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Abstract. This paper compares the perfor-
mance of the gradient and Newton-Raphson
(N-R) method to estimate parameters in some
zero-in�ated (ZI) regression models such as
zero-in�ated Poisson (ZIP) model, zero-in�ated
Bell (ZIBell) model, zero-in�ated binomial
(ZIB) model and zero-in�ated negative binomial
(ZINB) model. In the present work, �rstly, we
brie�y present the approach of the gradient and
N-R method. We then introduce the origin, for-
mulas and applications of the ZI models. Fi-
nally, we compare the performance of two inves-
tigated approaches for these models through the
simulation studies with numerous sample sizes
and several missing rates. A real data set is in-
vestigated in this study. Speci�cally, we compare
the results and the execution time of the R code
for two methods. Moreover, we provide some im-
portant notes on these two approaches and some
scalable research directions for future work.
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1. Introduction

In statistics and other sciences, estimating equa-
tions play a very essential and meaningful role in
research because if there is an estimating equa-
tion, we can utilize estimating methods to �nd
its solutions. The gradient and N-R method are
the most accustomed approaches to address this
problem. Terlaky [30] indicate that the gradi-
ent method is one of the widespread approach
to �nd the optimal solution. Another regularly
employed approach is the N-R method. This ap-
proach is named after two very renowned mathe-
maticians in the world, Isaac Newton and Joseph
Raphson. For the full details of these methods,
see Pho et al. [24].

It will be known that, count data is a very
conventional data in practice. It is often found
in areas such as: transportation, education, eco-
nomics, engineering, etc. In practice, the per-
centage of zero events in a count outcome vari-
able is too excessive for the Poisson regres-
sion or negative binomial regression model to
�t (Cameron and Trivedi [2], Chapter 6). Thus
a zero-in�ated (ZI) regression model was intro-
duced and largely applied as a remedy to the
zero-excess issue (Rideout et al. [27]).
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Some common ZI regression models, for ex-
ample: Hall [5] who proposed the ZIB regres-
sion model to deal with excess zeros in the
binomial regression. Asymptotic properties of
the maximum-likelihood estimator (MLE) of the
ZIB model are discussed in Diallo et al. [3]. The
ZIP regression model is proposed by Lambert
[11]. Lemonte et al. [12] introduce the ZIBell
regression models for count data, the ZINB re-
gression model is stated in Ridout et al. [28],
etc.

As we know, among all ZI regression models,
zero-in�ated Poisson (ZIP) models are the most
widespread. This model has been developed and
studied in a very diverse and plentiful manner in-
cluding its theory and application. For instance,
Lambert [11] presents the ZIP model with an ap-
plication to defects in production. Li et al. [15]
introduce the multivariate ZIP models and their
applications. Xie et al. [39] provide the ZIP
model in statistical process control. Jansakul et
al. [10] propose the score tests for ZIP mod-
els. Li [13] develops a lack-of-�t test for the ZIP
models. Long et al. [16] o�ers a marginalized
ZIP regression model with overall exposure ef-
fects. Huang et al. [8] illustrate the ZIP model
relied likelihood ratio test for drug safety signal
detection, and so on.

In addition, we often encounter the factual
data sets that have missing values. The prob-
lems about missing data play an extremely vi-
tal and signi�cant role in the scienti�c research.
Missing data is a very widespread and preva-
lent problem in several research disciplines, e.g.,
�nances, engineering and medical, etc. This is-
sue is derived by numerous reasons. For exam-
ple: interviewees refuse to answer, incorrect or
incomplete answers to questions, hypersensitive
questions, etc. (see Schafer et al. [29]). Thus, it
has been seen that addressing the missing val-
ues properly is a tremendously signi�cant and
crucial issue.

Therefore, it is extremely important and
meaningful to research about the combination
of the two most widespread methods for �nd-
ing optimal solutions and the ZI of the regres-
sion models with missing data. Notwithstanding
there are many papers present the gradient and
N-R method as well as the ZI regression mod-

els with missing covariates, the issue about the
comparison of performance of these approaches
in the ZI regression models with missing covari-
ates has not yet been studied. To remedy this
handicap, in this study, our primary interest is
to compare the performance of the gradient and
N-R method in the ZI regression models with
missing covariates. Speci�cally, we compare the
results and the e�cient computing of R code for
two methods.

The residue of the paper is arranged as fol-
lows. In Section 2, we brie�y present the ap-
proach of the gradient and N-R method. We
then introduce the ZI regression models. The
origin, formulas and applications of the ZIP
model is o�ered in this section. The simulation
study is introduced in Section 3. Section 4 pro-
vides a practical example. Some discussions and
important notes on these two approaches is given
in the next section. Finally, conclusions and fu-
ture works are described in the last section.

2. Literature review

2.1. The gradient and
Newton-Raphson method

These are two extremely famous approaches for
�nding optimal solutions of equations and sys-
tems of equations. These are also two funda-
mental methods and are programmed for the
current computing software. Therefore, several
scientists and researchers have presented and de-
veloped the theory and applications of these two
methods. To save space, we do not provide them
in this part. The detail of the gradient method
can be found in Pho et al. [24]. The completed
origin and how to build and illustrative the pic-
tures of the N-R method can be seen in Truong
et al. [33]. In addition, readers may refer in
Wedderburn [38], Fischer [4], Ahmad et al. [1],
Pho et al. [22], [25] and Tutunov et al. [34] and
so on.

The formula for �nding solutions to these
two methods exists in one-dimension and multi-
dimension cases. Besides there are many distor-
tions for the formula to �nd solutions of these
two approaches. In the current work, we only
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provide the formulas employed in this paper. Let
g : Rn → R be a di�erentiable function, the di-
rection of steepest descent is the vector −∇g(t0),
where t0 is a starting value, the sequence of iter-
ates {tk} is computed by employing the follow-
ing expression:

tk+1 = tk −mk∇g(tk) , (1)

where mk > 0 minimizes the following function

Qk(m) = g(tk −m∇g(tk)) . (2)

The demonstration in (1) is the formula of the
gradient approach in multi-dimension.

The formula root of the N-R approach in
multi-dimension case is described as:

tn+1 = tn − [Hg(tn)]
−1∇g (tn) (3)

where

∇g(t) =
[
∂g(t)

∂t1
;
∂g(t)

∂t2
; . . . ;

∂g(t)

∂tn

]T
and

Hg(t) =


∂2g(t)
∂t21

∂2g(t)
∂t1∂t2

. . . ∂2g(t)
∂t1∂tn

∂2g(t)
∂t2∂t1

∂2g(t)
∂t22

. . . ∂2g(t)
∂t2∂tn

...
...

. . .
...

∂2g(t)
∂tn∂t1

∂2g(t)
∂tn∂t2

. . . ∂2g(t)
∂t2n

 (4)

It should be borne in mind that: ∇g(t) and
Hg(t) are called the gradient and Hessian matrix
of g(t), respectively.

2.2. The zero-in�ated (ZI)
regression models

Count data is a very ubiquitous data set in prac-
tice. It is easily collected in many �elds, e.g.;
computer sciences, transportation, engineering,
�nance and so on. In practice, we often get the
situations that the percentage of zero events in
a count outcome is so excessive that the Poisson
regression or negative binomial regression model
is not adequate (Cameron and Trivedi [2], Chap-
ter 6). Hence Rideout et al. [27] introduce a
ZI regression model and it is largely applied as
a remedy to the zero-excess issue. In statistics

and applied mathematics, a ZI model is a statis-
tical model that relied on a ZI probability distri-
bution. It means that a distribution recognizes
frequent zero-valued observations.

The ZI regression models nowadays have nu-
merous practical applications and it has been
extensively researched and developed on theo-
ries and applications by scientists. An inclusive
review of the ZI regression models with missing
data is discussed in Lukusa et al. [18]. Because
as we know, among all ZI regression models,
zero-in�ated Poisson (ZIP) models are the most
widespread. It is therefore extremely meaning-
ful and interesting to cover the ZIP model issues
in the following sections.

2.3. The zero-in�ated Poisson
(ZIP) model

1) The origin of ZIP model

In the view of Lukusa et al. [17], the original
idea of the ZIP model was proposed in econo-
metric literature, see Mullahy [20]. Later this
model has become very popular in Lambert's
study [11] and was widely used in literature. For
an overview of how to build and develop a ZIP
model, see Lukusa et al. [17].

2) Recipe for ZIP model

Let Y be a count random variable, X and Z
be covariates, X = (1, X, Z)T . Lambert [11]
proposes the parametric ZIP regression model
in which the non-susceptible probability (mixing
weight) p is linked to X via a logit-linear predic-
tor, p = H(θTX ) with H(u) = [1+ exp(−u)]−1,
and the Poisson mean λ is linked to X via a log-
linear predictor, λ = exp(αTX ), where θ and α
are unknown parameters. The ZIP model can
be illustrated as:

P (Y = y|X,Z) = H(θTX )I(y = 0)

+ [1−H(θTX )] exp[− exp(αTX )][exp(αTX )]y

y!

for y = 0, 1, 2, . . . , where θ and α are called coef-
�cients of zero-in�ation model and count model,
respectively. See more details in Lambert [11],
Pho et al. [26] and Lukusa et al. [17].
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3) The likelihood function

It should be noted that P (Y = 0|X,Z) can be
rewritten as

P (Y = 0|X,Z) = H(θTX )

+ [1−H(θTX )] exp[− exp(αTX )]

=
H(θTX )

H(θTX + exp(αTX ))

The likelihood function of the ZIP model is de-
scribed as

L(η) =

n∏
i=1

[
H(θTXi)

H(θTXi + exp(αTXi))

]Yi=0

(5)

×
n∏
i=1


[1−H(θTXi)]
exp[− exp(αTXi)][exp(αTXi)]

Yi

Yi!


Yi>0

where η = (θT ,αT )T are parameters to be de-
termined.

4) Applications of ZIP model to the
factual data sets

Applications of the ZIP model to the factual
data sets are extremely diverse and plentiful.
These data sets can be easily explored in the
�elds of transportation, dental, hospital, com-
puter company, etc. We only mentioned some
of the actual data sets, which have been studied
and developed by scientists with the ZIP model.
For example, Xie [39] studies the ZIP models
with the real data set is the number of read-write
errors discovered in a computer hard disk used in
a producing process (see Fig. 1). Lukusa et al.
[17] consider the ZIP models with the practical
data set is the number of motorcyclists who vi-
olated Taiwan's speed regulations was surveyed
in 2007 (see Fig. 2). Unhapipat et al. [35] inves-
tigate the ZIP models with the factual data set
is the number of major earthquakes every year
in Thailand during 1933-2012 (see Fig. 3), and
so on.

In Figs. 1-3, the proportion of zeros in the
data set is very high, hence it is often referred
to as �zero in�ated" data. If encountering this
type of data in the study, we have to espouse the
appropriate regression models, the ZIP model
is one of the models that is very concordant to
research for count data with �zero in�ated". It

is often considered as the �rst contender for this
problem.

In fact, if we encounter the count data, which
contains so many zeros as the graphs above, we
can think of many other ZI regression models
such as the ZIB model, the ZIBell model, the
ZINB model, the ZIP model and so on. Because
there are so many ZI regression models that can
�t for data of this type, we can rely on a number
of selection model criteria, to choose the best re-
gression model for the dataset to be considered.
Some common criteria are: Akaike Information
Criteria (AIC), Bayesian Information Criterion
(BIC) and Vuong's test. The detailed formulas
of these criteria can refer to Pho et al. [23]. In
addition, readers may refer to Mahmoudi et al.
[19], Tianhe et al. [31] and Wang et al. [37].

We present the main results of this paper in
the next section.

3. Simulation study

We consider the simulation study to four ZI
regression models: the ZIP model, the ZIBell
model, the ZIB model and the ZINB model.

3.1. The ZIP model

Lukusa et al. [17] perform the N-R approach
to estimate parameters for the ZIP model with
missing covariates. Because our main objective
in this article is to compare results and the op-
eration time of R code of the N-R and gradient
method. Thus in this simulation study, for sake
of simplicity, we execute the estimation meth-
ods and the ways to create simulation data sets
and establish parameters similar to the paper of
Lukusa et al. [17].

Nevertheless, in this work we perform two ap-
proaches consist of the gradient and N-R meth-
ods to estimate parameters for the ZIP model
with missing data. Three cases with missing
data are investigated: low, medium and high
missing rates. It should be remarked that albeit
the considering model, the function that creates
the simulation data and parameters are set in
the same way as in Lukusa et al. [17]. The re-
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Fig. 1: The number of read-write errors discovered in a computer hard disk.

Fig. 2: The number of motorcyclists who violated Taiwan's speed regulations was surveyed in 2007.

Fig. 3: The number of major earthquakes every year in Thailand during 1933-2012.
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sults will be slightly di�erent from this article,
this reason is quite simple because each time R
code is run, the data generation function will
not be the same. In addition, di�erent comput-
ers will o�er slightly di�erent values.

In the current work, the methods are used
to estimate parameters for ZIP models with
missing data are maximum likelihood estimation
(MLE), complete case (CC), inverse probabil-
ity weighting (IPW) and semi-parametric IPW
(SIPW). These are very ubiquitous methods to
address the missing data problems. Details of
these approaches and their estimating functions
can be found in Lukusa et al. [17]. It should be
remarked that MLE method cannot address the
data sets with missing values, we consider MLE
as the benchmark for the sake of comparison.

The results of these three cases with two ap-
proaches consist of the gradient and N-R meth-
ods are o�ered in Tabs. 1-6, respectively. It
needs to know that the symbols η̂F , η̂CC , η̂W ,
η̂Ws are estimator of MLE, CC, IPW and SIPW
method, respectively. In addition, SD, ASE and
CP are standard deviation, asymptotic standard
error and coverage probability of a Wald-type
95% con�dence interval, respectively.

As seen in Tabs. 1-6, the results obtained
from the two approaches are gradient and N-R
method are almost the same. These results do
not exhibit any signi�cant bias, since the bias
< 5%, the value of SD is very close to ASE. The
value of CP is very near 0.95 and the estimator
is consistent.

About the operation time of R code of two
methods, we performed the Dell desktop com-
puter is con�gured with Intel Core i5, 8GB of
RAM, 1TB of hard drive to check the operation
time of R code of two approaches. The operation
time of R code of the gradient method in case
the low missing rate with n = 500 and n = 1000
is 25 and 42 minutes, respectively. In case of
the medium missing rate with n = 1000 and
n = 2000 is 45 and 78 minutes, respectively. In
case of the high missing rate with n = 1000 and
n = 2000 is 53 and 87 minutes, respectively.

Meanwhile, the operation time of R code of
the N-R method in case the low missing rate
with n = 500 and n = 1000 is 27 and 48 min-

utes, respectively. In case of the medium missing
rate with n = 1000 and n = 2000 is 49 and 86
minutes, respectively. In case of the high miss-
ing rate with n = 1000 and n = 2000 is 58 and
96 minutes, respectively.

It has been seen that the operation time of R
code of the gradient method is shorter than the
N-R method in most cases. This is also in line
with the theory that is discussed in detail in the
next section.

3.2. The other ZI models

For comparison purposes, we also considered
some other ZI regression models, for instance:
the ZIBell, ZIB and ZINB model. The detailed
expression of the likelihood and log-likelihood
function of these models can refer in Lemonte
et al. [12], Diallo et al. [3] and Li et al. [14],
respectively. To perform the gradient method as
well as the N-R method to �nd the estimating
parameters of the regression models, we need to
have a score function of these regression models.
It should be noted that: the score function, ob-
tained by di�erentiating the log-likelihood func-
tion of the regression models with respect to the
unaware parameters. The detailed formula of
score function of the ZIP, ZIBell, ZIB and ZINB
model are o�ered in Appendix.

After getting the score function of regression
models, one can easily apply the above two ap-
proaches: the gradient and N-R method to �nd
the corresponding solution based on the algo-
rithm is provided in Section 5. Note that, we
used the R statistical software to write code for
the ZIP model. For these regression models, we
only need to replace the score function and the
data generation function. Then we can easily get
the results as the ZIP model presented above.

To save space, we do not o�er results for this
section. Our results gained show that the results
of two approaches are almost the same and the
operation time of R code of the gradient method
is shorter than the N-R method in most cases.
This conclusion is also consistent with the theory
considered in detail in the next section.
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Tab. 1: Simulation results by executing the gradient method for case 1 (low missing rate): η = (θT ,αT )T =
(−1,−1, 0.5, 1, 0.7, 1)T .

n = 500 n = 1000

Parameter η̂F η̂CC η̂W η̂Ws η̂F η̂CC η̂W η̂Ws

Logistic portion
θ0 Bias -0.0086 -0.4967 -0.0372 -0.0085 -0.0062 -0.5027 -0.0214 -0.0119

SD 0.1745 0.2782 0.2934 0.1743 0.1276 0.1952 0.2049 0.1325
ASE 0.1723 0.2750 0.2873 0.1796 0.1235 0.1941 0.1989 0.1288
CP 0.9581 0.5462 0.9538 0.9624 0.9472 0.2351 0.9536 0.9472

θ1 Bias -0.0059 -0.5628 -0.0359 -0.0247 -0.0075 -0.5389 -0.0237 -0.0126
SD 0.1543 0.2862 0.2971 0.2439 0.1148 0.2036 0.1985 0.1528
ASE 0.1535 0.2794 0.2832 0.2371 0.1078 0.1916 0.1942 0.1545
CP 0.9483 0.4912 0.9347 0.8962 0.9386 0.1761 0.9512 0.9472

θ2 Bias 0.0063 -0.6068 -0.0105 0.0224 0.0095 -0.5913 0.0075 0.0154
SD 0.2387 0.4132 0.4563 0.2625 0.1663 0.2758 0.3019 0.1723
ASE 0.2385 0.4013 0.4317 0.2468 0.1659 0.2742 0.2982 0.1716
CP 0.9532 0.6459 0.9347 0.9436 0.9518 0.3986 0.9532 0.9491

Poisson portion
α0 Bias -0.0013 0.1231 -0.0025 0.0048 -0.0025 0.1224 -0.0028 0.0016

SD 0.0446 0.0421 0.0536 0.0447 0.0285 0.0322 0.0349 0.0324
ASE 0.0435 0.0417 0.0538 0.0439 0.0276 0.0319 0.0357 0.0323
CP 0.9485 0.2549 0.9487 0.9373 0.9562 0.0431 0.9528 0.9391

α1 Bias 0.0023 -0.0395 0.0015 -0.0047 0.0024 -0.0363 0.0026 -0.0037
SD 0.0262 0.0274 0.0317 0.0283 0.0184 0.0182 0.0229 0.0195
ASE 0.0271 0.0285 0.0283 0.0274 0.0192 0.0186 0.0228 0.0194
CP 0.9524 0.7384 0.9422 0.9275 0.9586 0.5075 0.9563 0.9514

α2 Bias 0.0014 -0.0652 -0.0034 0.0051 0.0026 -0.0635 0.0029 0.0047
SD 0.0372 0.0384 0.0419 0.0386 0.0249 0.0265 0.0329 0.0276
ASE 0.0368 0.0414 0.0415 0.0384 0.0252 0.0259 0.0314 0.0285
CP 0.9522 0.6548 0.9507 0.9423 0.9452 0.3571 0.9452 0.9375

• On average 32% of X were missing in 1000 replications.

• The average rate of Y = 0 was 27% and 14% in 1000 full and validated simulated data sets,
respectively.
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Tab. 2: Simulation results by performing the N-R method for case 1 (low missing rate): η = (θT ,αT )T =
(−1,−1, 0.5, 1, 0.7, 1)T .

n = 500 n = 1000

Parameter η̂F η̂CC η̂W η̂Ws η̂F η̂CC η̂W η̂Ws

Logistic portion
θ0 Bias -0.0074 -0.5218 -0.0426 -0.0081 -0.0057 -0.5007 -0.0212 -0.0063

SD 0.1672 0.2749 0.2935 0.1756 0.1275 0.1958 0.2049 0.1326
ASE 0.1752 0.2719 0.2876 0.1819 0.1234 0.1927 0.1985 0.1274
CP 0.9587 0.5386 0.9527 0.9634 0.9478 0.2278 0.9569 0.9425

θ1 Bias -0.0086 -0.5549 -0.0375 -0.0228 -0.0054 -0.5386 -0.0237 -0.0128
SD 0.1534 0.2985 0.2973 0.2418 0.1145 0.2032 0.1986 0.1584
ASE 0.1519 0.2776 0.2766 0.2009 0.1038 0.1927 0.1995 0.1574
CP 0.9485 0.4826 0.9329 0.8963 0.9386 0.1749 0.9517 0.9365

θ2 Bias 0.0073 -0.6096 -0.0028 0.0226 0.0095 -0.5917 0.0084 0.0127
SD 0.2385 0.4163 0.4549 0.2617 0.1674 0.2739 0.3023 0.1735
ASE 0.2376 0.3969 0.4258 0.2449 0.1694 0.2762 0.2948 0.1726
CP 0.9549 0.6518 0.9342 0.9475 0.9568 0.3984 0.9537 0.9495

Poisson portion
α0 Bias -0.0074 0.1236 -0.0058 0.0079 -0.0041 0.1248 -0.0036 0.0045

SD 0.0426 0.0486 0.0532 0.0464 0.0285 0.0328 0.0349 0.0347
ASE 0.0418 0.0459 0.0528 0.0461 0.0274 0.0319 0.0332 0.0350
CP 0.9485 0.2547 0.9463 0.9372 0.9581 0.0459 0.9572 0.9327

α1 Bias 0.0017 -0.0394 0.0042 -0.0067 0.0045 -0.0327 0.0035 -0.0043
SD 0.0279 0.0241 0.0327 0.0285 0.0168 0.0194 0.0249 0.0176
ASE 0.0267 0.0235 0.0219 0.0273 0.0157 0.0183 0.0235 0.0168
CP 0.9531 0.7349 0.9502 0.9394 0.9518 0.5083 0.9537 0.9541

α2 Bias 0.0012 -0.0695 -0.0032 0.0058 0.0049 -0.0696 0.0038 0.0061
SD 0.0376 0.0385 0.0472 0.0348 0.0292 0.0237 0.0348 0.0276
ASE 0.0349 0.0412 0.0467 0.0336 0.0285 0.0229 0.0328 0.0257
CP 0.9508 0.6517 0.9503 0.9449 0.9485 0.3612 0.9428 0.9379

• On average 32% of X were missing in 1000 replications.

• The average rate of Y = 0 was 27% and 14% in 1000 full and validated simulated data sets,
respectively.
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Tab. 3: Simulation results by executing the gradient method for case 2 (medium missing rate): η = (θT ,αT )T =
(0.1,−1, 0.5, 1, 0.7, 1)T .

n = 1000 n = 2000

Parameter η̂F η̂CC η̂W η̂Ws η̂F η̂CC η̂W η̂Ws

Logistic portion
θ0 Bias -0.0108 -0.7549 0.0126 0.0084 -0.0027 -0.6891 -0.0105 0.0094

SD 0.0912 0.1796 0.1995 0.1084 0.0684 0.1286 0.1319 0.0752
ASE 0.0946 0.1802 0.1992 0.1057 0.0648 0.1271 0.1307 0.0746
CP 0.9496 0.0528 0.9513 0.9478 0.9521 0.0157 0.9464 0.9475

θ1 Bias -0.0074 -0.7513 -0.0349 -0.0298 -0.0112 -0.684 -0.0324 -0.0279
SD 0.0853 0.1865 0.1984 0.1765 0.0574 0.1315 0.1294 0.1132
ASE 0.0846 0.1822 0.1935 0.1695 0.0546 0.1295 0.1287 0.1095
CP 0.9464 0.0208 0.9472 0.9279 0.9501 0.0124 0.9496 0.9513

θ2 Bias 0.0084 -0.8713 -0.0097 0.0107 0.0094 -0.8469 -0.0114 0.0109
SD 0.1307 0.2765 0.3258 0.1541 0.0972 0.1963 0.2184 0.1047
ASE 0.1302 0.2763 0.3260 0.1532 0.0956 0.1959 0.2145 0.1032
CP 0.9578 0.1354 0.9476 0.9481 0.9479 0.0147 0.9505 0.9482

Poisson portion
α0 Bias -0.0136 0.1764 -0.0103 0.0099 -0.0018 0.1766 0.0028 0.0032

SD 0.0332 0.0412 0.0462 0.0379 0.0231 0.0285 0.0334 0.0270
ASE 0.0322 0.0409 0.0453 0.0375 0.0229 0.0284 0.0347 0.0261
CP 0.9475 0.0184 0.9426 0.9023 0.9518 0.0127 0.9485 0.9458

α1 Bias 0.0012 -0.0546 0.0019 -0.0054 0.0035 -0.0549 0.0004 -0.0015
SD 0.0217 0.0224 0.0294 0.0236 0.0154 0.0162 0.0209 0.0165
ASE 0.0215 0.0302 0.0288 0.0225 0.0152 0.0160 0.0204 0.0154
CP 0.9476 0.3291 0.9510 0.8946 0.9474 0.0745 0.9513 0.9246

α2 Bias 0.0013 -0.0849 0.0045 0.0042 0.0025 -0.0953 -0.0021 0.0029
SD 0.0293 0.0293 0.0352 0.0324 0.0208 0.0217 0.0265 0.0233
ASE 0.0285 0.0291 0.0350 0.0318 0.0205 0.0212 0.0263 0.0229
CP 0.9423 0.1561 0.9412 0.9426 0.9428 0.0086 0.9402 0.9451

• On average 41% of X were missing in 1000 replications.

• The average rate of Y = 0 was 47% and 19% in 1000 full and validated simulated data sets.
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Tab. 4: Simulation results by utilizing the N-R method for case 2 (medium missing rate): η = (θT ,αT )T =
(0.1,−1, 0.5, 1, 0.7, 1)T .

n = 1000 n = 2000

Parameter η̂F η̂CC η̂W η̂Ws η̂F η̂CC η̂W η̂Ws

Logistic portion
θ0 Bias -0.0089 -0.5812 0.0024 0.0057 -0.0061 -0.6582 -0.0114 0.0101

SD 0.0931 0.1794 0.1963 0.1152 0.0648 0.1329 0.1357 0.0774
ASE 0.0927 0.1792 0.1955 0.1095 0.0631 0.1296 0.1328 0.0762
CP 0.9516 0.0676 0.9505 0.9457 0.9522 0.0154 0.9471 0.9467

θ1 Bias -0.0057 -0.6942 -0.0416 -0.0357 -0.0084 -0.6984 -0.0195 -0.0192
SD 0.0851 0.1962 0.1969 0.1784 0.0549 0.1372 0.1355 0.1186
ASE 0.0846 0.1937 0.1952 0.1663 0.0541 0.1355 0.1336 0.1176
CP 0.9457 0.0184 0.9385 0.9364 0.9456 0.0032 0.9471 0.9409

θ2 Bias 0.0076 -0.8846 -0.0214 0.0196 0.0058 -0.8978 -0.0119 0.0106
SD 0.1357 0.2843 0.3276 0.1582 0.0953 0.1942 0.2147 0.1046
ASE 0.1452 0.2819 0.3270 0.1574 0.0947 0.1940 0.2148 0.1029
CP 0.9594 0.1347 0.9464 0.9489 0.9443 0.0065 0.9523 0.9394

Poisson portion
α0 Bias -0.0082 0.1763 -0.0049 0.0052 -0.0047 0.1769 0.0092 0.0075

SD 0.0335 0.0361 0.0436 0.0384 0.0249 0.0276 0.0352 0.0254
ASE 0.0327 0.0359 0.0428 0.0379 0.0233 0.0272 0.0350 0.0256
CP 0.9437 0.0189 0.9432 0.9247 0.9513 0.0029 0.9481 0.9419

α1 Bias 0.0025 -0.0549 0.0013 -0.0086 0.0068 -0.0574 0.0032 -0.0045
SD 0.0224 0.0236 0.0294 0.0239 0.0153 0.0167 0.0209 0.0173
ASE 0.0219 0.0232 0.0288 0.0234 0.0151 0.0163 0.0204 0.0170
CP 0.9475 0.3613 0.9458 0.8943 0.9459 0.0674 0.9484 0.9194

α2 Bias 0.0032 -0.0843 0.0025 0.0041 0.0038 -0.0946 -0.0022 0.0042
SD 0.0294 0.0296 0.0376 0.0331 0.0209 0.0217 0.0264 0.0238
ASE 0.0287 0.0295 0.0372 0.0325 0.0206 0.0214 0.0261 0.0232
CP 0.9453 0.1456 0.9471 0.9383 0.9429 0.0156 0.9415 0.9396

• On average 41% of X were missing in 1000 replications.

• The average rate of Y = 0 was 47% and 19% in 1000 full and validated simulated data sets.
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Tab. 5: Simulation results by executing the gradient method for case 3 (high missing rate): η = (θT ,αT )T =
(0.1,−1, 0.5, 1, 0.7, 1)T .

n = 1000 n = 2000

Parameter η̂F η̂CC η̂W η̂Ws η̂F η̂CC η̂W η̂Ws

Logistic portion
θ0 Bias -0.0074 -0.6917 0.0035 0.0182 -0.0075 -0.6927 -0.0086 0.0079

SD 0.1043 0.1990 0.2149 0.1238 0.0743 0.1405 0.1493 0.0870
ASE 0.1028 0.1973 0.2148 0.1195 0.0749 0.1386 0.1485 0.0827
CP 0.9572 0.0658 0.9519 0.9379 0.9568 0.0013 0.9481 0.9459

θ1 Bias -0.0073 -0.7347 -0.0456 -0.0571 -0.0084 -0.7168 -0.0236 -0.0259
SD 0.0942 0.2056 0.2148 0.1872 0.0689 0.1458 0.1469 0.1249
ASE 0.0939 0.1973 0.2048 0.1664 0.0695 0.1372 0.1426 0.1179
CP 0.9484 0.0172 0.9384 0.9095 0.9461 0.0072 0.9496 0.9387

θ2 Bias 0.0098 -0.9263 -0.0195 0.0283 0.0019 -0.9176 -0.0084 0.0108
SD 0.1486 0.2987 0.3452 0.1669 0.1085 0.2076 0.2374 0.1182
ASE 0.1471 0.2952 0.3395 0.1648 0.1079 0.2068 0.2350 0.1137
CP 0.9609 0.1329 0.9471 0.9458 0.9431 0.0062 0.9509 0.9382

Poisson portion
α0 Bias -0.0061 0.1894 -0.0034 0.0107 -0.0064 0.1895 0.0081 0.0095

SD 0.0386 0.0494 0.0576 0.0479 0.0285 0.0247 0.0385 0.0279
ASE 0.0371 0.0485 0.0549 0.0365 0.0271 0.0336 0.0369 0.0265
CP 0.9428 0.0186 0.9408 0.8931 0.9549 0.0034 0.9484 0.9338

α1 Bias 0.0035 -0.0649 0.0065 -0.0138 0.0095 -0.0679 0.0041 -0.0095
SD 0.0284 0.0276 0.0369 0.0294 0.0185 0.0149 0.0271 0.0163
ASE 0.0259 0.0248 0.0257 0.0285 0.0176 0.0132 0.0280 0.0157
CP 0.9472 0.3464 0.9485 0.8896 0.9473 0.0685 0.9476 0.9248

α2 Bias 0.0085 -0.0994 0.0027 0.0019 0.0064 -0.0985 -0.0036 0.0028
SD 0.0318 0.0386 0.0373 0.0349 0.0285 0.0269 0.0295 0.0274
ASE 0.0297 0.0371 0.0364 0.0336 0.0272 0.0258 0.0284 0.0267
CP 0.9473 0.1508 0.9451 0.9379 0.9472 0.0085 0.9417 0.9398

• On average 53% of X were missing in 1000 replications.

• The average rate of Y = 0 was 51% and 23% in 1000 full and validated simulated data sets.
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Tab. 6: Simulation results by utilizing the N-R method for case 3 (high missing rate): η = (θT ,αT )T =
(0.1,−1, 0.5, 1, 0.7, 1)T .

n = 1000 n = 2000

Parameter η̂F η̂CC η̂W η̂Ws η̂F η̂CC η̂W η̂Ws

Logistic portion
θ0 Bias -0.0072 -0.6859 0.0062 0.0109 -0.0104 -0.6846 -0.0074 0.0085

SD 0.1076 0.1985 0.2153 0.1274 0.0759 0.1449 0.1486 0.0892
ASE 0.1052 0.1976 0.2142 0.1149 0.0728 0.1351 0.1472 0.0885
CP 0.9514 0.0652 0.9536 0.9395 0.9549 0.0064 0.9459 0.9473

θ1 Bias -0.0085 -0.7396 -0.0472 -0.0574 -0.0063 -0.7175 -0.0262 -0.0253
SD 0.0963 0.2095 0.2162 0.1895 0.0693 0.1458 0.1486 0.1275
ASE 0.0955 0.1986 0.2130 0.1728 0.0672 0.1386 0.1469 0.1185
CP 0.9485 0.0209 0.9386 0.9149 0.9495 0.0212 0.9485 0.9408

θ2 Bias 0.0076 -0.9317 -0.0186 0.0265 0.0085 -0.9276 -0.0086 0.0182
SD 0.1481 0.2996 0.3487 0.1686 0.1095 0.2079 0.2386 0.1194
ASE 0.1472 0.2964 0.3373 0.1648 0.1087 0.2062 0.2229 0.1167
CP 0.9631 0.1412 0.9495 0.9473 0.9485 0.0632 0.9509 0.9485

Poisson portion
α0 Bias -0.0095 0.1913 -0.0072 0.0159 -0.0071 0.1924 0.0075 0.0068

SD 0.0394 0.0461 0.0573 0.0486 0.0292 0.0281 0.0373 0.0294
ASE 0.0385 0.0452 0.0563 0.0374 0.0285 0.0373 0.0361 0.0285
CP 0.9419 0.0185 0.9476 0.8917 0.9508 0.0031 0.9485 0.9394

α1 Bias 0.0076 -0.0649 0.0036 -0.0149 0.0019 -0.0621 0.0034 -0.0068
SD 0.0259 0.0296 0.0376 0.0285 0.0147 0.0165 0.0283 0.0195
ASE 0.0247 0.0282 0.0245 0.0272 0.0138 0.0158 0.0275 0.0184
CP 0.9495 0.3449 0.9485 0.8892 0.9476 0.0659 0.9431 0.9248

α2 Bias 0.0079 -0.0985 0.0058 0.0063 0.0027 -0.0982 -0.0091 0.0073
SD 0.0359 0.0384 0.0375 0.0369 0.0252 0.0248 0.0283 0.0279
ASE 0.0246 0.0351 0.0341 0.0353 0.0247 0.0242 0.0286 0.0280
CP 0.9490 0.1472 0.9459 0.9332 0.9473 0.0095 0.9386 0.9417

• On average 53% of X were missing in 1000 replications.

• The average rate of Y = 0 was 51% and 23% in 1000 full and validated simulated data sets.
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4. A practical example

The data set performed in this study is from
the number of motorcyclists who violated Tai-
wan's speed regulations was surveyed in 2007.
This data set has been utilized in the paper of
Lukusa et al. [17]. There are four interesting
variables in this analysis: the number of trans-
gressed speed regulation (Y) with some covari-
ates including Motorcycle-engine (Z), Distance-
covered (X), and Age of respondents (W). This
data set includes 7,386 respondents with 1,122
missing values. The detailed description can re-
fer in Lukusa et al. [17] and Pho et al. (2019b).
Similarly in Lukusa et al. [17], we also use
dummy variables for Z, X and W.

It should be noted that MLE method cannot
address the data sets with missing values, we
consider MLE as the benchmark for the sake of
comparison in the simulation study. Hence the
MLE method will not be executed in the analysis
for the practical data set. The diagram of Y is
o�ered in Fig. 2 (Section 2.3.4). It can be seen
that the data of Y is a count data. Thus some of
regression models may be suitable for this data
set as the ZIP model, Poisson model and neg-
ative binomial model. Likewise Lukusa et al.
[17], we also used the Vuong's test (1989) to
check this suitability. The results of Vuong's test
show that the ZIP model is the most suitable one
in comparison to the other models (Poisson and
negative binomial model, p value < 0.001).

Because our main objective in this article is
to compare results and the operation time of R
code of the N-R and gradient method. Hence to
save space, we only provide the results of ZIP
regression analysis for this data set. The results
of the N-R and gradient approach are o�ered in
Tab. 7 and Tab. 8, respectively.

As seen from Tab. 7 and Tab. 8 that, the re-
sults obtained from the two approaches are N-R
and gradient method are almost the same. The
operation time of R code of the N-R and gradi-
ent method in this case is 8 and 6 minutes, re-
spectively. Hence the operation time of R code
of the gradient method is shorter than the N-
R method in this analysis. This result is also
consistent with the theory that is presented in
detail in the next section.

5. Discussions

Firstly, we o�er a general approach to apply the
N-R method as well as the gradient method, it
is required to execute the following �ve-steps al-
gorithm:

• Step 1: Generate the data set which is based
on the properties and characteristics of the
regression model under consideration,

• Step 2: Find the score function of the re-
gression model under investigation,

• Step 3: Obtain the �rst derivative of score
function (hessian matrix) if using the N-R
method, in the case of the gradient method,
this step is not needed.

• Step 4: Calculate the N-R (the gradident)
formula of the regression model under con-
sideration.

• Step 5: Obtain the result from the program.

Next, we discuss the memory and compu-
tation of the gradient and N-R method. For
the memory, each iteration of the N-R ap-
proach needs to have O(p2) storage (p × p Hes-
sian), while each iteration of the gradient ap-
proach requires storageO(p) (p-dimensional gra-
dient). About computation, each loop of the N-
R method needs to have O(p3) �ops (solving a
ponderous p× p linear system), meanwhile each
loop of the gradient method requires O(p) �ops
(scaling/adding n-dimensional vectors). Thus, it
has been seen that, about theoretically if com-
paring the operation time of R code of two ap-
proaches, the gradient approach provides the re-
sults faster than the N-R method.

It should be remarked that, based on the for-
mula (3) then their di�erences are not signi�-
cant, the only di�erence is mk and the inverse
of the Hessian matrix. The simple way to under-
stand, it can be said that if mk and the inverse
of the Hessian matrix exchange positions with
each other, then formula (1) becomes formula
(3) and vice versa.

In addition, the general formula of the Hessian
matrix is �xed. For each successive iteration, we
only need to substitute the speci�c number into
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Tab. 7: Results of the practical data set by using the N-R method.

CC method SIPW method

Variable Parameter θ̂cc ASE θ̂Ws ASE
Poisson portion

Intercept β0 -0.5613 0.2813 -0.5834 0.4221
DX2 β1 0.0870 0.1643 0.0911 0.1868
DX3 β2 0.1285 0.1619 0.1230 0.1902
DX4 β3 0.3525 0.1730 0.3532 0.2142
DZ2 β4 0.3112 0.2796 0.3126 0.4662
DZ3 β5 0.5268 0.2993 0.5564 0.4725
DZ4 β6 0.4705 0.2875 0.4898 0.4542

Logistic portion
Intercept γ0 3.2557 0.2972 3.4536 0.3853
DX2 γ1 -0.5426 0.2070 -0.5391 0.2150
DX3 γ2 -0.8094 0.2043 -0.8036 0.2161
DX4 γ3 -0.9797 0.2194 -0.9701 0.2385
DZ2 γ4 -0.7468 0.2838 -0.8366 0.3979
DZ3 γ5 -2.3844 0.3446 -2.4186 0.4357
DZ4 γ6 -2.9797 0.3313 -3.0548 0.4230

Tab. 8: Results of the practical data set by using the gradient method.

CC method SIPW method

Variable Parameter θ̂cc ASE θ̂Ws ASE
Poisson portion

Intercept β0 -0.5609 0.2821 -0.5841 0.4236
DX2 β1 0.0873 0.1638 0.0920 0.1872
DX3 β2 0.1276 0.1635 0.1219 0.1913
DX4 β3 0.3531 0.1724 0.3526 0.2139
DZ2 β4 0.3108 0.2785 0.3131 0.4673
DZ3 β5 0.5270 0.2996 0.5571 0.4732
DZ4 β6 0.4712 0.2883 0.4887 0.4538

Logistic portion
Intercept γ0 3.2563 0.2969 3.4543 0.3842
DX2 γ1 -0.5418 0.2086 -0.5375 0.2134
DX3 γ2 -0.8085 0.2057 -0.8061 0.2179
DX4 γ3 -0.9784 0.2176 -0.9768 0.2392
DZ2 γ4 -0.7449 0.2857 -0.8384 0.3953
DZ3 γ5 -2.3867 0.3472 -2.4195 0.4361
DZ4 γ6 -2.9783 0.3346 -3.0552 0.4252
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the general formula of the Hessian matrix to �nd
the desired value. Meanwhile, the expression of
mk is o�ered in (2) , it will be changed after ev-
ery repetition. Therefore, if done manually, it
will take time to calculate each iteration. Fur-
thermore, the gradient method depends on its
direction, there are two accustomed approaches:
the direction of steepest descent and the direc-
tion of steepest ascent. So sometimes we need
to designate the appropriate approach to address
the problem in the best way. These are two very
serious disadvantages of the gradient method.

To our knowledge, most the current comput-
ing softwares for �nding solutions of equations
and systems of equations are programmed on the
basis of N-R method. For example, the optim
function is introduced by Nash [21]. The nle-
qslv function is presented by Hasselman [6]. The
maxLik function is developed by Henningsen
and Toomet [7], and so on. Truong et al. [32]
compare results and the operation time of R
code of these three functions. They showed that
the results of the three approaches are almost
the same and the operation time of R code to
get the result of the optim function is the fastest.
We now turn on present the conclusions and fu-
ture works in the last section.

6. Conclusions and future

works

In this study, we brie�y presented the approach
of the gradient and N-R method, introduced
the origin, formulas and applications of the ZIP
model. We compared the performance of two
investigated approaches in this article for the ZI
regression models such as the ZIP model, the ZI-
Bell model, the ZIB model and the ZINB model
with missing data through the simulation stud-
ies with numerous sample sizes and several miss-
ing rates. A real data set is investigated in this
study. Speci�cally, we compare results and the
operation time of R code of two methods. Both
the theory and the results obtained from simu-
lation studies with numerous sample sizes and
consider several missing rates proved that the
operation time of R code of gradient method is
faster than N-R method. Moreover, we provided

some important notes on these two approaches
and mention some scalable research directions in
this paper.

For future works, we can employ the gradi-
ent as well as N-R method to investigate and
study to some of the regression models that have
not yet been considered with missing data, for
instance: probit, binomial, negative binomial,
Poisson, zero-in�ated Bernoulli (ZIBer), zero-
in�ated negative binomial (ZINB), zero-in�ated
generalized Poisson (ZIGP), zero-in�ated power
series (ZIPS) or multivariate zero-in�ated mod-
els, etc. These are very new, potential, inter-
esting and meaningful research directions in the
near future.
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Appendix

1. The score function of the ZIP regression model

Executing the natural logarithm L(η) in (5), one has the log-likelihood function of the ZIP model
can then be presented as follows:

`(η) = logL(η) =

n∑
i=1

`i(η)

=

n∑
i=1

log
{
I(Yi = 0)

{
log
[
H(θTXi)

]
− log

[
H(θTXi + exp(αTXi))

]}}
+

n∑
i=1

log
{
I(Yi > 0)

{
log
[
1−H(θTXi)

]
+
[
Yiα

TXi − exp(αTXi)− log(Yi!)
]}}

,

where η = (θT ,αT )T are parameters to be determined. It should be remarked that I(Yi > 0) =
1− I(Yi = 0) and YiI(Yi = 0) = 0, i = 1, . . . , n. We have

∂

∂u
H(u) = H(u)[1−H(u)]

∂u

∂η
= H(1)(u)

∂u

∂η

and

∂

∂u
log[H(u)] =

∂

∂u
H(u)

H(u)
= [1−H(u)]

∂u

∂η
,

where H(1)(u) = H(u)[1−H(u)]. It has been seen that,

Si1(η) =
∂`i(η)

∂θ
=

∂

∂θ

{
I(Yi = 0)

{
log
[
H(θTXi)

]
− log

[
H(θTXi + exp(αTXi))

]}}
+

∂

∂θ

{
I(Yi > 0)

{
log
[
1−H(θTXi)

]
+
[
Yiα

TXi − exp(αTXi)− log(Yi!)
]}}

= I(Yi = 0)Xi
{[
1−H(θTXi)

]
−
[
1−H(θTXi + exp(αTXi))

]}
− [1− I(Yi = 0)]H(θTXi)Xi

= I(Yi = 0)Xi
[
H(θTXi + exp(αTXi))−H(θTXi)

]
−H(θTXi)Xi + I(Yi = 0)H(θTXi)Xi

= Xi
[
I(Yi = 0)H(θTXi + exp(αTXi))−H(θTXi)

]
= XiH

(
θTXi + exp(αTXi)

) [
I(Yi = 0)− H(θTXi)

H (θTXi + exp(αTXi))

]
.

244 c© 2020 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 4 | ISSUE: 4 | 2020 | December

and

Si2(η) =
∂`i(η)

∂α
=

∂

∂α

{
I(Yi = 0)

{
log
[
H(θTXi)

]
− log

[
H(θTXi + exp(αTXi))

]}}
=

∂

∂α

{
I(Yi > 0)

{
log
[
1−H(θTXi)

]
+
[
Yiα

TXi − exp(αTXi)− log(Yi!)
]}}

= −I(Yi = 0)Xi exp(αTXi)
[
1−H(θTXi + exp(αTXi))

]
+ [1− I(Yi = 0)]Xi

[
Yi − exp(αTXi)

]
= −XiI(Yi = 0) exp(αTXi)

[
1−H(θTXi + exp(αTXi))

]
+ Xi

[
Yi − exp(αTXi)

]
−XiYiI(Yi = 0) + XiI(Yi = 0) exp(αTXi)

= −XiI(Yi = 0) exp(αTXi)
[
1−H(θTXi + exp(αTXi))

]
+ Xi

[
Yi − exp(αTXi)

]
+ XiI(Yi = 0) exp(αTXi)

= −XiI(Yi = 0) exp(αTXi) + XiI(Yi = 0) exp(αTXi)H(θTXi + exp(αTXi))
+ Xi

[
Yi − exp(αTXi)

]
+ XiI(Yi = 0) exp(αTXi)

= XiI(Yi = 0) exp(αTXi)H(θTXi + exp(αTXi))
+ Xi

[
Yi − exp(αTXi)

]
= XiI(Yi = 0) exp(αTXi)H(θTXi + exp(αTXi))

+ Xi
{
Yi − [1−H(θTXi) +H(θTXi)] exp(αTXi)

}
= XiI(Yi = 0) exp(αTXi)H(θTXi + exp(αTXi))

+ Xi
{
Yi − [1−H(θTXi)] exp(αTXi)−H(θTXi) exp(αTXi)

}
= Xi

{
Yi − [1−H(θTXi)] exp(αTXi)

}
+ XiI(Yi = 0) exp(αTXi)H(θTXi + exp(αTXi))−XiH(θTXi) exp(αTXi)

= Xi
{
Yi − [1−H(θTXi)] exp(αTXi)

}
+ Xi exp(αTXi)H(θTXi + exp(αTXi))

[
I(Yi = 0)− H(θTXi)

H(θTXi + exp(αTXi))

]
= Xi

{
Yi − [1−H(θTXi)] exp(αTXi)

}
+ exp(αTXi)Si1(η).

Let Si(η) = ∂`i(η)/∂η =
(
STi1 (η) , S

T
i2 (η)

)T
, (i = 1, . . . , n) be the score function of the ZIP model.

Then Si1(η) = ∂`i(η)/∂θ and Si2(η) = ∂`i(η)/∂α are respectively given by

Si1(η) = XiH
(
θTXi + exp(αTXi)

) [
I(Yi = 0)− H(θTXi)

H (θTXi + exp(αTXi))

]
,

Si2(η) = Xi
{
Yi −

[
1−H(θTXi)

]
exp(αTXi)

}
+ exp(αTXi)Si1 (η) .

2. The score function of the ZIB regression model

The log-likelihood of ψ = (βT ,γT )T of the ZIB model, based on the observations (Zi, Xi,Wi), i =
1, . . . , n, is given by (see, Diallo et al. [3]):

`(ψ) =
n∑
i=1

`i(ψ)

=
n∑
i=1

{
Ji log

(
eγ

TWi +
(

1 + eβ
TXi

)−mi
)
− log

(
1 + eγ

TWi

)
+ (1− Ji)

[
Ziβ

TXi −mi log
(

1 + eβ
TXi

)]}
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Let Si(ψ) = ∂`i(ψ)/∂ψ
T =

(
STi1 (ψ) , S

T
i2 (ψ)

)T
, (i = 1, . . . , n) be the score function of the ZIB

model. Then Si1(ψ) = ∂`i(ψ)/∂β
T and Si2(ψ) = ∂`i(ψ)/∂γ

T are respectively provided by:

Si1(ψ) =
∂`i(ψ)

∂βT

= Ji
Xi(−mi)e

βTXi

(
1 + eβ

TXi

)−mi−1

eγTWi +
(
1 + eβTXi

)−mi
+ (1− Ji)

[
ZiXi −mi

Xie
βTXi

1 + eβTXi

]

= Xi

−Ji
mie

βTXi

(
1 + eβ

TXi

)−mi−1

eγTWi +
(
1 + eβTXi

)−mi
+ (1− Ji)

[
Zi −

mie
βTXi

1 + eβTXi

]
= Xi

{
−Ji

mie
βTXi

eγTWi
(
1 + eβTXi

)mi+1
+
(
1 + eβTXi

) + (1− Ji)

[
Zi −

mie
βTXi

1 + eβTXi

]}

and

Si2(ψ) =
∂`i(ψ)

∂γT
= Ji

Wie
γTWi

eγTWi +
(
1 + eβTXi

)−mi
− Wie

γTWi

1 + eγTWi

=Wi

{
Jie

γTWi

eγTWi +
(
1 + eβTXi

)−mi
− eγ

TWi

1 + eγTWi

}

=Wi

 Jie
γTWi

(
1 + eβ

TXi

)mi

eγTWi
(
1 + eβTXi

)mi
+ 1
− eγ

TWi

1 + eγTWi



3. The score function of the ZINB regression model

Let {(yi,Xi1,Xi2) : i = 1, · · · , n} be the data set and θ =

(
βT ,γT ,

1

α

)T
be the unknown ZINB

parameter vector of interest to be estimated. Then the likelihood function of the ZINB distribution
is expressed as (see, Ismail and Zamani [9])

L(θ) =

n∏
i=1

pi + (1− pi)


1

α

µi +
1

α


1

α


I(yi=0)

n∏
i=1

(1− pi)
Γ

(
yi +

1

α

)
Γ(yi + 1)Γ

(
1

α

)
 µi

µi +
1

α


yi


1

α

µi +
1

α


1

α


I(yi>0)

,

where pi = H(βTXi1) and where H(u) = {1− exp(−u)}−1
, µi = exp(γTXi2),

Xi = (1, XT
i , Z

T
i )

T , i = 1, · · · , n and I(.) is an indicator function.

Let `(θ) = logL(θ) =
∑n
i=1 `i(θ) and Si(ψ) = ∂`i(θ)/∂θ

T =
(
STi1 (θ) , S

T
i2 (θ) , S

T
i3 (θ)

)T
,

(i = 1, . . . , n) be the score function of the ZINB model. Then Si1(ψ) = ∂`i(θ)/∂β
T , Si2(ψ) =
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∂`i(θ)/∂γ
T and Si3(ψ) = ∂`i(θ)/∂1/α are respectively provided by:

Si1(θ) =
∂`i(θ)

∂β

=
∂`i(β,γ,

1

α
)

∂β

= I(yi = 0)
∂

∂β
log

H(βTXi1) + (1−H(βTXi1))

 1

α

exp(γTXi2) +
1

α


1

α


+ I(yi > 0)

∂

∂β

[
log(1−H(βTXi1)) + log

(
Γ

(
yi +

1

α

))
− log(Γ(yi + 1))− log

(
Γ

(
1

α

))]
+ I(yi > 0)

∂

∂β

[
yi(γ

TXi2)− yi log(exp(γTXi2) +
1

α
) +

1

α
log

(
1

α

)
− 1

α
log(exp(γTXi2) +

1

α
)

]

=

I(yi = 0)

Xi1H(1)(βTXi1)−Xi1H(1)(βTXi1)

 1

α

exp(γTXi2) +
1

α


1

α



H(βTXi1) + (1−H(βTXi1))

 1

α

exp(γTXi2) +
1

α


1

α

− I(yi > 0)
Xi1H(1)(βTXi1)

1−H(βTXi1)

=

I(yi = 0)Xi1H(1)(βTXi1)

1−

 1

α

exp(γTXi2) +
1

α


1

α



H(βTXi1) + (1−H(βTXi1))

 1

α

exp(γTXi2) +
1

α


1

α

− I(yi > 0)Xi1H(βTXi1)
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Si2(θ) =
∂`i(θ)

∂γ
=
∂`i(β,γ,

1

α
)

∂γ

= I(yi = 0)
∂

∂γ
log

H(βTXi1) + (1−H(βTXi1))

 1

α

exp(γTXi2) +
1

α


d

+ I(yi > 0)
∂

∂γ

[
log(1−H(βTXi1)) + log

(
Γ

(
yi +

1

α

))
− log(Γ(yi + 1))− log

(
Γ

(
1

α

))]
+ I(yi > 0)

∂

∂γ

[
yi(γ

TXi2)− yi log

(
exp(γTXi2) +

1

α

)
+

1

α
log

(
1

α

)
− 1

α
log

(
exp(γTXi2) +

1

α

)]

= I(yi = 0)

(1−H(βTXi1))

 1

α

exp(γTXi2) +
1

α


1

α
−1
−

1

α
Xi2 exp(γTXi2)(

exp(γTXi2) +
1

α

)2



H(βTXi1) + (1−H(βTXi1))

 1

α

exp(γTXi2) +
1

α


1

α

+ I(yi > 0)
∂

∂γ

yiXi2 − yi Xi2 exp(γTXi2)

exp(γTXi2) +
1

α

− 1

α

Xi2 exp(γTXi2)

exp(γTXi2) +
1

α



= I(yi = 0)

(1−H(βTXi1))

 1

α

exp(γTXi2) +
1

α


1

α
− Xi2 exp(γTXi2)

exp(γTXi2) +
1

α



H(βTXi1) + (1−H(βTXi1))

 1

α

exp(γTXi2) +
1

α


1

α

+ I(yi > 0)
∂

∂γ

yiXi2
 1

α

exp(γTXi2) +
1

α

− 1

α

Xi2 exp(γTXi2)

exp(γTXi2) +
1

α



= I(yi = 0)

(1−H(βTXi1))

 1

α

exp(γTXi2) +
1

α


1

α
− Xi2 exp(γTXi2)

exp(γTXi2) +
1

α



H(βTXi1) + (1−H(βTXi1))

 1

α

exp(γTXi1) +
1

α


1

α

+ I(yi > 0)
∂

∂γ


 1

α
Xi2

exp(γTXi2) +
1

α

 (yi − exp(γTXi2))
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Si3(θ) =
∂`i(θ)

∂1/α
=
∂`i(β,γ,

1

α
)

∂1/α

= I(yi = 0)
∂

∂1/α
log

H(βTXi1) + (1−H(βTXi1))


1

α

exp(γTXi2) +
1

α


1

α


+ I(yi > 0)

∂

∂1/α

[
log(1−H(βTXi1)) + log

(
Γ

(
yi +

1

α

))
− log(Γ(yi + 1))− log

(
Γ

(
1

α

))]
+ I(yi > 0)

∂

∂1/α

[
yi(γ

TXi2)− yi log

(
exp(γTXi2) +

1

α

)
+

1

α
log

(
1

α

)
−

1

α
log

(
exp(γTXi2) +

1

α

)]

= I(yi = 0)
∂

∂1/α


1

α

exp(γTXi2) +
1

α


1

α
−1

exp(γTXi2) +
1

α
−

1

α(
exp(γTXi2) +

1

α

)2

H(βTXi1) + (1−H(βTXi1))


1

α

exp(γTXi2) +
1

α


1

α

+ I(yi > 0)

Γ

(
yi +

1

α

)
ψ0

(
yi +

1

α

)
Γ

(
yi +

1

α

) −
Γ

(
1

α

)
ψ0

(
1

α

)
Γ

(
1

α

)


+ I(yi > 0)
∂

∂1/α

 yi

exp(γTXi2) +
1

α

+ log

(
1

α

)
+ 1− log

(
exp(γTXi2) +

1

α

)
−

1

α

exp(γTXi2) +
1

α



= I(yi = 0)
∂

∂1/α


1

α

exp(γTXi2) +
1

α


1

α
−1

exp(γTXi2)(
exp(γTXi2) +

1

α

)2

H(βTXi1) + (1−H(βTXi1))


1

α

exp(γTXi2) +
1

α


d

+ I(yi > 0)

[
ψ0

(
yi +

1

α

)
− ψ0

(
1

α

)]

+ I(yi > 0)
∂

∂1/α

 yi −
1

α

exp(γTXi2) +
1

α

+ log


1

α

exp(γTXi2) +
1

α

+ 1



4. The score function of the ZIBell regression model

The log-likelihood of θ = (βT , τT )T of the ZIBell model is given by (see, Lemonte et al. [12])

`(θ) =

n∑
i=1

`i(θ)

=
∑

yi:yi=0

log
[
eη2i + exp

(
1− eW (µi)

)]
−

n∑
i=1

log (1− eη2i) +
∑

yi:yi>0

yi log [W (µi)]−
∑

yi:yi>0

eW (µi)

where µi = eη1i = exp(xTi β), πi = eη2i = exp(sTi τ ), β = (β1, β2, ..., βp)
T , τ = (τ1, τ2, ..., τq)

T ,

X = [x1, x2, ..., xn]
T , and S = [s1, s2, ..., sn]

T . Let S(θ) = ∂`(θ)/∂θT =
(
ST1 (θ) , ST2 (θ)

)T
,
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(i = 1, . . . , n) be the score function of the ZIBell model. Then S1(θ) = ∂`(θ)/∂βT = XTγ and
S2(θ) = ∂`(θ)/∂τT = ST δ, where γ = (γ1, γ2, ..., γn)

T , and δ = (δ1, δ2, ..., δn)
T , with

γi =


−

exp
(
1 + η1i − eW (µi)

)[
eη2i + exp

(
1− eW (µi)

)]
[1 +W (µi)]

, yi = 0,

yi − µi
1 +W (µi)

, yi > 0,

δi =
eη2iI(yi = 0)

eη2i + exp
(
1− eW (µi)

) − eη2i

1 + eη2i
,

where I(.) denotes an indicator function.
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