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Abstract.  Our main goal in this article is
to present the approaches and examples of three
functions in R consist of optim, nlegslv and
maxLik function to detect the optimization so-
lution of the estimating function in the regres-
sion models. We then compare the results with
numerous sample sizes (n=150, 300 and 500),
the execution time of R code, as well as Nor-
mal Q - Q plots of three approaches through
some of regression models such as the zero-
inflated Binomial (ZIB) regression model, lo-
gistic regression model, the zero-inflated Pois-
son (ZIP) regression model and the zero-inflated
Bernoulli (ZIBer) regression model. Finally, we
discuss potential research directions in the com-
ing times.
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1. Introduction

The R software is developed by Thaka and Gen-
tleman [15] and it continues to be developed by
the R Development Core Team. Software R is
one of the statistical analysis tools as well as
data analysis in general. In the past 10 years, R
has been largely utilized by several universities
around the world. This is open source software
(free). It carries all the features of other exist-
ing commercial software such as SPSS, AMOS,
STATA or EViews. About this regard, readers
may refer in (see e.g. [3], [4], [5], [7], [11], [19],
[20], [24], [26], [27], [28] and [33] etc.)

The R software contains numerous types of
statistical techniques and graphics. The R soft-
ware, like S, is designed around a real ma-
chine language, and it allows users to add ad-
ditional features by defining new functions. S
software comes before R software. S is a statis-
tical programming language developed primarily
by Chambers [6]. In this time, two books were
published by the research team at Bell Labora-
tories: S: An Interactive Environment for Data
Analysis and Graphics [1] and Extending the S
System [2]. Hence there are also some vital dif-
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ferences for S, but numerous codes are written in
S can run without modification. Several systems
in R are written in its own language, making it
easy for users to follow algorithms. In order to
perform computational tasks, R can connect to
C, C** and Fortran languages to be called at
runtime. Proficient users can write C code to
directly handle R software objects.

In several fields of statistical inference, social
science and numerous other areas, the issues in-
volve to detect the optimization solutions play
an extremely crucial role in research. In statisti-
cal inference, the issue to find the optimization
solution is basically in all models, for instance,
time series models and regression models. In
social science research, this issue typically inter-
venes to address numerous practical problems,
for instance, transportation problems. To sim-
plify calculation and save time in programming,
several ubiquitous functions in R are proposed
to detect the optimization solutions.

For the available function in R to find the opti-
mization solutions is very diverse and abundant.
For instance, The optim function is offered by
Nash [21]. Eberhart and Kennedy [10] intro-
duce the Particle Warm Optimization (PSO) al-
gorithm. Ter [25] provides the genetic algorithm
Differential Evolution (DE) for Markov Chain
Monte Carlo. The nlegslv function is developed
by Hasselman [12]. The maxLik function is pro-
posed by Henningsen and Toomet [13]. Scrucca
[23] presents to a package for Genetic Algorithms
(GA), etc. It has been seen that, there are many
packages in R to find the optimization solutions.
As our knowledge, to find the optimization solu-
tion of the estimating functions in the regression
models then optim, nleqgslv and maxLik function
are the most used.

It can be seen that the R software is a vigorous
software, open source, free download, and very
simple to install. The optimization solutions of
the estimating function in the regression mod-
els play an utmost important role and very pro-
found meaning in life. Therefore it is extremely
meaningful to have a study about the functions
in R to find the optimization solution of the es-
timating function in the regression models. Al-
though there are many authors had researched
to this issue, the problem about a comparison of
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the functions in R to find the optimization so-
lution of the estimating function in the regres-
sion models has not been investigated. Our main
goal in this article is to present the approaches
and examples of three functions in R consist of
optim, nlegslv and maxLik function. We then
compare the results with numerous sample sizes,
the execution time of R code, as well as Normal
Q - Q plots of three approaches through some of
regression models. Finally, we discuss potential
research directions in the coming times.

The remainder of the paper is structured as
follows. In Section 2, we review of the optimiza-
tion problem as well as approaches and examples
of three functions in R consist of optim, nlegslv
and maxLik function. Section 3 provides the
comparing about the results with several sam-
ple sizes (n=150, 300 and 500), the execution
time of R code, as well as Normal Q - Q plots
of three approaches through some of regression
models. Section 4 presents advantages and dis-
advantages of these functions. The last section
gives some concluding remarks of these functions
being discussed in our paper.

2. Literature review

In this section, we first revisit of the optimiza-
tion problem and we then revisit of three func-
tions in R include optim, nlegslv and maxLik
function to detect the optimization solution of
the estimating function in the regression models.
We now discuss about the optimization problem
in the next section.

2.1. Optimization problem

Let g(u) be a function of a vector u. Optimiza-
tion problems are related to the task of finding
u* such that g(u*) is a local maximum (or min-
imum). In the case of maximization

u* = argmax g(u)
and in the case of minimization,
u* = argmin g(u)

It will be known that statistical estimation prob-
lems are optimization problems. For instance, if

533



VOLUME: 3 | ISSUE: 4 | 2019 | December

g is the likelihood function and w is a vector of
parameter values, then v* is called the maximum
likelihood estimator (MLE), which has several
nice theoretical properties.

When g is the posterior distribution function,
then u* is a widespread bayes estimator. Other
well known estimators, for example the least
squares estimator in linear regression are opti-
mums of special objective functions. Usually
the available functions in R are used to find the
optimization solution to minimization problems.
Nevertheless, we can still utilize them to address
maximization problems by multiplying (-1) to
the original objective function.

We now turn on discuss to three functions in
R such as optim, nlegslv and maxLik function.
We first present to optim function in the next
sub-section.

2.2.  Optim function

The optim function is a widespread available
function to find the optimization solution of the
estimating function in the regression models.
The optim function is first introduced by Nash
[21]. This function is already included in R by
default, we just need to type the function name
and the right structure to use it.

The simplest structure of the optim function
can be described as follows:

optim(start, g)

where start is a precursory value for the parame-
ters to be estimated and g is the objective func-
tion. If we have also calculated the derivative
and stored it in a function dg, then the syntax
is

optim(start, g, dg, method, hessian = FALSE)

where dg is a gradient of an objective function,
method: we can select “NM" (Nelder-Mead),
“CG" (Conjugate Gradients), etc, hess is a hes-
sian matrix of an objective function. If FALSE
then the result of hessian matrix disappear, if
TRUE then we can see the result of hessian ma-
trix in calculation. To help readers easily per-
form the optim function in practice, we provide
an example about this issue.
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Example 1. Assuming that one needs to employ
the optim function to detect the maximum value
of the following function:

g(uy,uz) = 50(u; —ud)? + (1 — up)?

Solution
It can be seen that
dg
Buy = 100(u; — u3),
0
8792 = —200us (u1 — u2) — 2(1 — u)

Choosing (-1,1) vector is an initial value and
perform the statistical software R to write code:

g=function (u) {

ul = ull]

u2 = ul2]

50 « (ul - u2 * u2)*2 + (1 - u2)"2
}

dg = function (x) {

ul = ull]

u2 = ul2]

c(100% (ul - u2 % u2),-200 % u2

* (ul — u2 * u2) - 2 * (1 - u2))

}
optim(c(-1,1), g)

If we use the simplest formula of optim function,
optim(c(—1,1),g), then the result is provided as
follows:

Spar

[1] 0.9947242 0.9974764
Svalue

[1] 9.127087e-06
Scounts

function gradient
155 NA
Sconvergence

[1]1 O

Smessage

NULL

To see the hessian matrix, one only needs to add
“hessian = TRUE" in the above formula.

> optim(c(-1,1), TRUE)
Spar
(1]

g, hessian =

0.9947242 0.99747¢64
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Svalue

[1] 9.127087e-06
Scounts

function gradient
155 NA
Sconvergence

[1] 0

Smessage

NULL

Shessian

[,1]
(1,1
[2,]

[,2]
100.0000 -199.4953
-199.4953 400.0310

In addition, we also use the derivative of the ob-
jective function in the formula of optim function.
For example

optim(c(-1,1), g, method =
"CG", hessian =

dg,
TRUE)

Furthermore, one can choose the different
method in the formula of optim function

optim(c(-1,1), g,
"BFGS", hessian =

dg, method
TRUE)

or

optim(c(-1,1), g, method =

"NM", hessian =

dg,
TRUE)

We now present about the nleqgslv function in
the next sub-section

2.3. Nlegslv function
Likewise the optim function, the nlegslv func-
tion is an ubiquitous available function in R. The
nlegslv function is first developed by Hasselman
[12]. The simplest structure of the nlegslv func-
tion can be illustrated as follows:

nlegslv(start, g)

where start is a precursory value for the parame-
ters to be optimized and g is the objective func-
tion. The complete formula can be expressed as
follows:

optim(start, g, jac = NULL, method,
jacobian = FALSE)
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where jac is a function to return the Jacobian for
the g function. If not supplied numerical deriva-
tives will be used. For method, we can choose
method="Broyden" or method="Newton", jaco-
bian is a jacobian matrix of an objective func-
tion. If FALSE then the result of jacobian ma-
trix disappear, if TRUE then we can see the re-
sult of jacobian matrix in calculation. To help
readers easily perform the nlegslv function in
practice, we provide an example about this is-
sue.

Example 2. Assuming that one needs to employ
the nlegslv function to detect the mazimum value
of the following system of equations:

y1 = uf +uj —2
yo = exp(u; — 1) +uj — 2

Solution
Choosing (2,0.5) vector is an initial value and
perform the statistical software R to write code:

g=function (u) {

y = numeric(2)

y[1l] = ull]"2 + ul[2]"2 - 2

y[2] = exp(ull]l-1) + u[2]"3 - 2
Yy

nlegslv(c(l.5,1),qg, jacobian=TRUE)

If we use the simplest formula of nlegslv func-
tion, nlegslv(c(1.5,1), g), then the result is pro-
vided as follows:

> nlegslv(c(l.5,1),9)

Sx

[1] 1.491601 1.332338

Sfvec

[1] —-3.346834e-11 -1.306990e-10
Stermcd

[1] 1

Smessage

[1] "Function criterion near zero"
Sscalex

[1] 11

Snfcnt

[11 7

Snjcnt

[11 1

Siter

[11 7
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To see the jacobian matrix in the result, one only
needs to add “jacobian = TRUE" in the above
formula.

We now present about the maxLik function in
the next sub-section

2.4. MaxLik function

Similarly to optim function and nlegslv function,
the maxLik function is a popular available func-
tion to get the optimization solution of the es-
timating function in the regression models. The
maxLik function is first proposed by Henningsen
and Toomet [13]. The simplest structure of this
function is given by:

max Lik(logLik, start)

where logLik is the log-likelihood function of an
objective function and start is a precursory value
of parameters need to be estimated.

The complete formula can be written as follows:

max Lik(logLik, grad = NULL, hess = NULL,
start, method, constraints = NULL, . ..)

where grad is a gradient of an objective function.
If NULL, numerical gradient will be executed,
hess is a hessian matrix of an objective func-
tion. If NULL, numerical Hessian will be per-
formed, method: we can select “NM" (Nelder-
Mead), “CG" (Conjugate Gradients), “BFGS"
is a quasi-Newton method (Broyden-Fletcher-
Goldfarb-Shanno), etc, constraints: if we can se-
lect NULL for unconstrained maximization.

It has been seen that: To perform a maxLik
function in practice, one needs to have an ob-
jective function (a log-likelihood function) and
an initial value (real value or vector). To help
readers easily perform the maxLik function in
practice, we provide an example about this is-
sue. We next investigate an example in paper of
Henningsen et al. [13].

Example 3. Supposing that w is drawn from
N(2,3) and the sample size is 1000. Find the
parameters are estimated from this distribution.
Solution

The log-likelihood function can be described as
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follows:
N In(27)
2
_ En: (ui — p)?
‘ 202

Choosing (2,3) vector is an initial value and per-
form the statistical software R to write code:

In (L(u;p,0)) = — — Nln(o)

>u = rnorm (1000, mean = 2, sd = 3)
>loglikelihood.fun = function (par) {
mu = par[1l]

sigma = par[2]

sum (dnorm(u, mean = mu, sd = sigma,
log = TRUE))}

>MLE= maxLik (logLik =

loglikelihood. fun, start =
c(mu = 2, sigma = 3))
To thoroughly see the adequate results of MLE,
one can employ the following command: sum-
mary(MLE). For simplicity’s sake, let coef be
parameters need to be estimated and stdEr be
standard errors, one can utilize coef(MLE) and
stdEr(MLE) to look at the result of the parame-
ters need to be estimated and its standard error.

> summary (MLE)
> coef (MLE)

mu sigma
1.872786 3.043683

> stdEr (MLE)

mu sigma
0.09652925 0.06796909
3. Comparing the

performance of three
approaches

It will be known that, the regression models play
an extremely important and significant role in
statistics, economics, finance, etc. If the data
sets are used to apply to the regression model
contains too many zeroes, traditional regression
models such as logistic, Poisson, Binomial, etc.
will no longer be effective in research because the
result in estimates will be biased. Thus the zero-
inflated models have been proposed to overcome
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this problem. Corresponding to the traditional
regression models, we just need to add the word
"zero-inflated", then we will have the new re-
gression models. For instance, the zero-inflated
Bernoulli (ZIBer) is proposed to improve the lo-
gistics regression model when the outcome vari-
able contains too many zeroes. The zero-inflated
Poisson (ZIP) is proposed to improve the Pois-
son regression model when the outcome variable
contains too many zeroes. The zero-inflated Bi-
nomial (ZIB) is proposed to improve the Bino-
mial regression model when the outcome vari-
able contains too many zeroes, etc. We investi-
gate the problem of estimating parameter of the
Z1B model in the next example.

Example 4. In this example, we compare the
results with numerous sample sizes (n=150, 300
and 500), the ezxecution time of R code, as
well as Normal Q) - Q plots of three approaches
through the ZIB model. This model is introduced
in Diallo et al. [8].

Generating the data set as follows:

logit(m;) = B1Wi1 + B2 Wi + BsWiz + B4 Wiy
+B5sWis + BeWic + BrWir

and
logit(p;) = 61Xi1 + 62X + 03X;3
+ 04 X540+ 05 X5,
where Wil = 1, Wl ~ N(071), Wif ~
B(1,0.3) and W;; ~ N(-1,1) are indepen-
dently. Let Xil = 1, Xl ~ N(*l,l)

and X,;5 ~ B(1,0.5) are independently. In
this model, assuming that X;» = W,y and
X3 = W, and choosing starting values are:
B = (-0.3,1.2,0.5,-0.75,—1,0.8,0)" and 0 =
(—0.55,—0.7,—1,0.45,0)7.
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We investigate numerous sample sizes (n =
150,300,500) and h; € {4,5,6}. The numbers
h; are allowed to change across subjects.

Let

(K, ks, ke) = (card{i: h; = 4},
card{i : h; = 5}, card{i : h; = 6})

When n = 150, choosing (k4,ks,ks) =
(60,50, 40). When n = 300, selecting
(ka, ks, k) = (120,100,80) and with n = 500,

using (k4, ks, kg) = (200,170, 130).

Performing above values, the average propor-
tion of zero-inflation in our data set is 25%. The
number of repetitions in simulation is chosen
N = 1000 times and find the maximulqp likeli-

hood estimation (MLE) &, = (BZ,QA}C)

In this study, we perform three methods: op-
tim function, nlegslv function and maxLik func-
tion to estimate parameters. These results are
presented in Tab. 1, 2 and 3, respectively.
Note: bias is the distance between the estimator
and its true value, SD is the standard deviation,
ASE is the asymptotic standard error, and CP
is the coverage probability of 95% level confi-
dence intervals. All results are simulated with
the number of repetition is N = 1000.
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Tab. 1: The results by performing the optim function.

The results of estimator of 3

B
n 51,71 52,71 53,71 54,71 55,71 BG,n 57,n
150
bias -0.0123 0.0279 0.0131 -0.0242 -0.0319 0.0277 0.0022
SD 0.5681 0.1680 0.1419 0.1023 0.1641 0.2739 0.1259
ASE  0.5560 0.1638 0.1451 0.0988 0.1589 0.2721 0.1237
Ccp 0.9461 0.9421 0.9432 0.9450 0.9471 0.9477 0.9473
I(CI) 2.1661 0.6358 0.5692 0.3881 0.6232 1.0583 0.4854
300
bias -0.0131 0.0156 0.0077 -0.0112 -0.0154 0.0079 -0.0034
SD 0.3879  0.1143 0.1012 0.0723 0.1134 0.1882  0.0865
ASE 03787 0.1131 0.0988 0.0692 0.1089 0.1864 0.0865
Cp 0.9484 0.9489 0.9494 0.9515 0.9432 0.9465 0.9433
[(CI) 1.4864 0.4434 0.3922 0.2678 0.4347 0.7179 0.3318
500

bias  0.0024 0.0126 0.0042 -0.0078 -0.0089 0.0076 -0.0114
SD 0.2931 0.0864 0.0782 0.0524 0.0831 0.1434 0.0675
ASE  0.2931 0.0849 0.0775 0.0532 0.0843 0.1424 0.0667
CP  0.9523 0.9456 0.9478 0.9487 0.9489 0.9442 0.9532
I(CI) 1.1389 0.3367 0.2988 0.2056 0.3189 0.5487  0.2559

The results of estimator of 8

On
n el,n 92,n 93,11 94,11 95,n
150
bias -0.0763 -0.0512 -0.0743 0.0522 0.0083
SD 0.5215 0.358  0.7379 0.3178 0.5817
ASE  0.5043 0.3476 0.7754 0.3086 0.5789
CPp 0.9615 0.9543 0.9656 0.9582 0.9577
I[(CI) 19376 13265 2.8954 1.1763 2.2257
300
bias -0.0374 -0.0216 -0.0743 0.0267 0.0136
SD 0.3412  0.2279  0.5043 0.2045 0.3819
ASE 03376 0.2253  0.4965 0.2022 0.3731
Cp 0.9516 0.9523  0.9588 0.9517 0.9589
[(CI) 1.2824 0.878 1.8917 0.7863 1.4884
500

bias -0.0188 -0.0074 -0.0388 0.0164 0.0045
SD 0.2489 0.1743 0.3692 0.1563 0.2954
ASE 0.2488 0.1734 0.3652 0.1553 0.2877
CP 0.9512 09467 0.9515 0.9534 0.9545
[(CI) 09796 0.6664 1.4286 0.5894 1.1234
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Tab. 2: The results by performing the nlegslv function.

The results of estimator of 3

B
n ﬁl,n ﬁQ,n ﬂfﬁ,n ﬁ4,n BS,n 56,77, 57,77,
150
bias -0.0145 0.0299 0.0146 -0.0256 -0.0372 0.0295 0.0022
SD 0.5685 0.1649 0.1443 0.1028 0.1674 0.2767 0.1296
ASE  0.5539 0.1659 0.1496 0.0978 0.1566 0.2734 0.1267
Ccp 0.9474 0.9423 0.9465 0.9487  0.9477 0.9473 0.9501
I(CI) 2.1589 0.6378 0.5691 0.3795 0.6267 1.0594 0.4856
300
bias -0.0178 0.0167 0.0077 -0.0173 -0.0156 0.0093 -0.0045
SD 0.3879  0.1135 0.1123 0.0747  0.1207 0.1889 0.0864
ASE 03788 0.1145 0.0958 0.0694  0.1067 0.1894 0.0867
Cp 0.9484 0.9488 0.9495 0.9517 0.9436 0.9474 0.9445
I(CI) 14869 0.4438 0.3946 0.2675 0.4348 0.7149 0.3336
500

bias  0.0106 0.0156 0.0079 -0.0097 -0.0084 0.0037 -0.0129
SD 0.2931 0.0863 0.0784 0.0523 0.08247 0.1439  0.0696
ASE  0.2945 0.0874 0.0798 0.0533  0.0857 0.1447 0.0684
CP 09544 0.9496 0.9469 0.9468  0.9447 0.9485 0.9547
[(CI) 1.1385 0.3385 0.2987 0.2059 0.3186 0.5483  0.2559

The results of estimator of

On
n el,n 02,71 93,n 94,71 95,71

150

bias -0.0768 -0.0519 -0.0767 0.0579 0.0088

SD 0.5216  0.3588  0.7379 0.3189 0.5823

ASE  0.5056 0.3479  0.7756 0.3083 0.5785

CP 0.9619 0.9545 0.9662 0.9591 0.9567

I(CI) 1.9394 1.3267 2.8939 1.1785 2.2274
300

bias -0.0378 -0.0215 -0.0756 0.0279 0.0145

SD 0.3436  0.2279  0.5056 0.2124 0.3794

ASE  0.3468 0.2326 0.4874 0.2127 0.3974

Cp 0.9497 0.9558 0.9588 0.9516 0.9584

I(CI) 1.2848 0.8785 1.8914 0.7848 1.4849
500

bias -0.0187 -0.0078 -0.0394 0.0164 0.0037
SD 0.2485 0.1763 0.3695 0.1566 0.2939
ASE  0.2453 0.1768 0.3629 0.1583 0.2849
CP 09533 09491 0.9512 0.9506 0.9507
[(CI) 09789 0.6663 1.4294 0.5888 1.1248
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Tab. 3: The results by performing the maxLik function.

The results of estimator of 3

B
n 51,71 52,71 53,71 54,71 55,71 BG,n 57,n
150
bias  -0.0039 0.0179 0.0149 -0.0229 -0.0373 0.0249 0.0124
SD 0.5708 0.1695 0.1469 0.1026 0.1648 0.2753 0.1285
ASE  0.5563 0.1697 0.1458 0.0988 0.1539 0.2806 0.1269
Ccp 0.9489 0.9426 0.9468 0.9454 0.9474 0.9469 0.9474
I(CI) 21673 0.6343 0.5675 0.3886 0.6263 1.0585 0.4876
300
bias -0.0049 0.0173 0.0153 -0.0186 -0.0194 0.0128 -0.0097
SD 0.3869 0.118 0.1049 0.0714 0.1154 0.1875 0.0897
ASE 03788 0.1164 0.0986 0.0637 0.1025 0.1814 0.0884
Cp 0.9464 0.9485 0.9436 0.9540 0.9406 0.9497 0.9437
[(CI) 1.4837 0.4425 0.3958 0.2646 0.4349 0.7195 0.3348
500

bias  0.0174 0.0219 0.0160 -0.0097 -0.0074 0.0097 -0.0038
SD 0.2958 0.0883 0.0794 0.0538 0.0895 0.1449 0.0697
ASE  0.2939 0.0875 0.0783 0.0569 0.0886 0.1448 0.0675
CP  0.9508 0.9488 0.9458 0.9475 0.9474 0.9497 0.9565
I(CI) 1.1346 0.3384 0.2986 0.2083 0.3138 0.5464 0.2583

The results of estimator of 8

On
n el,n 92,n 93,11 94,11 95,n

150

bias -0.0748 -0.0534 -0.0764 0.0574 0.0184

SD 0.5226 0.3584 0.7379 0.3197 0.5823

ASE  0.5047 0.3495 0.7763 0.3096 0.5784

CPp 0.9507 0.9538 0.9606 0.9518 0.9539

I[(CI) 19374 13298 2.8995 1.1783 2.2258
300

bias -0.0275 -0.0153 -0.0097 0.0275 0.0175

SD 0.3458 0.2296  0.5064 0.2085 0.3811

ASE 03375 0.2265 0.4993 0.2055 0.3787

Cp 0.9514 0.9507 0.9537 0.9526 0.9505

I(CI) 1.2847 0.8787 1.8926 0.7857 1.4894
500

bias -0.0096 -0.0131 -0.0265 0.0273 0.0048
SD 0.2488  0.1757 0.3696 0.1576 0.2974
ASE 0.2489 0.1726 0.3674 0.1596 0.2885
CP 09512 09474 0.9515 0.9509 0.9538
[(CI) 09785 0.6686 1.4239 0.5885 1.1263
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Normal Q - Q plots for @ln, AN §5,n with results
are attained by the maxLik function (n = 500).
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It can be observed from Tab. 1, 2 and 3 that,
the biases of estimators are very small, the val-
ues of SD and ASE are very close and the val-
ues of CP are very close to 0.95. These prove
that our estimated results are very dependable.
That is a consistent estimator. Moreover, it can
be seen that the bias, SE, SD, and [(CI) of all
estimators decrease as the sample size increases.

About the results, the authors in paper of Di-
allo et al. [8] used a maxLik function to study
simulation. The results in this paper is executed
by using three approaches: optim, nlegslv and
maxLik function are offered in Tab. 1, 2 and 3,
respectively. It can be observed from the above
results of three approaches most are the same.
Besides, it can be seen that the normal Q - Q
plots are provided in Fig. 1-6 respectively that
the Gaussian approximation of the distribution
of the MLE in the ZIB model is reasonably sat-
isfied.

To compare the execution time of R code, it
is required that the data set is considered in the
study needs to be the same. We utilized the Dell
desktop computer is configured with Intel Core
i5, 8GB of RAM, 1TB of hard drive to check
the time to run code to output the result of there
methods. To get the above results, for n=150, it
takes 15 minutes for optim function, 20 minutes
for nlegslv function and 30 minutes for maxLik
function. For n=300, it takes 28 minutes for op-
tim function, 35 minutes for nlegslv function and
55 minutes for maxLik function. For n=500, it
takes 50 minutes for optim function, 60 minutes
for nlegslv function and 70 minutes for maxLik
function. Thus it can be said that the execution
time of R code of the methods being discussed in
the paper then the optim function is the fastest.

In example 4, we investigate the data set of Y
is count data. In the next example, we aim to
consider the data set of Y is binary data. Thus
we present the problem of estimating parameter
of the logistic model in the next example.

Example 5. Considering the logistic regression
model as follows:

eBotB1X

P(Yi=1)= 1 + eBot+B1Xi

=H (Bo + /1Xy)

(© 2019 Journal of Advanced Engineering and Computation (JAEC)

where

e Y is a binary variable, Y € {0,1}
e X is a covariates

e 3y and (1 are parameters need to be esti-
mated

The likelihood function of logistic regression
model has the form

n

[1P

Yl(l_
11

Y1
i—1 ( )
eBot+B1Xi 1-1
% <1 1 + eﬂ0+51Xi>
eBot+B1Xi Y1
<1 + ePotb1X )
1 1-v;
X e —
<]_ + ePot+P1 X )

The log-likelihood function of logistic regression
eBot+B1Xi

model has the form
() =W[L(B)]
|:Yz In <1 + ePotB1 X >:|
" Yi)1 S
T Z; (1 - z) n 1 4 ePot+P1 X

D/; In (650+61Xi)

P, =1)""

<.
—

eBo+B1X;
1 + ePot+P1Xs

<.

I
-

[
I

)

—In (]_ + 650+/61X'i)}

|

@
I
-

[Yl (60 + 51X1) —In (1 + eﬁo+61xi)]

I

=1

For this example, we also investigate the results
with several sample sizes (n=150, 300 and 500),
the execution time of R code, as well as Normal
Q - Q plots of three approaches. Our results
show that the results of the three approaches
are almost the same and the run time of the R
code to get the result of the optim function is
the fastest. To save space, we do not provide
results in here.

For comparison purposes, we also investigate
some other regression models such as the zero
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inflated Poisson (ZIP) model and the zero
inflated Bernoulli (ZIBer) model. The detailed
formula of the likelihood function, log-likelihood
function of these models may refer in Lukusa
et al. [17] and Diop et al. [9], respectively.
To save space, we do not provide results for
this section. Our results obtained indicate that
the results of the three approaches are almost
the same and the run time of the R code to
get the result of the optim function is the fastest.

We discuss the advantages and disadvantages
of optim, nlegslv and maxLik functions in the
next section.

4. Advantages and

Disadvantages of these
functions

Three functions in R such as optim, nlegslv and
maxLik functions are the most used to find opti-
mization solutions of the estimating function in
the regression models. These functions can be
employed to find precise values of the parameters
need to be estimated when the data set have no
missing values or errors in measurement. This
is the main advantage of these functions. More-
over, these functions are easy to use and involve
simple structures. Nevertheless, in practice, it
is usually the case that data sets are faced up
with missing or incomplete values, which is the
principal disadvantage of these functions.

Cases of incomplete or missing data are an
ubiquitous problem that is frequently encoun-
tered in, for instance, in the economics, technol-
ogy and engineering fields, etc. This issue occurs
for numerous reasons, for example, respondents
not answering certain items in survey questions,
non-acquiesce and inexplicable answers, etc. (for
further details, see Schafer and Graham [22]).

It is clear that it is both significant and in-
evitableness to extend three functions in R such
as optim, nlegslv and maxLik functions to be
useful when the data set comprises missing val-
ues or errors in measurement. Pho and Nguyen
[29] reviewed of three widespread approaches to
handle the problems with missing data. Pho et
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al. [31] also mentioned some methods of solv-
ing problems that contain missing data. For
further details involving this issue, reference is
made to Horton and Kleinman [14], Little [16],
Mahmoudi et al. [18], Pho et al. [30] and [32],
etc.

About the optim, nlegslv and maxLik func-
tions. There are many optimization methods
that can be chosen in these functions. In this
paper, we also try to do the other optimization
methods. However, our results need to satisfies
three conditions: bias < 5%, the value of SD and
ASE is very close and CP is very near 0.95 to
our estimator is a consistent estimator. Thus if
we choose the other optimization methods, then
may be our estimator is not a consistent esti-
mator. Hence we choose the suitable method in
functions (optim, nlegslv and maxLik) to have a
consistent estimator.

5. Conclusions

In this article, we have presented the approaches
and examples of the three functions in R such
as optim, nlegslv and maxLik functions. We
then compare the results with many sample sizes
(n=150, 300 and 500), the execution time of R
code, as well as Normal Q - Q plots of three
approaches through some of regression models
such as the zero-inflated Binomial (ZIB) regres-
sion model, logistic regression model, the zero-
inflated Poisson (ZIP) regression model and the
zero-inflated Bernoulli (ZIBer) regression model.
Our results obtained indicate that the results of
the three approaches are almost the same and
the execution time of R code of the optim func-
tion is the fastest.
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