2 | ISSUE: 4 | 2018 | December

Tab. 2: The results by executing a maxLik function

The results of estimator of a

Qn
n OA‘l,n OA‘Q,n &B,n 074,71 6‘5,71 OA[G,n 6[7,71
150
bias -0.0119 0.0287 0.0126 -0.0238 -0.0315 0.0273 0.0089
SD 0.5677 0.1712 0.1397 0.1021  0.1619 0.2723  0.1280
ASE  0.5649 0.1707 0.1418 0.0999 0.1597 0.2708 0.1269
CPp 0.9498 0.9439 0.9485 0.9488 0.9489 0.9479 0.9463
[(CI) 21743 0.6357 0.6013 0.3728 0.6419 1.0685 0.4786
300
bias  -0.0058 0.0145 0.0068 -0.0109 -0.0132 0.0087 0.0013
SD 0.3811  0.1137 0.0995 0.0711  0.1099 0.1869 0.0859
ASE  0.3813 0.1132 0.0998 0.0705 0.1096 0.1861 0.0852
Cp 0.9479 0.9472 0.9428 0.9529 0.9497 0.9459 0.9508
[(CI) 1.4952 0.4412 0.3971 0.2638 0.4427 0.7178 0.3369
500

bias -0.0061 0.0104 0.0045 -0.0067 -0.0079 0.0070 -0.0011
SD 0.2921 0.0889 0.0782 0.0529 0.0843 0.1412 0.0651
SE 0.2928 0.0875 0.0773 0.0525 0.0847 0.1411 0.0659
CP 0.9501 0.9517 0.9486 0.9469 0.9497 0.9471 0.9439
I(CI) 1.1369 0.3358 0.2985 0.2051 0.3127 0.5447 0.2552

The results of estimator of 3

Bn
n Bl,n ﬂQ,n ﬂ3,n ﬂ4,n ﬂ5,n

150

bias -0.0755 -0.0518 -0.0725 0.0514 0.0079

SD 0.5209 0.3590 0.7339 0.3143 0.5871

ASE 05072 0.3498 0.7298 0.3098 0.5799

Cp 0.9502 0.9515 0.9603 0.9571 0.9518

[(CI) 19423 1.3258 29026 1.1695 2.2172
300

bias -0.0308 -0.0212 -0.0475 0.0209 -0.0047

SD 0.3398 0.2316 0.5019 0.2045 0.3818

ASE 03395 0.2328 0.5712 0.2052 0.3783

CP 0.9471  0.9525 0.9593 0.9505 0.9489

[(CI) 1.2712 0.8895 1.8013 0.7815 1.4908
500

bias -0.0179 -0.0145 -0.0457 0.0149 0.0013
SD 0.2492 0.1748 0.3302 0.1528 0.2939
ASE  0.2497 0.1745 0.3309 0.1521 0.2932
CP 0.9541 0.9479 09532 09519 0.9512
[(CI) 1.0021 0.6655 1.5272 0.5992 1.1912

SD: empirical standard deviation, ASE: asymptotic standard error.
CP: Empirical confidence intervals at 95% level and [(CI): the average of the length of the
confidence intervals. All of results are executed the number of repetitions N = 5000 times.
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