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Abstract. In this paper, the existence of ex-
tremal solutions of Caputo-Hadamard-type frac-
tional di�erential equations (CHFDEs) with or-
der α ∈ (1, 2) is established by employing the
method of lower and upper solutions. Moreover,
su�cient condition that ensure the stability of a
class of CHFDE is also provided. Some exam-
ples are given to illustrate our main results.
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1. Introduction

Fractional calculus and fractional di�erential
equation models have been studied in a variety
of �elds such as physics, mathematics, engineer-
ing, bioengineering, and other applied sciences.
For a general overview of the theory and applica-
tions of fractional di�erential equations involv-
ing the Riemann-Liouville fractional derivative
and the Caputo derivative, we refer the reader

to the monograph of Kilbas [7]. Recently, frac-
tional di�erential equations with the Hadamard
derivative and the Caputo-Hadamard derivative
have attracted the attention of a large number of
researchers (see [1, 2, 4, 8, 13] and the references
therein). In particular, Caputo-Hadamard frac-
tional derivatives were introduced by Jarad et al.
[5], and it was shown that there are many advan-
tages over the usual Hadamard fractional deriva-
tive. Moreover, Gambo et al. [4] presented
the fundamental theorem of fractional calculus
in the Caputo-Hadamard setting based on the
concept in [5], and recently Almeida [2] pro-
posed three types of Caputo-Hadamard deriva-
tives of variable fractional order, and studied
the relation between them. Adjabi et al. [1]
investigated the existence of solutions to frac-
tional di�erential equations with the Caputo-
Hadamard derivative using Banach's �xed point
theorem. Yukunthorn et al. [13] studied the
existence of solutions for impulsive hybrid sys-
tems of Caputo-Hadamard fractional di�erential
equations equipped with integral boundary con-
ditions using �xed point theorems.

In this work, we present some existence results
for the initial value problem for fractional di�er-
ential equations with order α ∈ (1, 2) involving
Caputo-Hadamard fractional derivative using
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the method of upper and lower solutions coupled
with its associated monotone iteration scheme.
This technique is a powerful tool for proving
the existence of solutions of nonlinear fractional
di�erential equations; see [3, 9, 10, 14, 15, 12].
To the best of our knowledge this technique has
not been applied to the initial value problem for
CHFDE, when α ∈ (1, 2), to investigate the exis-
tence of minimal and maximal solutions. In this
paper, using this technique we discuss the exis-
tence of extremal solutions and the uniqueness
of the solution of the following fractional di�er-
ential equation with the Caputo-Hadamard-type
fractional derivative for α ∈ (1, 2){

C−HDα
a+ψ(t) = f(t, ψ(t)),

ψ(a) = ψ0, ψ′(a) = ξ0,
(1)

where t ∈ (a, b], and a ≥ 1.

Section 2 contains some basic de�nitions and
the related lemma that will be used. In Section
3, using the method of upper and lower solu-
tions, we prove the existence of extremal solu-
tions of problem (1). Finally, the stabilization
of a class of fractional di�erential equations is
established in Section 4.

2. Preliminaries

In this section, some basic de�nitions, proposi-
tions, remarks and lemma are introduced (see
[5, 4] for more detail), which will be used in
the following discussions. Denote by C[a, b],
AC[a, b] the space of continuous functions and
the space of absolutely continuous functions
from [a, b] into R, respectively. In this paper, we
denote by ACn[a, b], Cn[a, b] and Cγ [a, b], where
n ∈ N, the spaces de�ned by

ACn[a, b] :={
ψ : [a, b]→ R :

(
t
d

dt

)n−1

ψ(t) ∈ AC[a, b]

}
,

Cn[a, b] :={
ψ : [a, b]→ R :

(
t
d

dt

)n
ψ(t) ∈ C[a, b]

}
.

Cγ [a, b] :=

{ψ : (a, b]→ R : (ln t− ln a)
γ
ψ(t) ∈ C[a, b]} ,

where γ ∈ (0, 1]. If n = 1, the space AC1[a, b]
coincides with AC[a, b]. Now, we provide some
de�nitions and properties of fractional calculus.

The Hadamard fractional integral of the
function ψ is de�ned by (see [7]):

ψα(t) : =
(
HIαa+ψ

)
(t)

=
1

Γ(α)

t∫
a

(ln t− ln s)α−1ψ(s)
ds

s
, t > a.

The Hadamard fractional derivative of order α ∈
(1, 2) for the function ψ is de�ned as follows (see
[7]):

(
HDα

a+ψ
)

(t) =

(
t
d

dt

)2
HI2−α

a+ ψ(t)

=
1

Γ(2− α)

(
t
d

dt

)2 ∫ t

a

(ln t− ln s)1−αψ(s)
ds

s
.

Let ψ ∈ L1[a, b]. If
(
HDα

a+ψ
)

(t) exists on
[a, b], the Caputo-Hadamard fractional deriva-
tive

(
C−HDα

a+ψ
)
of order α ∈ (1, 2) is de�ned

by (see [5, 4])(
C−HDα

a+ψ
)

(t)

= HDα
a+

[
ψ(t)−

1∑
k=0

(ln t− ln a)k

k!

[
ψ(k)(t)

]
t=a

]
,

where ψ(k)(t) :=

(
t
d

dt

)k
ψ(t). Then, one has

(see [4, 5])(
C−HDα

a+ψ
)

(t) (2)

= HDα
a+ψ(t)−

1∑
k=0

ψ(k)(a)

k!
HDα

a+(ln t− ln a)k

= HDα
a+ψ(t)−

1∑
k=0

ψ(k)(a) (ln t− ln a)
k−α

Γ(k − α+ 1)
.

(3)

On the other hand, the de�nition of the Caputo-
Hadamard fractional derivative

(
C−HDα

a+ψ
)
of

order α ∈ (1, 2) is de�ned by (see [4, 5])(
C−HDα

a+ψ
)

(t)

=
1

Γ(2− α)

∫ t

a

(ln t− ln s)1−α
(
s
d

ds

)2

ψ(s)
ds

s
.

(4)
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Furthermore, we observe that:

‖ψα‖0 : = sup
t∈[a,b]

|ψα(t)|

≤ ‖ψ‖0
1

Γ(α)

t∫
a

(ln t− ln s)α−1 ds

s

≤ ‖ψ‖0
Γ(α+ 1)

(ln b− ln a)α, (5)

where t ∈ [a, b] and ‖ψ‖0 = supt∈[a,b] |ψ(t)|.

Example 1. We consider ψ(t) = (ln t − ln a)β ,
where t ∈ [a, b] and β ≥ 2. For α ∈ (1, 2) one
has that(

C−HDα
a+ψ

)
(t) = HDα

a+(ln t− ln a)β

−

[
(ψ(a)) 1

Γ(1−α) (ln t− ln a)−α

+(aψ′(a)) 1
Γ(2−α) (ln t− ln a)1−α

]

=
Γ(β + 1)

Γ(β + 1− α)
(ln t− ln a)β−α.

Also one has(
C−HDα

a+ψ
)

(t)

=

∫ t

a

(ln t− ln s)1−α

Γ(2− α)

[(
s
d

ds

)2

(ln s− ln a)β
]ds
s

=
β(β − 1)

Γ(2− α)

∫ t

a

(ln t− ln s)1−α(ln s− ln a)β−2 ds

s

= B(2− α, β − 1)
β(β − 1)

Γ(2− α)
(ln t− ln a)β−α

=
Γ(β + 1)

Γ(β + 1− α)
(ln t− ln a)β−α,

where we make the substitution z = ln s−ln a
ln t−ln a and

use the de�nition of the Beta function.

Remark 1. (see [7]) Let α, β > 0 and ψ, ξ ∈
Lp[a, b] (1 ≤ p ≤ ∞). We have that:
(i)HIαa+(ψ + ξ)(t) = HIαa+ψ(t) + HIαa+ξ(t); (ii)
HIαa+

HIβa+ψ(t) = HIα+β
a+ ψ(t).

Proposition 2. .1. (see [7]) Let ψ ∈ Lp[a, b],
then for 0 < α < β we have(

HD
α

a+
HIαa+ψ

)
(t) = ψ(t), (6)

and (
HD

α

a+
HIβa+ψ

)
(t) =

(
HIβ−αa+ ψ

)
(t). (7)

Remark 2. (see [7]) Let ψ ∈ L1[a, b] such that
ψ1−α ∈ AC2[a, b]. Then we have

HIαa+
HDα

a+ψ(t)

= ψ(t)−
2∑
k=1

ψ
(2−k)
(2−α)(a)

Γ(α− k + 1)
(ln t− ln a)

α−k

for t ∈ (a, b].

Remark 3. (see [4, 5]) If ψ ∈ AC2[a, b] or
C2[a, b], then(

HIαa+
C−HDα

a+ψ
)

(t)

= ψ(t)−
1∑
k=0

ψ(k)(a)

k!
(ln t− ln a)

k
, (8)

where t ∈ (a, b], and(
C−HDα

a+
HIαa+ψ

)
(t) = ψ(t), t ∈ (a, b]. (9)

Example 2. Let α ∈ (1, 2) and ψ(t) = (ln t −
ln a)2, where t ∈ [a, b]. One can see that the
right-hand sides of (8) and (9) are equal (ln t −
ln a)2. Also it is well-known that (see page 112
in [7])

HIαa+(ln t− ln a)β−1 =
Γ(β)(ln t− ln a)β+α−1

Γ(β + α)
,

where β > 0. Then, from Example 1 we get(
HIαa+

C−HDα
a+ψ

)
(t) = (ln t− ln a)2,

and (
C−HDα

a+
HIαa+ψ

)
(t) = (ln t− ln a)2.

Lemma 1. [6] Let X be an ordered Banach
space, u0, v0 ∈ X, u0 ≤ v0, D = [u0, v0], P :
D → X be an increasing completely continuous
operator and u0 ≤ Pu0, v0 ≥ Pv0. Then, the
operator P has a minimal �xed point u∗ and a
maximal �xed point v∗. Furthermore, if we let
un = Pun−1, vn = Pvn−1, n = 1, 2, 3, ..., then
u0 ≤ u1 ≤ u2 ≤ ... ≤ un ≤ ... ≤ vn ≤ ... ≤ v2 ≤
v1 ≤ v0, and un → u∗, vn → v∗.
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3. The existence of

extremal solutions

Consider the following fractional di�erential
equation with the order α ∈ (1, 2):{

C−HDα
a+ψ(t) = f(t, ψ(t)),

ψ(a) = ψ0, ψ′(a) = ξ0
(10)

where t ∈ (a, b], and a ≥ 1. A function ψ :
[a, b]→ R is said to be a solution of the problem
(10) if it satis�es ψ(a) = ψ0, ψ

′(a) = ξ0 and
C−HDα

a+ψ(t) = f(t, ψ), t ∈ (a, b].

Lemma 2. Let f : (a, b]× R→ R be such that
t 7→ f(t, u) belongs to Cγ([a, b],R), 0 ≤ γ ≤ 1.
Then, a function ψ is a solution of the problem
(10) if and only if ψ satis�es

ψ(t) = ψ0 + ψ(1)(a)(ln t− ln a)

+
1

Γ(α)

t∫
a

(ln t− ln s)α−1f(s, ψ(s))
ds

s
. (11)

Proof. Let ψ ∈ C[a, b] be a solution of the prob-
lem (10). Then by (10) and Remark 3 one has
that(

HIαa+
C−HDα

a+ψ
)

(t)

= ψ(t)− ψ(a)− ψ(1)(a)(ln t− ln a), (12)

Because f(t, u) ∈ Cγ([a, b],R) and from problem
(10), we have that(

HIαa+
C−HDα

a+ψ
)

(t) = HIαa+f(t, ψ(t))

=
1

Γ(α)

t∫
a

(ln t− ln s)α−1f(s, ψ(s))
ds

s
, (13)

This yields the necessity condition of the proof.
On the other hand, because of the conti-
nuity of the function f , the function t 7→
fα(t, u) is continuous on (a, b] and fα(a, u(a)) =
lim
t→a+

fα(t, u(t)) = 0. Then, ψ(a) = ψ0 and

ψ′(a) = ξ0. By taking the operator HDα
a+ on

two sides of (11) and by Proposition 2. .1, one
gets

HDα
a+

[
ψ(·)− ψ(a)− ψ(1)(a)(ln t− ln a)

]
(t)

= f(t, ψ(t)).

To show the main results of this paper, we need
the formula of solution of the problem (10) in
the linear form as the below.

Remark 4. The formula of the solution of the
following linear Caputo-Hadamard fractional
di�erential equation{

C−HDα
a+ψ(t) = λψ(t) + h(t),

ψ(a) = ψ0, ψ′(a) = ξ0
(14)

is expressed by

ψ(t) = ψ0Eα,1 (λ (ln t− ln a)
α

)

+ ψ(1)(a)(ln t− ln a)Eα,2 (λ (ln t− ln a)
α

)
(15)

+

t∫
a

(ln t− ln s)α−1Eα,α (λ (ln t− ln s)
α

)h(s)
ds

s
.

Indeed, to get the explicit formula of the solution
of (14), we shall employ the method of successive
approximations. First of all, based on Lemma 2
we observe that a function ψ is a solution of the
problem ( 14) if it satis�es

ψ(t) = ψ0 + ψ(1)(a)(ln t− ln a)

+ λ(HIαa+ψ)(t) + (HIαa+h)(t).

Next, we set ψ0(t) = ψ0+ψ(1)(a)(ln t− ln a) and
for n = 1, 2, 3, ...

ψn(t) = ψ0(t) + λ(HIαa+ψn−1)(t) + (HIαa+h)(t).

For n = 1, because HIαa+(ln t − ln a)β =
Γ(β+1)

Γ(α+β+1) (ln t − ln a)α+β , where β ≥ 0, we have

that

ψ1(t) = ψ0(t) + λ(HIαa+ [ψ0 + ψ(1)(a)(ln t− ln a)]

+ (HIαa+h)(t)

= ψ0 + ψ(1)(a)(ln t− ln a) + λ
(ln t− ln a)α

Γ(α+ 1)
ψ0

+ λψ(1)(a)Γ(2)
(ln t− ln a)α+1

Γ(α+ 2)
+ (HIαa+h)(t)

= ψ0

[
1 +

λ(ln t− ln a)α

Γ(α+ 1)

]
+ ψ(1)(a)(ln t− ln a)

[
1 +

λ(ln t− ln a)αΓ (2)

Γ (α+ 2)

]
+ (HIαa+h)(t).
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For n = 2, we also see that

ψ2(t) = ψ0

[
1 + λ(ln t−ln a)α

Γ(α+1)

+λ2(ln t−ln a)2α

Γ(2α+1)

]
+ (HIαa+h)(t) + λ(HI2α

a+h)(t)

+ ψ(1)(a)(ln t− ln a)

[
1 + λ(ln t−ln a)α

Γ(α+2)

+λ2(ln t−ln a)2α

Γ(2α+2)

]
.

If one proceeds inductively and let n→∞, one
gets the solution

ψ(t) = ψ0

∞∑
i=0

λi(ln t− ln a)iα

Γ(iα+ 1)

+ ψ(1)(a)(ln t− ln a)

∞∑
i=0

λi(ln t− ln a)iα

Γ(iα+ 2)

+

t∫
a

∞∑
i=0

λi(ln t− ln s)iα+(α−1)

Γ(iα+ α)
h(s)

ds

s

= ψ0

∞∑
i=0

λi(ln t− ln a)iα

Γ(iα+ 1)

+ ψ(1)(a)(ln t− ln a)

∞∑
i=0

λi(ln t− ln a)iα

Γ(iα+ 2)

+

t∫
a

(ln t− ln s)α−1
∞∑
i=0

λi(ln t− ln s)iα

Γ(iα+ α)
h(s)

ds

s
.

Then, by using the de�nition of the Mittag-

Le�er function Eα,β(u) =
∞∑
i=0

ui

Γ(iα+ β)
, α, β >

0, the solution of the problem (14) is given (15).

t

1 1.5 2 2.5

ψ
(t

)

-3

-2.5

-2

-1.5

-1

-0.5

Fig. 1: The graph of ψ(t) in Example 3 with λ =
0.5, α = 1.75, β = 2.

Example 3. In Remark 4, we consider [a, b] =
[1, e], the function h(t) = 2(ln t)β , ψ(1) =
−3, ψ′(1) = 3. Then, we get the formula of the
solution as follows:

ψ(t) = −3Eα,1 (λ (ln t)
α

) + 3ln tEα,2 (λ (ln t)
α

)

+ 2

t∫
1

(ln t− ln s)α−1Eα,α (λ (ln(t/s))
α

) lnβ s
ds

s

= −3Eα,1 (λ (ln t)
α

) + 3ln tEα,2 (λ (ln t)
α

)

+ 2Γ(β + 1)(ln t)α+βEα,α+β+1 (λ (ln t)
α

) .

The graph of the solution ψ(t) is shown in Fig.
1.

De�nition 1. Let α ∈ (1, 2). A function ψL ∈
C2−α[a, b] is a lower solution for the initial value
problem (10) if{

C−HDα
a+ψ

L(t) ≤ f(t, ψL(t)),
ψL(a) ≤ ψ0, (ψL)′(a) ≤ ξ0.

(16)

A function ψU ∈ C2−α[a, b] is an upper solution
for (10) if it satis�es the reverse inequalities of
(16), i.e.,{

C−HDα
a+ψ

U (t) ≥ f(t, ψU (t)),
ψU (a) ≥ ψ0, (ψU )′(a) ≥ ξ0

(17)

As in the proof of Lemma 2.2 in [11], we also get
the remark below.

Remark 5. Let α ∈ (1, 2), β ∈ [1, 2], b < ∞
and λ < 0. Then we have that

∞∑
i=1

i[λ(ln t− ln a)α]i−1

Γ(iα+ β)
> 0, ∀t ∈ [a, b]. (18)

Remark 6. Let α ∈ (1, 2) and λ < 0. We
observe that the Mittag-Le�er functions in Re-
mark 4 satis�es Eα,α(0) = 1/Γ(α), Eα,1(0) =
1, Eα,2(0) = 1. In addition, the following prop-
erties are satis�ed:

(i) for all t, s ∈ [a, b], where 1 ≤ a ≤ s < t ≤ b,∣∣Eα,1 (λ (ln t− ln a)
α

)
∣∣ ≤ 1, (19)∣∣Eα,2 (λ (ln t− ln a)

α
)
∣∣ ≤ 1, (20)∣∣Eα,α (λ (ln t− ln s)

α
)
∣∣ ≤ 1

Γ(α)
. (21)
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(ii) for any t1, t2 ∈ [a, b] and t1 ≤ t2, where
a ≥ 1,

Eα,1 (λ (ln t2 − ln a)
α

)

≤ Eα,1 (λ (ln t1 − ln a)
α

) , (22)

Eα,2 (λ (ln t2 − ln a)
α

)

≤ Eα,2 (λ (ln t1 − ln a)
α

) , (23)

Eα,α (λ (ln t2 − ln a)
α

)

≤ Eα,α (λ (ln t1 − ln a)
α

) . (24)

t

0 10 20 30 40 50 60 70 80 90 100

E
α

,1

-1

-0.5

0

0.5

1

Fig. 2: The graph of Eα,1(λ(ln t − ln a)α)
with λ = −0.5, α = 1.1 (blue), α =
1.3 (black), α = 1.5 (red), α = 1.7
(yellow), and α = 1.9 (green).

t

0 10 20 30 40 50 60 70 80 90 100

E
α

,2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 3: The graph of Eα,2(λ(ln t − ln a)α)
with λ = −0.5, α = 1.1 (blue), α =
1.3 (black), α = 1.5 (red), α = 1.7
(yellow), and α = 1.9 (green).

Proof. Based on the de�nition of the Mittag-

Le�er function Eα,β

(
λ(ln t − ln a)α

)
=

∞∑
i=0

λi(ln t− ln a)iα

Γ(iα+ β)
, where α ∈ (1, 2), β ∈

{1, 2, α}, and by passing to limit with t → a+,

we have that

lim
t→a+

Eα,β

(
λ(ln t− ln a)α

)
=

1

Γ(β)
.

This yields that Eα,α(0) = 1/Γ(α), Eα,1(0) =
1, Eα,2(0) = 1. Next, to show assertions (i) and
(ii) we shall prove that the Mittag-Le�er func-
tions Eα,α, Eα,1, Eα,2 are decreasing in t ∈ [a, b].
Let α ∈ (1, 2) and β ∈ {1, 2, α}, and then we
make the direct calculation

d

dt
Eα,β

(
λ(ln t− ln a)α

)
=
λα(ln t− ln a)α−1

t

∞∑
i=1

i[λ(ln t− ln a)α]i−1

Γ(iα+ β)
.

(25)

Based on Remark 5 and by λ < 0, α ∈ (1, 2),
we conclude that the right-hand side of (25) is
negative. Thus, the function Eα,β is decreasing
in t. This yields that the assertions (i) and (ii)
are satis�ed. From Figs. 2-4, it follows that the
assertions (19)-(21) are valid. In addition, the
graphs 5-7 are given to illustrate the assertions
(22)-(24).

Theorem 1. Let α ∈ (1, 2) and f be continu-
ous. If the function f satis�es the condition

|f(t, u)− f(t, v)| ≤ L|u− v|, (26)

where u, v ∈ R and L is a positive constant, then
the initial value problem (10) has a solution ψ ∈
C[a, b]. Furthermore, let ψL, ψU be lower and
upper solutions of (10) such that ψL(t) ≤ ψU (t)
on [a, b] and suppose further that

f(t, u)− f(t, v) ≥ −M(u− v), (27)

for ψL(t) ≤ v ≤ u ≤ ψU (t), M ≥ 0. Then there
exist monotone sequences {un}, {vn} such that
un → ψmin, vn → ψmax as n → ∞ uniformly
and monotonically on [a, b], and (ψmin, ψmax) are
minimal and maximal solutions of the problem
(10), respectively.

Proof. To prove this theorem, let us de�ne the
following integral operator P : C[a, b] → C[a, b]
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t

0 10 20 30 40 50 60 70 80 90 100

E
α

,α

-0.2

0

0.2
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Fig. 4: The graph of Eα,α(λ(ln t − ln a)α)
with λ = −0.5, α = 1.1 (blue), α =
1.3 (black), α = 1.5 (red), α = 1.7
(yellow), and α = 1.9 (green).
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Fig. 5: The graph of E1.5,1(λ(ln t − ln a)1.5)
with λ = −0.5.

by

(Pψ)(t) = ψ0Eα,1 (λ (ln t− ln a)
α

)

+ ψ(1)(a)(ln t− ln a)Eα,2 (λ (ln t− ln a)
α

)

+

t∫
a

Eα,α (λ(ln(t/s))
α

)
[f(s, ψ(s))− λψ(s)]

(ln t− ln s)
1−α

ds

s
.

(28)

This proof consists of three steps.
Step 1: The initial value problem (10) has at
least one solution if and only if the operator P
has a �xed point ψ satisfying{

C−HDα
a+ψ(t)− λψ(t) = f(t, ψ(t))− λψ(t),

ψ(a) = ψ0, ψ′(a) = ξ0,

(29)

We now show that the integral operator P is well-
de�ned, that is, Pψ ∈ C[a, b] for ψ ∈ C[a, b].
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Fig. 6: The graph of E1.5,2(λ(ln t − ln a)1.5)
with λ = −0.5.
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Fig. 7: The graph of E1.5,1.5(λ(ln t− ln a)1.5)
with λ = −0.5.

Let us consider ψn, ψ ∈ C[a, b], where ψ0(t) =
ψ0 + ψ(1)(a)(ln t− ln a), such that ψn → ψ as
n→∞, and then from Remark 6 and hypothesis
(26) we have that for n ∈ N

‖Pψn − Pψ‖0 = max
t∈[a,b]

|(Pψn(t)− Pψ(t))|

≤ max
t∈[a,b]

t∫
a

(ln t− ln s)
α−1

Γ(α)

[
L|ψn − ψ|
+|λ||ψn − ψ|

]
ds

s

≤ (ln t− ln a)α

Γ(α+ 1)
(L+ |λ|)‖ψn − ψ‖0.

Therefore, this yields

‖Pψn − Pψ‖0 ≤
(ln b− ln a)α

Γ(α+ 1)
(L+ |λ|)‖ψn − ψ‖0

−→ 0, as n→∞.

This allows to conclude that the operator P is
continuous on [a, b]. Therefore, P is well-de�ned.
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Step 2: We now show that the operator P has
a �xed point, and this is done using Schauder's
�xed point theorem. In the previous step, we
have Pψ ∈ C[a, b] if ψ ∈ C[a, b], i.e. P maps
the set C[a, b] into itself. Next, let S ⊂ C[a, b]
be a bounded set, and then we shall show that
P(S) = {(Pψ)(t) : ψ ∈ S} is a relatively com-
pact set, and this is done using the Arzela-Ascoli
Theorem (see Theorem 1.8 in [7]). First of all
we shall verify that the set P(S) is uniformly
bounded. Let W (t) ∈ P(S). Then from Remark
6 and the condition (26) we have that for all
t ∈ [a, b], α ∈ (1, 2),

‖W (t)‖0 = ‖Pψ‖0 ≤ |ψ0|+ |ψ(1)(a)|(ln b− ln a)

+ max
t∈[a,b]

t∫
a

(ln t− ln s)
α−1

Γ(α)

 L|ψ(s)|
+|f(t, 0)|
+|λ||ψ(s)|

 ds

s

≤ |ψ0|+ |ψ(1)(a)| (ln b− ln a)

+
Mf

Γ(α+ 1)
(ln b− ln a)

α

+
(ln b− ln a)α

Γ(α+ 1)
(L+ |λ|)‖ψ‖0,

where Mf = maxt∈[a,b] |f(t, 0)|. This argument
shows that P(S) is uniformly bounded. Next,
we show that P(S) is equicontinuous. For ev-
ery ψ ∈ C[a, b], from the continuity of the func-
tion f , from Remark 6 and by letting Kf =
supt∈[a,b] |f(t, ψ) +λψ|, we get for a ≤ t1 ≤ t2 ≤
b,

|(Pψ)(t2)− (Pψ)(t1)| ≤ |ψ0| |E1(t2)− E1(t1)|
+ |ψ(1)(a)| |E2(t2)− E2(t1)|

+
Kf

Γ(α)

t1∫
a

[
(ln t2 − s)α−1 − (ln t1 − ln s)α−1

] ds
s

+
Kf

Γ(α)

t2∫
t1

(ln t2 − ln s)α−1 ds

s

= |ψ0| |E1(t2)− E1(t1)|
+ |ψ(1)(a)| |E2(t2)− E2(t1)|

+
Kf

Γ(α+ 1)

(
(ln t2 − ln a)α − (ln t1 − ln a)α

)
+

Kf

Γ(α+ 1)
(ln t2 − ln t1)α,

where E1(t) := Eα,1 (λ (ln t− ln a)
α

) ,
E2(t) := (ln t− ln a)Eα,2 (λ (ln t− ln a)

α
) .

Since α ∈ (1, 2), λ < 0, the functions
Ei(t), i = {1, 2} are uniformly continuous
and bounded on [a, b]. Therefore, as t2 → t1, the
right-hand side of the above inequality tends
to zero. Thus P(S) is equicontinuous. So, by
Schauder's �xed point theorem (see Theorem
1.7 in [7]), we assert that P has at least one
�xed point ψ∗ such that Pψ∗ = ψ∗. This �xed
point is the required solution of the initial value
problem (10).

Step 3: In order to prove that the operator P
has a extremal solutions, we show that the con-
ditions of Lemma 1 are satis�ed. Indeed, let
ψL, ψU be lower and upper solutions of the ini-
tial value problem (10). Then by the de�nition
of the lower solution, there exist g(t) ≥ 0 and
ε1, ε2 ≥ 0 such that{

C−HDα
a+ψ

L(t) = f(t, ψL(t))− g(t),
ψL(a) = ψ0 − ε1, (ψL)′(a) = ξ0 − ε2,

where t ∈ (a, b]. Using Remark 4 and the de�ni-
tion (28), we have that

ψL(t) = (ψ0 − ε1)Eα,1 (λ (ln t− ln a)
α

)

+ ψ(1)(a, ε2)(ln t− ln a)Eα,2 (λ (ln t− ln a)
α

)

+

t∫
a

Eα,α (λ(ln t− ln s)
α

)

1(ln t− ln s)
1−α

 f(s, ψL(s))
+λψL(s)
−g(s)

 ds
s

≤ (PψL)(t),

where ψ(1)(a) ≥ ψ(1)(a, ε2) := lim
t→a

[t(ψL)′(t)].

Similarly, ψU ≥ PψU is satis�ed. Set D :=
[ψL, ψU ]. Based on Step 2, we have that the
operator P : D → C[a, b] is relatively compact,
and so it follows that P is completely continu-
ous. In addition, the condition (27) yields f is
monotone nondecreasing in ψ if M = 0. Thus,
it follows that the operator P is nondecreasing
on D. Using Lemma 1, the existence of the ex-
tremal solutions of the initial value problem (10)
is obtained. The proof is complete.

As in the proof of Theorem 1, we also obtain the
below corollary.

Corollary 1. Let α ∈ (1, 2), f : [a, b] × R →
R be continuous and supt∈[a,b] |f(t, ψ)| 6 Kf ,
where Kf is a positive constant. Then, the
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problem (10) has at least one solution on [a, b].
Furthermore, if the Lipschitz condition given by
(26) is satis�ed, then the problem (10) has a
unique solution on [a, b].

4. Stabilization of a

fractional di�erential

equation with order

α ∈ (1, 2)

In this section, we discuss the stability of the
solution of the following problem{

C−HDα
a+ψ(t) = Aψ(t) + g(t, ψ(t)),

ψ(a) = ψ0, ψ′(a) = ψ′0,
(30)

where t ≥ a ≥ 1, α ∈ (1, 2), A is a constant,
and the continuous and bounded function g :
[a, b]×R→ R is the nonlinear term of state ψ(t)
and it satis�es g(t, 0) ≡ 0. We observe that the
state ψ = 0 is the equilibrium of the problem
(30), which can be taken as a target orbit. In
this section, to force the state of the problem
into the target orbit, we shall choose a linear
feedback controller u(t) = Bψ(t) to the problem
(30). Therefore, we consider the following the
controlled problem{

C−HDα
a+ψ(t) = (A+B)ψ(t) + g(t, ψ(t)),

ψ(a) = ψ0, ψ′(a) = ψ′0,

(31)

where t ≥ a, and the feedback gain B needs to
be determined, α ∈ (1, 2).

Remark 7. Based on the result of Section 3, by
putting f(t, ψ) = Aψ(t) + g(t, ψ(t)), then from
the continuous hypothesis of the function f we
observe that the problem (30) has at least solu-
tion on [a, b].

Theorem 2. We assume that for all t ≥ a,
α ∈ (1, 2), the nonlinear term g(t, z(t)) satis�es

the condition lim
|z|→0

|g (t, z)|
|z|

= 0. In addition,

suppose that there exist ρ > 0 and µ > 0 such
that∣∣∣Eα,α ((A+B)(ln τ2 − ln τ1)α)

∣∣∣
6 (ln τ2 − ln τ1)1−αρe−µ(ln τ2−ln τ1), (32)

where τ2 > τ1 ≥ a. Then, the solution of the
problem (31) can be controlled to the target or-
bit ψ ≡ 0 provided that max{|ψ0|, |ψ′0|} < θ,
where θ is a positive constant.

Proof. From the result of Remark 4, one can ob-
tain the following solution of system (31):

ψ(t) = ψ0Eα,1 ((A+B) (ln t− ln a)
α

)

+ ψ(1)(a)(ln t− ln a)Eα,2 ((A+B) (ln t− ln a)
α

)

+

t∫
a

Eα,α ((A+B)(ln t− ln s)
α

)

(ln t− ln s)
1−α g(s, ψ(s))

ds

s
.

(33)

Now, because lim
|ψ|→0

|g(t,ψ)|
|ψ| = 0, we can see that

for a given constant ε > 0, there exists M =
M(ε) > 0 such that if |ψ| ≤M,∀t ≥ a, one has

|g(t, ψ)| ≤ ε|ψ|,∀t ≥ a. (34)

Thus, from the existence result of the solution, if
max{|ψ0|, |ψ(1)(a)|} <M, there exists δ = δ(M)
such that if t ∈ [a, δ), we have

|ψ(t)| <M. (35)

Furthermore, we have for all α ∈ (1, 2) and i ∈
{0, 1, 2, ...,∞}

Γ(αi+ α)

Γ(αi+ 1)
≤ Γ(αi+ α+ 1)

Γ(αi+ 2)

=
B(αi+ α+ 1, 1− α)

Γ(1− α)

≤ B(α+ 1, 1− α)

Γ(1− α)

= Γ(1 + α),

Γ(αi+ α)

Γ(αi+ 2)
=
B(αi+ α, 2− α)

Γ(2− α)

≤ B(α, 2− α)

Γ(2− α)

= Γ(α), (36)

where B(·, ·) is the Beta function. Therefore, us-
ing condition (32) we have the following estimate
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for all α ∈ (1, 2) and t > a

∣∣∣Eα,1 ((A+B)(ln t− ln a)α)
∣∣∣

≤ Γ(α+ 1)
∣∣∣Eα,α ((A+B)(ln t− ln a)α)

∣∣∣
≤ (ln t− ln a)1−αΓ(α+ 1)ρe−µ(ln t−ln a),∣∣∣Eα,2 ((A+B)(ln t− ln a)α)

∣∣∣
≤ Γ(α)

∣∣∣Eα,α ((A+B)(ln t− ln a)α)
∣∣∣

≤ (ln t− ln a)1−αΓ(α)ρe−µ(ln t−ln a). (37)

Then, substituting (32), (34) and (37) into (33),
we obtain that for all t ∈ [a, δ)

|ψ(t)|

≤ ρΓ(α)
e−µ(ln(t/a))

(ln(t/a))
α−1

·
(

2|ψ0|+ (ln(t/a)) |ψ(1)(a)|
)

+ ε

t∫
a

|Eα,α ((A+B)(ln(t/s))
α

) |
(ln(t/s))

1−α |ψ(s)|ds
s

≤ ρΓ(α)
e−µ(ln(t/a))

(ln(t/a))
α−1

·
(

2|ψ0|+ (ln(t/a)) |ψ(1)(a)|
)

+ ερ

t∫
a

exp (−µ (ln t− ln s)) |ψ(s)|ds
s

:= q(t) + I(t), (38)

where

q(t) : = ρΓ(α)
e−µ ln(t/a)

(ln(t/a))
α−1

·
(

2|ψ0|+ ln(t/a)|ψ(1)(a)|
)

I(t) : = ερ

t∫
a

exp (−µ (ln t− ln s)) |ψ(s)|ds
s
.

On the other hand, using Leibniz's rule for di�er-
entiation under the integral sign of the function

I(t) with respect to t and by (38), we get

d

dt
I(t) = ερt−1|ψ(t)|

− εµρt−1

t∫
a

exp (−µ (ln t− ln s)) |ψ(s)|ds
s

≤ ερt−1q(t) + (ερ− µ)t−1I(t),

and by using Gronwall's inequality and since a ≥
1, we also get the estimate

I(t) ≤ ερ
t∫
a

q(s) exp ((ερ− µ) (ln t− ln s))
ds

s

≤ ερΓ(α)
(

2|ψ0|+ (ln t− ln a)
2−α|ψ(1)(a)|

)
· e−µ(ln t−ln a)

t∫
a

exp (ερ(ln t− ln s))
ds

s

= Γ(α)
(

2|ψ0|+ (ln t− ln a)
2−α |ψ(1)(a)|

)
· exp ((ερ− µ)(ln t− ln a))

− Γ(α)
(

2|ψ0|+ (ln t− ln a)
2−α |ψ(1)(a)|

)
· exp (−µ(ln t− ln a)) .

Therefore, we get the following estimate on
[a, δ):

|ψ(t)| ≤ Γ(α)
(

2|ψ0|+ (ln δ − ln a)
2−α |ψ(1)(a)|

)
· exp ((ερ− µ)(ln t− ln a)) (39)

Putting |ψ̂0| := max{|ψ0|, |ψ(1)(a)|}, and if ε <
µ

ρ
, then we get

|ψ(t)| ≤ Γ(α)
(

2 + (ln δ − ln a)
2−α

)
|ψ̂0|

:= K|ψ̂0|, t ∈ [a, δ). (40)

This shows that if we choose θ = min
{
M, M

2K
}
,

where M is de�ned by (35), then we obtain the

following assertion: if |ψ̂0| < θ on [a, δ), then
from (40) we have

|ψ(t)| < Kθ ≤ M
2
, t ∈ [a, δ). (41)

Next, we observe that the inequality (41) is also
true if the value of δ is further extended. Indeed,
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consider the continuous solution ψ(t) of system

(31) such that |ψ̂0| < θ and ε <
µ

ρ
, and let

T = sup {δ1 | δ1 ≥ a and if t ∈ [a, δ1),

the solution ψ(t) is de�ned and |ψ(t)| <M} .

Suppose that T is �nite. Then, from (41) we
have that |ψ(t)| < M

2 on [a,T). According to the
existence theory in Section 3, it follows that the
solution ψ(t) can be further extended so that
T is contained in the maximal existent interval
[a,T∗), where T∗ > T. Then, since ψ(t) is con-
tinuous, one has |ψ(t)| < M on [a,T∗). There-
fore, this leads to the contradiction of the de�-
nition of T. Thus we conclude that if |ψ̂0| < θ,
then |ψ(t)| < M for all t ≥ a. It further follows
that the inequality (39) is valid for all t ≥ a and
lim
t→∞

|ψ(t)| = 0 provided that ε <
µ

ρ
. This im-

plies that the solution ψ(t) of system (31) can
be forced to the equilibrium ψ ≡ 0. The proof is
complete.

Based on the assertion of Theorem 2, we get the
following corollary.

Corollary 2. Assume that for all t ≥ a, α ∈
(1, 2), the function g(t, ψ) satis�es the condition

lim
|ψ|→0

|g (t, ψ)|
|ψ|

= 0. In addition, suppose that

there exist ρ > 0 and µ > 0 such that∣∣∣Eα,α ((A+B)(ln τ2 − ln τ1)α)
∣∣∣

6 (ln τ2 − ln τ1)1−αρe−µ(ln τ2−ln τ1), (42)

where τ2 > τ1 ≥ a. Then, there exists θ > 0
such that the equilibrium state ψ ≡ 0 of the
problem (30) is asymptotically stable provided
that max{|ψ|, |ψ′0|} < θ.

The following example is given to illustrate the
assertion of Theorem 2.

Example 4. Let [a, b] = [1, 10], α ∈ (1, 2),
A = −1, ψ0 = ψ′0 = 1, and g(t, ψ) :=
−(1/2) cos(ψ(t))ψ2(t). We consider the follow-
ing problem{

C−HDα
1+ψ(t) = −ψ(t)− 1

2 cos(ψ(t))ψ2(t),
ψ(1) = 1, ψ′(1) = 1.

(43)

t
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Fig. 8: The unstable orbit at the equilibrium point
ψ(t) = 0 of the solution of the problem (43).
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Fig. 9: The graph of the condition (32) with the left-
hand side (blue) and the right-hand side (red).

In this example, if we take α = 1.9, then prob-
lem (43) is unstable at the equilibrium point
ψ(t) = 0. The unstable orbit of the problem (43)
is numerically shown in Fig. 8. Now, we assume
that the equilibrium point 0 is the target orbit.
To force the trajectory of the problem (43) into
the target orbit, we shall add a feedback con-
troller u(t) = Bψ(t) to the problem (43), where
the constant B is a control gain. Based on Theo-
rem 2, if the control gain is taken as B = 100 and
the parameters are chosen ε = 1, θ = 1, ρ = 1.5,
µ = 2, then the condition (32) is valid for the
above-mentioned control gain and parameters
(see Fig. 9). According to Theorem 2, this im-
plies that the orbit of the problem (43) can be
controlled to equilibrium ψ(t) = 0 via the feed-
back controller u(t) = Bψ(t). The graph of the
controlled orbit of the problem (43) is shown in
Fig. 10.
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Fig. 10: The graph of the controlled orbit of the prob-
lem (43).

5. Conclusion

In the paper, by using the well-known method
of lower and upper solutions, the existence the-
ory of the extremal solutions for a class of frac-
tional di�erential equations under the Caputo-
Hadamard derivative with the case of α ∈ (1, 2)
has been established. We also provide su�cient
conditions that ensure the stability of a class
of fractional di�erential equations. Finally, an
example was implemented to demonstrate the
feasibility and validity of the proposed method,
which were consistent with the theoretical re-
sults. The approach proposed in this paper may
be extended to other fractional di�erential sys-
tems and in the future, it will be applied to in-
vestigate the stabilization of non-linear systems
with the fractional derivative.
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