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Abstract. In this paper, we prove the long time
behavior of bounded solutions to a �rst order
gradient-like system with low damping and per-
turbation terms. Our convergence results are
obtained under some hypotheses of Kurdyka-
Lojasiewicz inequality and the angle and com-
parability condition.
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1. Introduction

The main goal of this paper is to obtain the
asymptotic behavior of bounded solutions to the
gradient-like system as follows

u′(t)+γ(t)u(t)+G(u(t)) = f(t), t ∈ [0,∞), (1)

where the unknown u(t) ∈ Rn, the damping
term γ ∈ L1(R+,R+), the perturbation term
f ∈ L1(R+,Rn) and G ∈ C(Rn,Rn) is a tan-
gent vector �eld on Rn. Roughly speaking, we
study in this paper the e�ect of adding a low
damping term γ(t)u(t) and a perturbation term
f(t) to the equation

u′(t) +G(u(t)) = 0, t ∈ [0,∞), (2)

on the long time behavior of the trajectories u.

This type of problem have been studied in
many recent papers with di�erent assumptions
of G. The typical situation of (2) is the case
of gradient system when G = ∇F . This gradi-
ent system was studied by many authors such
as [1], [6], [14], [15], [18] or [21]. In the classi-
cal result, they proved that the bounded solu-
tion converges to an equilibrium as t goes to in-
�nity if the function F is real analytic in [18].
More later, R. Chill et al. [8] established an
general result which guarantees that the con-
vergence result also holds for the gradient-like
system (2). This convergence result was proved
under the hypotheses of the Lojasiewicz inequal-
ity of F and the angle condition of G and ∇F .
In [19] and [20], the authors extended the result
by Kurdyka-Lojasiewicz inequality. Moreover,
the convergence rates was obtained if F satis�es
Lojasiewicz inequality and G,∇F satisfy angle
and comparability condition.

Recently, R. Chill and M. Jendoubi [7] or
Huang and Takac [17] considered the equation
in the non homogeneous case. They showed that
any bounded solution of the gradient system

u̇+∇F (u) = f(t), t ≥ 0, (3)
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converges to a critical point of F at in�nity un-
der the following condition

sup
t∈R+

t1+µ
∫ ∞
0

‖f(s)‖2ds < ∞, (4)

for some positive constant µ. The forcing term
f(t) quickly decays to zero as t goes to in�n-
ity in this case. In a previous work [22], we
proved the convergence result of (3) under a low
L1-condition of the perturbation term. More-
over, the rate of convergence was even obtained
under a Lojasiewicz inequality of the Lyapunov
function F . The convergence results have been
generalized to some second order systems, such
as [2], [4], [5], [12] or [13] are references therein.
Moreover, M. Ghisi et. al. have estimated the
decay rates for solutions of semi linear dissipa-
tive equations in [9] and [10].

Motivated by these works, we establish in this
paper the convergence results for the �rst or-
der non homogeneous gradient-like system (1)
with the e�ect of a low damping and forcing
terms. More precisely, we consider the equa-
tion (1) with γ and f satisfy the following con-
dition ∫ ∞

0

(∫ ∞
t

γ2(s)ds

)1/2

dt <∞,

and ∫ ∞
0

(∫ ∞
t

‖f(s)‖2ds
)1/2

dt <∞.

In addition, we also assume some key hypothe-
ses such as the angle and comparability condi-
tion of G and ∇F and the Kurdyka-Lojasiewicz
inequality of F as in many other articles. The
nice feature of angle and comparability condi-
tion of G and ∇F is that G is coincident with
the gradient of F with respect to a Riemannian
metric g. We refer the reader to the article of
Barta et. al. [3] for the detail. Under these as-
sumptions, we prove that the bounded solution
u to equation (1) converges to a critical point
ϕ ∈ ω[u] at in�nity and u̇ ∈ L1(R+).

The paper is organized as follows. In the next
section, we present some assumptions and def-
initions that we use through the whole of the
paper. We also recall the existence of a Rieman-
nian metric g such that G = ∇gF in this section.

In the last section, we establish the asymptotic
behavior of bounded solutions to gradient-like
system (1). Our results are divided into three
theorems for the convenience of the reader.

2. Preliminaries

In this section, we give the key assumption
of angle and comparability condition to ob-
tain the convergence result of gradient-like sys-
tem. We also recall some de�nitions about the
Lyapunov function, the Kurdyka-Lojasiewicz in-
equality and the gradient of a function with re-
spect to a Riemannian metric.

We consider a continuous tangent vector �eld
G ∈ C(Rn,Rn) respects to a Lyapunov function
F ∈ C1(Rn,R). In this paper, we always as-
sume the angle and comparability condition of
∇F and G, i.e, there exists a positive constant
a > 0 such that for any u ∈ Rn there holds

〈G(u),∇F (u)〉 ≥ a
(
‖G(u)‖2 + ‖∇F (u)‖2

)
,
(5)

where 〈·, ·〉 and ‖ · ‖ denote the inner product
and Euclidean norm in Rn respectively.

De�nition 1. F is called a Lyapunov function
for equation (1) if

〈G(u),∇F (u)〉 ≥ 0, ∀u ∈ Rn.

Moreover, we say that F is a strict Lyapunov
function if ∇F (u) = 0 implies G(u) = 0.

We remark that F is a strict Lyapunov func-
tion if the angle and comparability condition (5)
holds.

De�nition 2. We say that the function F sat-
is�es a Kurdyka-Lojasiewicz inequality at η if
there exist δ > 0 and a non decreasing function
Θ ∈ C(R+,R+) such that

Θ(0) = 0, Θ−1 ∈ L1
loc(R+), (6)

and

Θ (|F (u)− F (η)|) ≤ ‖∇F (u)‖, ∀u ∈ Bδ(η),
(7)

where Bδ(η) denotes the ball centered at η and
radius δ in Rn.
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This de�nition is related to the Lojasiewicz
Theorem in [18] below.

Theorem 1. If F is real analytic in a neigh-
borhood of η then F satis�es the Kurdyka-
Lojasiewicz inequality (7) at η.

We denote by ∇g(u)F (u) the gradient of F
with respect to a Riemannian metric g on Rn at
u, i.e., for any v ∈ Rn, we have

〈∇F (u), v〉 = 〈∇g(u)F (u), v〉g(u). (8)

For simplicity, we write ∇gF (u) instead of
∇g(u)F (u) and 〈·, ·〉g instead of 〈·, ·〉g(u). We
denote by ‖ · ‖g the induced norm. In [3], the
authors showed that there exists a Riemannian
metric g which is equivalent to the Euclidean
metric such that G = ∇gF . We recall this re-
sult in the following theorem.

Theorem 2. Assume the angle and compara-
bility condition (5) of ∇F and G holds. Then
there exists a Riemannian metric g on

V := {u ∈ Rn : G(u) 6= 0}

such that G = ∇gF .

Moreover, there exist positive constants α, β
such that

α‖v‖ ≤ ‖v‖g(u) ≤ β‖v‖, (9)

for any v ∈ Rn, u ∈ V and ‖ · ‖ denotes the
Euclidean metric on Rn.

De�nition 3. For any trajectory u belongs to
C(R+,Rn), the ω-limit set of u is de�ned by

ω[u] = {ϕ ∈ Rn : ∃(tm) ↑ ∞, u(tm)→ ϕ}.

3. Main results

In this section, we prove the convergence
of bounded solutions to equilibrium of the
gradient-like system (1). The main idea of our
work is based on Theorem 2. Applying Theo-
rem 2, the gradient-like system (1) can be seen
as a form of gradient system.

Theorem 3. Let u be a bounded solution of (1)
and f, γ ∈ L2(R+). Assume that the angle and
comparability condition (5) of G and ∇F holds.
Then u̇ ∈ L2(R+) and G(u) ∈ L2(R+).

Proof. Let us consider the energy function de-
�ned by

Φ(t) = F (u(t))+
1

2

∫ ∞
t

‖γ(s)u(s)−f(s)‖2g(u(s))ds.

(10)
The function Φ is well de�ned. Indeed, applying
Theorem 2 for G and ∇F under the angle and
comparability condition (5), we have G = ∇gF
and the inequality (9) holds. Combining with
f, γ ∈ L2(R+), we then obtain that

∫ ∞
t

‖γ(s)u(s)− f(s)‖2g(u(s))ds

≤ β2

∫ ∞
t

‖γ(s)u(s)− f(s)‖2ds

≤ 2β2 sup
t∈[0,∞)

‖u(t)‖
∫ ∞
t

|γ(s)|2ds

+ 2β2

∫ ∞
t

‖f(s)‖2ds

≤ C
(
‖γ‖2L2(R+) + ‖f‖2L2(R+)

)
<∞,

where C = 2β2 max{1, supt∈[0,∞) ‖u(t)‖}.

For every t ∈ R+, we have

d
dt

Φ(t) = 〈∇F (u(t)), u̇〉

− 1

2
‖γ(t)u(t)− f(t)‖2g

= 〈∇gF (u(t)), u̇〉g

− 1

2
‖γ(t)u(t)− f(t)‖2g.

By the angle and comparability (5), equation (1)
and Theorem 2, we can estimate the derivative
of the energy function Φ as follows

d
dt

Φ(t) = 〈G(u(t)), u̇〉g −
1

2
‖u̇+G(u(t))‖2g

= −1

2

(
‖u̇‖2g + ‖G(u(t))‖2g

)
≤ −a

2

(
‖u̇‖2 + ‖G(u(t))‖2

)
≤ 0.
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It deduces that Φ is non increasing and therefore∫ ∞
0

‖u̇(s)‖2ds ≤ −2

a

∫ ∞
0

d
dt

Φ(s)ds

≤ 2

a
(Φ(0)− Φ(∞))

<∞,

which implies that u̇ ∈ L2(R+).

Similarly, we also obtain that G(u) ∈ L2(R+).
The proof is complete.

Theorem 4. Under the hypotheses of Theo-
rem 3, then ∇gF (ϕ) = 0 for any ϕ ∈ ω[u].

Proof. Since u is a bounded solution of equa-
tion (1), so the ω-limit set ω[u] is non empty.

Let ϕ ∈ ω[u], there exists a sequence (tm)m∈N
such that tm ↑ ∞ and u(tm) tends to ϕ as m
goes to in�nity.

By Theorem 3, we have∫ t+1

t

‖u̇(s)‖2ds→ 0 as t→∞.

Thanks to Cauchy-Schwartz inequality, we ob-
tain

sup
s∈[0,1]

∥∥∥∥∫ tm+s

tm

u̇(r)dr

∥∥∥∥
≤ sup
s∈[0,1]

∫ tm+s

tm

‖u̇(r)‖dr

=

∫ tm+s

tm

‖u̇(r)‖dr

≤
(∫ tm+s

tm

‖u̇(r)‖2dr
)1/2

,

which goes to 0 asm goes to in�nity. This means

u(tm + s) = u(tm) +

∫ tm+s

tm

u̇(r)dr ⇒ ϕ,

where ⇒ denotes the uniformly convergence.
Using the continuity of ∇F , we obtain that
∇F (u(tm + s)) uniformly converges to ∇F (ϕ)
in [0, 1].

Moreover, for any v ∈ Rn, we have

∣∣∣∣∫ tm+1

tm

〈u̇(s), v〉g(u(s))ds
∣∣∣∣

≤
∫ tm+1

tm

|〈u̇(s), v〉g(u(s))|ds

≤ β2

∫ tm+1

tm

‖u̇(s)‖‖v‖ds

≤ β2‖v‖
(∫ tm+1

tm

‖u̇(s)‖2ds
)1/2

,

which tends to 0 as m goes to in�nity. Similarly,
we also get

∣∣∣∣∫ tm+1

tm

〈γ(s)u(s), v〉g(u(s))ds
∣∣∣∣

≤
∫ tm+1

tm

|〈γ(s)u(s), v〉g(u(s))|ds

≤ β2

∫ tm+1

tm

‖γ(s)u(s)‖‖v‖ds

≤Mβ2‖v‖
(∫ tm+1

tm

‖γ(s)‖2ds
)1/2

,

and

∣∣∣∣∫ tm+1

tm

〈f(s), v〉g(u(s))ds
∣∣∣∣

≤
∫ tm+1

tm

|〈f(s), v〉g(u(s))|ds

≤ β2

∫ tm+1

tm

‖f(s)‖‖v‖ds

≤Mβ2‖v‖
(∫ tm+1

tm

‖f(s)‖2ds
)1/2

,

where M is an upper bound of the bounded so-
lution u. So we can conclude that the right hand
sides vanish as m goes to in�nity.
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Combining these estimations and equa-
tion (1), it follows that∫ tm+1

tm

〈G(u(s)), v〉g(u(s))ds

= −
∫ tm+1

tm

〈u̇(s), v〉g(u(s))ds

−
∫ tm+1

tm

〈γ(s)u(s), v〉g(u(s))ds

+

∫ tm+1

tm

〈f(s), v〉g(u(s))ds,

which tends to 0 as m goes to in�nity.

Finally, to �nish the proof, we can present the
inner product of ∇F (ϕ) and v for any v ∈ Rn
as follows

〈∇F (ϕ), v〉 =

∫ 1

0

〈∇F (ϕ), v〉ds

= lim
m→∞

∫ 1

0

〈∇F (u(tm + s)), v〉ds

= lim
m→∞

∫ tm+1

tm

〈∇F (u(s)), v〉ds

= lim
m→∞

∫ tm+1

tm

〈∇g(u)F (u(s)), v〉g(u(s))ds

= lim
m→∞

∫ tm+1

tm

〈G(u(s)), v〉g(u(s))ds

= 0.

This equality shows that ∇gF (ϕ) = 0.

Theorem 5. Assume that

i) the angle and comparability condition (5) of
G and ∇F holds;

ii) F satis�es the Kurdyka-Lojasiewicz inequal-
ity (7) and the function Θ in (6)-(7) satis-
�es

Θ(x+y) ≤ kΘ(x)+ |y|1/2, ∀x, y ∈ R, (11)

for some positive constant k;

iii) γ ∈ L1(R+) ∩ L2(R+) such that∫ ∞
0

(∫ ∞
t

γ2(s)ds

)1/2

dt <∞; (12)

iv) f ∈ L1(R+,Rn) ∩ L2(R+,Rn) such that∫ ∞
0

(∫ ∞
t

‖f(s)‖2ds
)1/2

dt <∞. (13)

If u is a bounded solution to equation (1) then
u̇ ∈ L1(R+) and u(t) converges to an equilibrium
point ϕ ∈ ω[u] at in�nity.

Proof. We consider again the energy function Φ
de�ned by (10). It is similar to the proof of
Theorem 3, we also get the following estimation

− d
dt

Φ(t) =
1

2

(
‖u̇‖2g + ‖G(u(t))‖2g

)
, (14)

for every t ∈ R+. It implies that the function Φ
is non increasing. Moreover, since u is a bounded
solution, the ω-limit set ω[u] is non empty. Let
ϕ ∈ ω[u], we have Φ(t) converges to F (ϕ) at
in�nity. We remark that by subtracting F (ϕ)
if needed we may assume F (ϕ) = 0. It implies
that the energy function Φ(t) is non negative for
every t ∈ [0,∞).

It is easily to see that if Φ(T ) = 0 for some
T ≥ 0 then u is constant for all t ≥ T . There
remain nothing to prove in this case. Hence, we
now assume that Φ(t) > 0 for every t ∈ [0,∞).

Since the solution u is bounded, so there exists
a positive constant M such that

‖u(t)‖ ≤M, ∀t ∈ [0,∞).

By assumption ii), there exist δ > 0 and the
function Θ satisfying (6) such that for all u ∈
Bδ(ϕ), there holds

Θ(|F (u)|) ≤ ‖∇F (u)‖.

We now consider a function I de�ned by

I(x) =

∫ x

0

1

Θ(s)
ds, x ∈ [0,∞).

For any ε ∈ (0, δ), by the hypotheses (12)
and (13), there exists t∗ such that

‖u(t∗)− ϕ‖+
1

aα2
I(Φ(t∗)) < ε/4,

aβM

k

∫ ∞
t∗

(∫ ∞
s

|γ(r)|2dr
)1/2

ds < ε/4,
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aβ

k

∫ ∞
t∗

(∫ ∞
s

‖f(r)‖2dr
)1/2

ds < ε/4,

M

∫ ∞
t∗
|γ(s)|ds+

∫ ∞
t∗
‖f(s)‖ds < ε/4.

Let us de�ne

T = inf{t ≥ t∗ : ‖u(t)− ϕ‖ ≥ ε}.

For every t ∈ [t∗, T ), one has

d
dt
I(Φ(t)) = Φ′(t)Θ−1(Φ(t)). (15)

Using the de�nition of energy function Φ in (10)
and the hypothesis (11), we obtain

Θ(Φ(t)) ≤ kΘ(F (u(t)))

+
1√
2

(∫ ∞
t

‖γ(s)u(s)− f(s)‖2g(u(s))ds
)1/2

.

According to Kurdyka-Lojasiewicz (7) and the
equivalence between Riemannian metric g and
Euclidean metric in (9), we have

Θ(Φ(t)) ≤ k‖∇F (u(t))‖

+
β√
2

(∫ ∞
t

‖γ(s)u(s)− f(s)‖2ds
)1/2

.

Applying the angle and comparability condi-
tion (5), we get that

Θ(Φ(t)) ≤ ka−1‖G(u(t))‖+A, (16)

where

A =
β√
2

(∫ ∞
t

‖γ(s)u(s)− f(s)‖2ds
)1/2

.

Combining (16) with (15), (14) and (9), it de-
duces that

− d
dt
I(Φ(t)) ≥ α2k‖u̇(t)‖‖G(u(t))‖

ka−1‖G(u(t))‖+A

= aα2‖u̇(t)‖ − aα2A‖u̇(t)‖
ka−1‖G(u(t))‖+A

.

It yields that

‖u̇(t)‖ ≤ − 1

aα2

d
dt
I(Φ(t))

+
A‖u̇(t)‖

ka−1‖G(u(t))‖+A
. (17)

By equation (1), we obtain

‖u̇(t)‖ ≤ ‖G(u(t)‖+ ‖γ(t)u(t)− f(t)‖.

This gives

A‖u̇(t)‖
ka−1‖G(u(t))‖+A

≤ a

k
A

+ ‖γ(t)u(t)− f(t)‖.

In the other hand, one has

‖γ(t)u(t)− f(t)‖ ≤M |γ(t)|+ ‖f(t)‖,

and

A ≤ βM
(∫ ∞

t

|γ(s)|2ds
)1/2

+ β

(∫ ∞
t

‖f(s)‖2ds
)1/2

.

Integrating (17) on [t∗, t) for any t ∈ [t∗, T ) we
get that∫ t

t∗
‖u̇(s)‖ds ≤ 1

aα2
I(Φ(t∗))

+
aβM

k

∫ t

t∗

(∫ ∞
s

|γ(r)|2dr
)1/2

ds

+
aβ

k

∫ t

t∗

(∫ ∞
s

‖f(r)‖2dr
)1/2

ds

+M

∫ t

t∗
|γ(s)|ds+

∫ t

t∗
‖f(s)‖ds

≤ 1

aα2
I(Φ(t∗)) +

3ε

4
.

For every t ∈ [t∗, T ), we have

‖u(t)− ϕ‖ ≤ ‖u(t)− u(t∗)‖+ ‖u(t∗)− ϕ‖

≤
∫ T

t∗
‖u̇(s)‖ds+ ‖u(t∗)− ϕ‖

≤ 1

aα2
I(Φ(t∗)) + ‖u(t∗)− ϕ‖+

3ε

4
< ε,

where the second estimation is obtained by inte-
grating (17) on [t∗, T ). This inequality implies
that T = ∞ and also yields u̇ ∈ L1(R+). It fol-
lows that the bounded solution u(t) converges to
equilibrium point ϕ at in�nity.
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4. Conclusion

In this article, we prove the convergence to equi-
librium of bounded solutions to a �rst order
gradient-like system. Our results are obtained
under the a�ect of the low damping and per-
turbation terms to the asymptotic behavior of
solutions at in�nity.
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