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Abstract. Compressive Strength (CS) is an im-
portant mechanical feature of concrete taken as
an essential factor in construction. The current
study has investigated the effect of fly ash and
silica fume replacement content on the strength
of concrete through Artificial Neural Networks
(ANNs) and Extreme Learning Machine (ELM).
In this study, different ratio of fly ash with
(out) extra quantity of silica fume have been
tested. Water cement (w/c) ratio varies during
the test. Eight input parameters including To-
tal Cementitious Material (TCM), Silica Fume
(SF) replacement ratio, coarse aggregate (ca),
fly ash (FA) replacement ratio, Sewage Sludge
Ash (ssa) as combination of cement and fine ag-
gregate replacement, water cement ratio, High
Ratio Water Reducing Agent (HRWRA) and Age
of Samples (AS) and one output parameter as
the CS of concrete have been investigated through
ANN and ELM. Up to now, numerous exper-
imental studies have been used to analyze the

compressive strength of concrete while retrofitted
with fly ash or silica fume, however, the nov-
elty of this study is in its use of AI models
(ELM, ANN). The models have been developed
and their outcomes were compared through six
statistical indicators (MAE, RMSE, RRMSE,
WI, RMAE and R2). Subsequently, both meth-
ods were shown as reliable tools for assessing
the influence of cementitious material on com-
pressive strength of concrete, however, ANN re-
markably was better than ELM. As a result, FA
showed less contribution to the strength of con-
crete at short times, but much at later ages. As
a result, the enhanced influence of low amount of
SF on CS was not significant. Adding fly ash has
reduced the compressive strength in short term,
but increased the compressive strength in long-
term. Adding silica fume raises the strength in
short term, but decreases the strength in long
term.
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1. Introduction

There are some demerits of cement produc-
tion, such as using energy, high raw materi-
als and heat. The production of cement makes
air pollution by releasing gaseous emissions and
huge solid waste materials. Cement manufactur-
ing is complicated and high cost requiring high
different amount and properties of materials,
fuel sources such as fuel oil, tiers, natural gas,
petroleum coke, coal, and pyro-processing tech-
niques, such as preheating, recirculation and wet
and dry kiln. Though, the cement production in-
dustry has made essential advances in decreasing
CO2 emissions in its procedures, more improve-
ment is confined, since CO2 production is inher-
ent to the main processing of calcinating lime-
stone [1]. Respectively, using aggregate could
bring many benefits as low cost, Eco-friendly,
Versatile and durable. Also, aggregate is sig-
nificant for strength, dimensional stability, ther-
mal - elastic properties of concrete and volume
stability. Cement is more likely to be affected
by shrinkage, however, aggregates could reduce
the shrinkage level and prevent cracking. The
compressive aggregate strength is another signif-
icant parameter in selection of aggregate. Com-
paring the normal concrete strength with the
strength of concrete exposed by aggregates, the
later sounds stronger than the conventional con-
crete. Using aggregates in concrete assist the
conserving of raw materials, reduction of carbon
dioxide emissions and finally lower environmen-
tal pollution beside bringing more sustainabil-
ity in construction [2]. Among all, silica fume
(SF) and fly ash are the two supplementary ce-
mentitious aggregates with pozzolanic charac-
teristics (Demirboga et al., 2001; Bilodeau and
Malhotra, 2000) carrying economical, ecologi-
cal and technical benefits [3, 4]. SF is a by-
product of producing ferrosilicon alloys or sili-
con metal due to is its physical and chemical
properties as a very reactive pozzolan (Khedr

and AbouZaid 1(94)) [5]. By using silica fume
in concrete in Canada, it was considered as
a cement replacement in normal strength con-
crete in order to gain a favorite 28-day CS [2].
Some studies have researched the improvement
of CS in hardened concrete through SF (Ira-
vani, 1996; Khedr and Abou-Zeid, 1994; Atis¸
et al., 2005; Toutanji and Bayasi, 1999; Khatri
and Sirivivatnanon, 1995; Sabir, 1995; Detwiler
and Mehta, 1989; Mazloom et al., 2004; Xie et
al., 1995; Cetin and Carrasquillo, 1998; Gold-
man and Bentur, 1993; Hooton, 1993; Zhou et
al., 1995; Yogendran et al., 1987) [5-19]. On the
other hands, SF is able to advance the physical
and chemical properties while transforming the
microstructure of concrete and mightily increase
the strength and reduce the permeability (Elahi
et al., 2010) [20]. SF could improve the abrasion
resistance and durability of concrete (Malhotra
and Mehta, 1996; Dotto et al., 2004; Behnood
and Ziari, 2008; Laplante et al., 1991) [21-23],
improving the resistance of concrete against sul-
fate attack and acid (Türker et al., 1997; Aköz et
al., 1995, 1999) [24-26] and improving the bond
between the aggregate and the paste (Khatri et
al., 1997; Al-Khaja, 1994; Alexander and Magee,
1999) [10, 27, 28]. These all make SF the most
available mineral mixture for high-strength con-
crete (Poon et al., 2006) [29].

Fly ash is also a waste material derived from
the combustion of pulverized coal in electricity
generating plants Fly ash particles are gener-
ally solid glassy spheres, from grey to tan to
reddish brown and range in size from 2 µm to
10 µm. Fly ash is the unburned residue car-
ried away from the burning zone in the boiler
by the flue gases and then gathered by electro-
static or mechanical separators [31-33]. It com-
prises mostly aluminum oxide (Al2O3), iron ox-
ide (Fe2O3) and silicon dioxide (SiO2) [34]. De-
spite the common use of fly ash over 50 years,
there are confinements over its usage in concrete
due to unknown characteristics of fly ash in con-
crete [35, 36] which is highly based on the type
of applied coal, temperature of fire, air fuel ra-
tio, the combustion condition and collector setup
[37-40]. In this case, some generalized process-
ing is made in surface area, morphology, den-
sity, distribution of particle size, hydraulic con-
ductivity or permeability of fly ash [41]. Gen-
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Tab. 1: The properties of silica fume and cement (Fuat
Ko¨ksal, Fatih Altun, et al., 2008) [30].

Composition(%) Cement Silica
fume

Chemical composi-
tion
SiO2 19.12 81.35
Al2O3 5.63 4.48
Fe2O3 2.39 1.42
CaO 63.17 0.80
MgO 2.75 1.47
SO3 2.74 1.34
Na2O
K2O 1.00
Insoluble material 0.49
Loss on ignition 2.33 3.4

Physical properties
Specific gravity 3.09 2.23
Specific surface
(cm2/g)

3114

erally, fly ash comprises two classes as fly ash
Class C and fly ash Class F. Fly ash from class C
typically is made from the combustion of sub-
bituminous coal or younger lignite, however, fly
ash class F is made from the burning of older an-
thracite and harder bituminous coal. The major
alteration between the two classes is the amount
of alumina, silica, iron, and calcium content.
Class F fly ash consist of less than 10% CaO
and minimum Al2O3 + Fe2O3 + SiO2 content
of 70%, whereas Class C fly ash consist of more
than 20% CaO and minimum Fe2O3 + Al2O3
+ SiO2 content of 50% [32, 42]. Kearsley and
Wainwright (2001) have investigated the influ-
ence of fly ash on CS of concrete, finding that
CS is highly depending on the fly ash dry density
[43]. It was also found that the high replacement
ratio of fly ash instead of cement couldn’t signif-
icantly impact the concrete’s strength in long
term (Kearsley and Wainwright, 2001). In an-
other study by Behnood and Golafshani (2018),
ANN is used with Multi-Objective Grey Wolves
(HANNMOGW) method to predict the CS of
silica fume concrete, resulting a linear increment
in the CS of silica fume concrete when the silica
fume to binder ratio is raised from 0 to approx-
imate 30%. Also, the CS of silica fume concrete

is significantly affected by the maximum aggre-
gate size [44]. Pala et al. (2007) has tested the
influence of silica fume and fly ash replacement
on the concrete’s strength cured for a long time
by neural networks (NNs) with various water ce-
ment ratio, with(out) the extra low SF content
and low & high FA volume, in which the en-
hancement impact of low SF content on CS was
not significant. Thus, FA was contributed low at
early ages, but much at later ages to the strength
of concrete, also showing NNs as a reliable tool
to assess the impact of cementitious material on
the CS of concrete [45].

Artificial Intelligence (AI) is commonly ap-
plied to estimate and predict CS and other me-
chanical features of concrete mixes (Golafshani
and Behnood, 2018a, 2018b; Erdal, 2013; Ha et
al., 2017; Behnood et al., 2017, 2015b, 2015c;
Cheng et al., 2014; Golafshani and Ashour,
2016) [51-59]. Table 3 shows some samples of
the methods that was previously applied to es-
timate the CS of various concrete types.

ANN (as an artificial intelligence) is com-
monly applied for predicting different proper-
ties of concrete mixtures by solving very rigor-
ous problems through the interconnected com-
puting elements. ANN process resembles the
brain network including many simple computa-
tional parameters arranged in layers. A con-
crete designed by ANN is expected to have op-
timal water and cement that should bring more
durability and likely better ecological and eco-
nomic impacts [63]. Neural networks (NN) could
“learn” and “correlate” the large datasets gained
from simulations and tests. A trained NN per-
forms as an analytical tool for the qualified prog-
noses of real outcomes, showing highly accurate
scores in their predictions. Asteris and Mokos
(2019) have used ANN to predict the CS of con-
crete with ultrasonic pulse velocity. Thus, ANN
showed the capability to approximate the CS
of concrete [73]. ELM is also a new model to
train ANN while demonstrating good general-
ization performance and fast learning speed in
many regression usages. Al-Shamiri et al (2019)
has used ELM for predicting the CS of high
strength concrete (HSC) [74]. The performance
of developed ELM has been compared to that
of ANN trained. The simulation results have
shown ELM as a strong potential for the predic-
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Tab. 2: Physical properties of Fly Ash [46].

Property Maher & Bal-
aguru
(1993) [47]

Mitash N
(2007) [48]

Huang et al
(1995) [49]

Muhardi et al
(2010) [50]

Specific gravity 2.54 1.9-2.55 2.06 2.3
Moisture content 13.60% 0.53% 19.75%
Fineness 13.80% in

No. 325
0.6 - 0.001 mm

LOI 7.5
Maximum dry density 1.65 g/cm3 0.9-1.6 g/cm3 1.53 g/cm3cc
Uniformity coefficient 2.5 3.1-10.7
Liquid limit 16.8
Permeability 0.9x10−5 cm/s 10−5-10−3 cm/s 4.87x10−7

cm/s
Angle of internal
friction

30◦- 40◦ 23◦-41◦

Cohesion Negligible 3-34 kPa
Compression index 0.05-0.4 0.15
Coefficient of consoli-
dation

0.1-0.5
m2/year

Tab. 3: AI methods applied to predict the CS of different concrete types [44].

Concrete type AI models
Normal concrete Artificial Neural Network (ANN) (Uddin et al., 2017), Evolu-

tionary
ANN (Nikoo et al., 2015) [60, 61]

High-performance concrete ANN (Atici, 2011; Prasad et al., 2009; Yeh, 1998) [62-64], Mul-
tiple Additive Regression Tree (MART) (Chou et al., 2011)
[65], bagging regression trees (Chou et al., 2011) [65], M5P tree
model (Behnood et al., 2017; Deepa et al., 2010) [55, 66], Multi-
variate regression analysis (Atici, 2011) [62], Genetic operation
tree (Yeh and Lien, 2009) [64], Decision tree (Erdal, 2013) [53],
Evolutionary
ANN (Bui et al., 2018) [67]

Fly ash concrete ANN (Topçu and Sarıdemir, 2008) [68], Fuzzy logic models
(Topçu and Sarıdemir, 2008) [68], Fuzzy polynomial neural net-
works (Fazel Zarandi et al., 2008) [69]

Ground granulated blast
furnace slag concrete

ANN (Bilim et al., 2009) [70]

Recycled aggregate concrete ANN (Naderpour et al., 2018) [71], Genetic programming
(Velay-Lizancos et al., 2017) [72], M5P tree model (Behnood
et al., 2015a) [56]

Self-compacting concrete ANN (Prasad et al., 2009) [63]

tion of the CS of high strength concrete (HSC).
In another study, Yaseena et al (2013) has used
M5 Tree, MARS, ELM, and SVR learning mod-
els to predict the CS of lightweight foamed con-

crete that the results showed ELM more accu-
rate than pother four models [75]. The current
study, by use of AI models has attempted to pro-
vide a precise analysis in predicting the compres-
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sive strength of concrete while exposed by fly ash
and silica fume. Many studies have analyzed the
addition of aggregates to concrete, however, us-
ing AI models is rarely seen. Accordingly, this
research has attempted to provide a precise and
accurate analysis to the case. This study has
used ANN and ELM align with the objective of
this study in terms of using AI models to pre-
dict the compressive behavior of concrete while
adding aggregates. In the following, the models
have been developed and their results were illus-
trated in diagrams. Comparing this study with
the original one that data was derived from is
in methodology. While the original paper only
used one AI model (neural network), the current
study has used two AI models for the same anal-
ysis of adding fly ash and silica fume to concrete.

Problem Statement and Objective

Regarding the concrete content (chemical ad-
mixtures, water, supplementary cementitious
materials, fine and coarse aggregates, cement
and fibers), one big problem is to achieve and
maintain the specified CS in concrete design.
Due to the low knowledge in terms of the tests
between concrete strength and its constituents,
finding the reliable and novel machine learning
methods and soft computing to gain those re-
lationships has been provoked [75]. Having to
try all the different quantities and testing each
one’s performance takes enormous time, effort,
cost and might with less accuracy (experimen-
tal error). To capture a 28-day design CS with
proper workability, the technical personnel have
to highly attempt for several mix percentages
that takes long time, raising the wastage of ma-
terial and cost of concrete production. Signifi-
cantly, in case of concrete test failures after so
long waiting, there might be highly difficult to
adjust another test as before. On the other
hand, for improving the strength and sustain-
ability of concrete, using aggregates, such as sil-
ica fume, fly ash and slag are highly applied
from the last few decades. In this case, there
are many models for prediction and estimating
the strength of concrete well before 28 days as
Abrahams Law [76]. However, in reality, the
relationship between the strength of concrete
and its constituent’s material is highly nonlin-
ear and Abrahams Law model is failed satisfac-
torily to compute this complicated relationship

and falling short to generalize the unseen data.
Unlike Abrahams Law, AI was proved as reliable
and accurate tool in learning rigorous patterns,
besides saving time and money. Among AI al-
gorithms, ANN is broadly suggested to predict
the strength of concrete through the use of back
propagation (BP) network. Adding that BP fails
from the local minima that is led to the insta-
bility in the developed model. The convergence
to local minima is due to the optimization ob-
jective of ANN that is naturally multimodal. It
is due to the fact that various training data sets
generate various models affecting the capability
of that model in generalizing to previously un-
seen data. It could be a confinement to ANN
reported in the related studies particularly in
medical estimation and predictions [77]. Though
there might be a solution to this by aggregating
the outputs of few models developed from the
training data as “boosting”, “bagging” or stack-
ing predictors, this brings more computations
and some uncertainty [78, 79]. The use of non-
tuned machine learning model e.g. ELM could
bring high progress in multidisciplinary of en-
gineering and science fields in past few years.
This is due to its superiority on standard ANN
algorithms, such as the randomly initiated hid-
den neurons without the need for iterative tun-
ing process for free parameters or connections
between hidden and output layers. ELM as a
relatively new learning method for feedforward
NNs, unlike conventional NNs, the hidden biases
and input weights are randomly initialized and
remain fixed across the learning process plus the
analytically determination of output weights, all
bring to ELM a good generalized performance
and fast learning speed [74]. Ultimately, ELM
is highly proficient in gaining a global optimum
while following global approximating capabil-
ity of single layer feed-forward network. Also,
ELM is superior because of its generalized per-
formance in estimating problems in various fields
than the conventional models as ANNs or SVMs.
On the other hand, ANN is better than the mul-
tiple regression ones, particularly in decreasing
the scatter of predictions in concrete mixture.
ANN has been widely used in predicting the
self-compacting concrete (SCC), CS of conven-
tional concrete and high performance concrete
(HPC). Then, ANN is able to predict the CS of
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flowable concrete in an appropriate admixture of
concrete.

2. Methodology

The data of this research was originally obtained
from the study of “Appraisal of long-term effects
of fly ash and silica fume on CS of concrete by
neural networks” including 144 various concrete
mixtures. Water cement (w/c) ratio was differed
during the test comprising the high and low FA
content and with(out) extra small SF content.
Accordingly, 24 various mixtures with 144 vari-
ous samples have been collected from a previous
study. The concrete of samples was cured for 3,
7, 28, 56 and 180 days (Appendix 1) (Tab. 4)
[45].

2.1. Statistical data

Table 4 shows the input and output parameters
used in this investigation. including silica fume
replacement ratio (SF), total cementitious mate-
rial (TCM), coarse aggregate (ca), water content
(W), fly ash replacement ratio (FA), fine aggre-
gate (ssa), age of samples (AS), high rate wa-
ter reducing agent (HRWRA) and one output
parameter as compressive strength of concrete
(fc).

Tab. 4: Input - output parameters in database.

Inputs Parameters description
input 1 FA (%)
input 2 SF (%)
input 3 TCM (kg/m3)
input 4 ssa (kg/m3)
input 5 ca (kg/m3)
input 6 W (lt/m3)
input 7 HRWRA (lt/m3)
input 8 Age (days)
output fc (MPa)

2.2. Artificial Neural Network
(ANN)

ANN, a common multilayer algorithm, is derived
by the biological NN of humans/animals [80, 81].

Through the mechanism of layers, ANN could
solve adequate complications for estimating tar-
gets in multi-dimensional space of problems [79,
82]. Multilayer perceptron (MLP) is a practi-
cal and simple class of feed forward ANN [83,
84]. one MLP includes one input layer, one hid-
den layer and one output layer [85]. Input layer
takes the predictive data and transfers them to
the available neurons in the next (hidden) layer.
In the Input layer, biases are added, weights are
multiplied and a net value is calculated [86], [87]
as Eq. (1):

Net =

n∑
i=1

wijxi + bj (1)

xi = nodal variables in previous layer
n = all nodal variable’ numbers received from
the previous layer
wij & bj = the weights and biases of network in
the current layer

In order to decrease the net values’ diversity,
an activation function is used to the net, then y
as output signal was reported [88]. The tangent
hyperbolic function is regarded as the highest
reliable activation performances as Eq. (2):

y = f (Net) =
2

1 + e−2.Net
− 1 (2)

This process is performed on each layer of MLP
until the output signals of the last layer (pre-
dicted values) are reported. Later, the differ-
ential of the observed variables (error) and pre-
dicted ones have been computed. Ultimately,
one optimized algorithm is used to decline the
error variable by modifying the assigned biases
and weights through MLP. This training pro-
cedure can be performed through diverse algo-
rithms, however, due to the high speed of con-
vergence and high accuracy of backpropagation
algorithms, ANN is more preferable in this study
[89]. Fig. 1 indicates the scheme of an ANN.

2.3. Extreme Learning Machine
(ELM)

Huang et al. proposed ELM to tune the single
layer feed forward NN (SLFNN) architectures
[90]. ELM is derived from the notion that an
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SLFNN with random biases and weights is able
to predict any continuous function at any com-
pact input set [91, 92]. Three phases are worked
in ELM development as: 1) generation of one
SLFNN, 2) randomly selection of weights and
biases of network and 3) estimation of output
weights by inverting the hidden layer output ma-
trix [74, 93]. For a dataset including m dimen-
sional target vectors, n dimensional input vec-
tors and N training samples, one SLFNN with
L hidden nodes could be computed as Eq. (3)
[94, 95]:

L∑
i=1

βiG (wi.xj + bi) = oj j = 1, 2, 3, . . . , N

(3)
G = the activation performance (all the NN
based activation functions could be applied here
as well)
wi = [wi1, wi2, . . . , win]

T = weight vector con-
necting ith input neurons to hidden neuron
xj = [xj1, xj1, . . . , xjm]

T= input vector
βi = [βi1, βi2, . . . , βim]

T = weight vector con-
necting output neurons to hidden neurons
bi = [bi1, bi2, . . . , bim]

T = bias vector
oj = [oj1, oj1, . . . , ojm]

T= output vector

Supposing that an SLFNN with L hid-
den neurons and activation function G could
compute the targets (tj) with 0 error, i.e.∑L

j=1 ‖oj − tj‖ = 0, Eq. (3) can be modified to

Eq. (4):

L∑
i=1

βiG (wi.xj + bi) = tj j = 1, 2, 3, . . . , N

(4)
tj = [tj1, tj2, . . . , tjm]

T = target vector

Also, this N equations could be compactly
written as:

Hβ = T (5)

in which:

H = G (w1 + x1 + b1) . . . G (wL.x1 + bL)
... . . .

...
G (w1 + xN + b1) . . . G (wL.xN + bL)


N×L

(6)

and,

β =

 βT
1
...
βT
L


L×m

and T =

 tT1
...
tTN


N×m

(7)

The output weights are gained if the minimal
differential between the right side (target vari-
ables) and the left side (predicted variables) of
Eq. (5) is occurred e.g. min ‖Hβ-T‖. Based on
the mathematical theories, it was proved that
when the output weight is as follows, the mini-
mal error between the target variables and pre-
dicted variables occurs:

β̂ = H†T (8)

β̂ = output weight vector
H† = Moor-Penrose generalized inverse matrix
T = target vector

As noted, no optimization process is involved
in ELM, then the human inferences and the
training time are reduced efficiently. The com-
ponents of ELM are shown in Fig. 2.

3. Results and Discussions

For evaluating and testing the models’ perfor-
mance used in this research, 70% of the data is
randomly separated and assigned to training sec-
tion, and 30% data is used to testing phase. As
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Fig. 2: ELM structure.

a measurement parameter, statistical model per-
formance indicators comprising mean absolute
error (MAE ), root mean square (RMSE ), rela-
tive root mean squared error (RRMSE ), Will-
mott’s index (WI), relative mean absolute er-
ror (RMAE ) and determination coefficient (R2)
were applied.

R2 =

[∑N
i=1

(
Oi −O

)
.
(
Pi − P

)]2
∑N

i=1 (Oi −O).
∑N

i=1 (Pi − P )
(9)

RMSE =

√√√√ N∑
i=1

1

N
(Oi − Pi)

2 (10)

MAE =
1

N

N∑
i=1

|Oi − Pi| (11)

RRMSE =
RMSE

O
.100 (12)

RMAE =
MAE

O
.100 (13)

WI = 1−

[ ∑N
i=1 (Oi − Pi)

2∑N
i=1

(∣∣Pi −O
∣∣+ ∣∣Oi −O

∣∣)2
]
(14)

N = the number of testing r training samples
Oi = observed values in sample i
Pi = predicted values in sample i
O = the mean observed variables
P = the predicted values

For comparing the models, all codes are writ-
ten in MATLAB without using external toolbox

or compiler. Afterwards, codes were computed
a processor (Intel(R) Core (TM) i5-8250U CPU
1.60 GHz 1.80 GHz and 8.0 GB RAM).

Developing of Models

1) ANN Development

The performance of ANN obviously is based on
the layout and model’s architecture, say the neu-
rons’ number and the hidden layers’ number
used in each layer. An error and trail processing
was performed to gain the desired performance
in order to find the appropriate ANN architec-
ture. Altered architectures with different neu-
rons and hidden layers have been made while
each model was run 3 times with 800 epochs.
This is because in AI models generally and ANN
particularly, data are selected randomly in test
and train phases (70% train, 30% test), so prob-
ably the neurons that are going to predict the
output could provide a good prediction (or not).
For reducing the probability of randomness and
avoiding the adverse effect on our output, data is
run three times, then the average of three times
is selected as the output. In Tabs. 5 and 6,
the RMSE values show the average of the data
after three runs. In this research, Levenberg-
Marquardt (LMA) was applied to define the
bias and weight of ANN neurons due to its fast
performance in achieving optimal performance
among BP algorithms. Finally, the mean value
of RMSE was achieved to indicate the perfor-
mance of models and their comparison. Table 5
shows the RMSE variables (single-layer) of ANN
in trial and error processing that was modified
for each layer and neurons number. Figure 3
shows the RMSE output of ANN with the neu-
rons 1, 2, 3, . . . 10 as single-layer in testing and
training phases. According to Tab. 6 and Fig. 4,
there are 6 neurons in the first layer and 4 neu-
rons in the second layer with the RMES values
of 1.534524 and 2.208552 in training and test-
ing phase, respectively. Since there weren’t good
results in the RMSE values of the single-layer,
then the second layer was used and provided
good results. Though few models with altered
combinations of layers and neurons gain lower
RMSE variable in training phase, they are not
able to gain this performance in testing phase.
Figure 4 shows the both layers (single and two-
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layer) in ANN model while the first layer has 6
neurons and the second layer has 4 neurons. It
is noted that when the RMSE of test was in-
creasing, it is not good for accurate prediction,
so adding neuron was stopped in testing phase
and the least amount was taken as the best re-
sult. Thereafter, adding neuron in the second
layer was stopped and point x (Fig. 4) with 6
neurons in the first layer and 4 neurons in the
second layer is accepted as the best RMSE point
and the best ANN performance in the second
layer. As a result, ANN couldn’t represent good
performance in the first layer (single-layer), how-
ever, it showed its best performance in the sec-
ond layer (two-layer). Considering the innova-
tion of using ANN, data was initially analyzed in
the first layer and the output was obtained (Fig.
3). Later, the same process was performed in
the second layer (Fig. 4), showing the best per-
formance of ANN in the second layer (point x).
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Fig. 3: The graphical picture of single-layer of ANN in
training and testing phase.

ANN Results:

Following Tab. 5, the monolayer arrangement
of neurons is tested and the results is depicted
in Fig. 3 in training and testing phases.

Table 6 shows the two-layer arrangement
along the training and testing results. Figure
4 shows the best (lowest) RMSE in testing and
training phases.
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Fig. 4: Two-layer ANN and the best RMSE point in
testing phase.

Tab. 5: RMSE variables of ANN in trial and error pro-
cessing (Single-layer).

First layer train test
1 9.707343 10.32235
2 3.604467 4.535212
3 3.14094 4.549322
4 2.254623 4.288685
5 2.702086 3.828284
6 1.725994 5.894069
7 1.328079 5.666384
8 1.008558 10.68123
9 0.866963 7.406495
10 0.613574 15.97062

Tab. 6: The RMSE values of ANN in two layers in
training and testing phases (Full date is in ap-
pendix 2).

First
layer
neuron

Second
layer
neuron

Train Test

2 4 1.389969 6.713467
3 4 0.644357 6.445502
4 4 0.563873 10.68091
5 4 0.95852 10.96912
6 4 1.534524 2.208552
7 4 0.914569 7.634039
8 4 1.287565 4.734597
9 4 1.163599 9.779257
10 4 0.38738 19.30937
1 5 1.148456 293.8489
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2) ELM Development

Unlike ANN, ELM deals with single layer feed
forward neural network (SLFNN) architectures.
There is no need to define the hidden layers’
number, then SLFNN was determined and leads
to the network architecture parameter specify-
ing. A trial and error process (such as ANN)
has been carried out to specify the number of
ELM neurons. Subsequently, ELM performance
is tested by the RMSE index during the train-
ing and testing steps in this trial and error pro-
cess. Table 7 shows the RMSE of ELM model in
trial and error process with their corresponding
variables as one layer. By adding the neurons’
amount, it is not good for accurate prediction, so
67 neurons were stabled. Since ELM is involved
with only one layer, considering all the RMSE
values in this layer, the architecture with 67
neurons and the RMSE value of 4.6025 in test-
ing phase is accepted as the best performance of
ELM. Figure 7 shows the RMSE output of ELM
with the neurons of 50, 52, 54,. . . 80 as one hid-
den layer in testing and training phases. Consid-
ering the innovation of ELM, based on different
neurons, output was obtained (Fig. 7), show-
ing that the architecture of 67 was the best per-
formance of single layer ELM. In terms of cost
for both models, ANN designing takes more cost
and accuracy due to its layers than ELM with
one layer.
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Fig. 7: The graphical picture of ELM in testing and
training phase.

Table 7 shows the RMSE values in training
and testing results for the number of neurons in
ELM model.

After analyzing the involved parameters in
ANN and ELM, both were run and their func-
tion in term of previously performance metrics

Tab. 7: RMSE values in trial and error process.

Nu. Train Test
50 3.190231 5.891087
51 2.862159 7.968922
52 3.059752 6.831718
53 3.156456 6.729685
54 3.079353 6.174658
55 2.683887 7.74737
56 3.263969 7.945308
57 3.342795 10.44598
58 2.957656 7.148689
59 3.287528 6.978607
60 3.346792 9.39127
61 3.311584 9.591771
62 2.893009 5.514078
63 2.898763 6.528791
64 3.255487 10.79586
65 3.245989 9.12994
66 3.39783 8.878136
67 3.0196 4.6025
68 3.134022 8.09941
69 3.030526 6.468871
70 3.435698 8.604487
71 3.295331 10.10774
72 2.822732 9.719424
73 3.11962 5.681063
74 2.899568 4.8361
75 2.629813 6.058653
76 2.933741 6.851958
77 3.281796 6.47999
78 3.145036 9.556516
79 3.043555 7.876588
80 2.740894 8.654041

have been assessed in training and testing phases
of the two models (Table 8, 9). Comparing
the ANN and ELM performance, the values of
RMSE and R2 (RSQR) is compared in testing
phase. Obviously, the best RMSE value is the
one that is near to 0. Accordingly, by comparing
the RMSE of ANN (2.2086) and ELM (4.6025),
it is proved that the RMSE of ANN is near to
0, then the best performance metrics belong to
ANN than ELM in predicting the CS of concrete
in adding silica fume and fly ash. On the other
hand, the more R2 (RSQR) value is near to 1,
the more it is acceptable. In this case, the R2

values of both ANN (0.9905) and ELM (0.9616)
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Fig. 9: ELM model testing outputs.

are compared and since the value of ANN is near
to 1, then the best performance metrics belong
to ANN in approximating the CS of concrete in

adding silica fume and fly ash. As a result, ANN
represented superior performance in this study.
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Tab. 8: Comparing the training phase results between ANN model and ELM model.

Training phase
AI Models R2 RMSE MAE RRMSE RMA WI
ANN 0.9959 1.5345 1.1377 2.6523 1.9663 0.9990
ELM 0.9842 3.0196 2.3337 5.2191 4.0335 0.9960

Tab. 9: Comparing the testing phase results between ANN model and ELM model.

Testing phase
AI Models R2 RMSE MAE RRMSE RMA WI
ANN 0.9905 2.2086 1.7252 4.1092 3.2098 0.9976
ELM 0.9616 4.6025 3.5945 8.3895 6.5521 0.9896

4. Conclusion

Predicting the CS of concrete is an important
challenge in construction industry. In reality,
calculating the concrete strength in traditional
testing method takes time, cost, error in per-
centages and lack of accuracy. Accordingly, the
CS of concrete has been analyzed while adding
silica fume and fly ash through AI algorithms
as ANN and ELM [13]. Collecting data set was
from the appraisal of long-term influences of sil-
ica fume and fly ash on the CS of concrete by
NNs including 144 various concrete mixtures.
Water cement (w/c) ratio was differed during
the test comprising the high and low FA content
and with(out) extra small SF content. The con-
crete of samples was cured for 3, 7, 28, 56 and
180 days. To achieve the best performance of
the models, a trial and error method has been
performed to gain the optimum values of free
parameters. Due to inadequate outcome in the
1th layer with 6 neurons in ANN, the 2nd layer
was used comprising 4 neurons (second layer),
then the best performance of ANN is observed in
the second layer with 4 neurons. Alternatively,
due to SLFNN architecture of ELM, there was
only one hidden layer in ELM and the best ar-
chitecture was seen with 67 neurons as the best
ELM performance. After analyzing the RMSE
and R2 (RSQR) values of both models derived
from the training and testing phases of the two
models, it resulted that ANN could remarkably
show better performance than ELM. Since the
best RMSE should be equal or near to 0, then
the RMSE of ANN (2.2086) is close to 0, how-
ever, the RMSE of ELM (4.6025) is far from

0. As a result, ANN could perform better than
ELM in estimating and predicting the CS of con-
crete while adding silica fume and fly ash. On
the other hands, by comparing the two values
of R2 (RSQR) in ANN and ELM, the R2 value
of ANN (0.9905) and ELM (0.9616) should be
equal or close to 1 (as the best R2 value) in order
to be nominated as an accurate model for pre-
dicting the CS of concrete in this study. There-
fore, while the R2 value of ELM is far from 1,
the R2 value of ANN is close to 1, then ANN is
accounted as the best model in predicting and
estimating the CS of concrete while adding silica
fume and fly ash. Consequently, ANN was supe-
rior to ELM in accurately approximating the CS
of concrete. Also, it was found that fly ash had
less contribution to the compressive strength of
concrete at early ages, however, had great con-
tribution at later ages. It can also be concluded
that the enhancement effect of low content of
SF on compressive strength was not significant.
On the other hand, adding fly ash has decreased
the early compressive strength, but raised the
compressive strength in the long-term. Adding
silica fume raises the strength in short term, but
decreases the strength in long term. Comparing
the results of this study with the original one,
going through the R2 value of the original one
(0.9990) in testing phase and the R2 value of
this study is 0.9905 in testing in ANN model.
Therefore, both studies could represent the same
accuracy with the least differential percentages.
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Appendix

Details of mix proportions and their CS variables

Tab. 10: Details of mix proportions and their CS variables

S. number FA
(%)

SF
(%)

TCM
(kg/m3)

ssa
(kg/m3)

ca
(kg/m3)

W
(lt/m3)

HRWRA
(lt/m3)

Age
(days)

fc
(MPa)

1 0 0 500 724 1086 150 7.5 3 64.9
2 0 0 500 724 1086 150 7.5 7 75.5
3 0 0 500 724 1086 150 7.5 28 86.8
4 0 0 500 724 1086 150 7.5 56 87.2
5 0 0 500 724 1086 150 7.5 90 95.7
6 0 0 500 724 1086 150 7.5 180 97.7
7 15 0 500 700 1086 150 7.5 3 52.1
8 15 0 500 700 1086 150 7.5 7 66.4
9 15 0 500 700 1086 150 7.5 28 86
10 15 0 500 700 1086 150 7.5 56 94.8
11 15 0 500 700 1086 150 7.5 90 99.6
12 15 0 500 700 1086 150 7.5 180 106.3
13 25 0 500 683 1086 150 9.25 3 48
14 25 0 500 683 1086 150 9.25 7 65.7
15 25 0 500 683 1086 150 9.25 28 85.4
16 25 0 500 683 1086 150 9.25 56 90.4
17 25 0 500 683 1086 150 9.25 90 95.4
18 25 0 500 683 1086 150 9.25 180 107.8
19 45 0 500 650 1086 150 10.5 3 34.1
20 45 0 500 650 1086 150 10.5 7 49.2
21 45 0 500 650 1086 150 10.5 28 71.8
22 45 0 500 650 1086 150 10.5 56 85.4
23 45 0 500 650 1086 150 10.5 90 87.7
24 45 0 500 650 1086 150 10.5 180 97.7
25 55 0 500 634 1086 150 13 3 22.3
26 55 0 500 634 1086 150 13 7 36.4
27 55 0 500 634 1086 150 13 28 57.4
28 55 0 500 634 1086 150 13 56 66.6
29 55 0 500 634 1086 150 13 90 72.8
30 55 0 500 634 1086 150 13 180 79.9
31 0 5 500 719 1086 150 8 3 58.3
32 0 5 500 719 1086 150 8 7 75.5
33 0 5 500 719 1086 150 8 28 87.8
34 0 5 500 719 1086 150 8 56 93.1
35 0 5 500 719 1086 150 8 90 93.6
36 0 5 500 719 1086 150 8 180 99.3
37 20 5 500 686 1086 150 9.25 3 46.3
38 20 5 500 686 1086 150 9.25 7 65.6
39 20 5 500 686 1086 150 9.25 28 78.5
40 20 5 500 686 1086 150 9.25 56 85.8

(continued on next page)
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(continued from previous page)
S. number FA

(%)
SF
(%)

TCM
(kg/m3)

ssa
(kg/m3)

ca
(kg/m3)

W
(lt/m3)

HRWRA
(lt/m3)

Age
(days)

fc
(MPa)

41 20 5 500 686 1086 150 9.25 90 90.3
42 20 5 500 686 1086 150 9.25 180 95.9
43 40 5 500 654 1086 150 11 3 30.5
44 40 5 500 654 1086 150 11 7 48.6
45 40 5 500 654 1086 150 11 28 71.1
46 40 5 500 654 1086 150 11 56 80
47 40 5 500 654 1086 150 11 90 83.4
48 40 5 500 654 1086 150 11 180 88.3
49 0 0 400 710 1157 160 4 3 35
50 0 0 400 710 1157 160 4 7 48.4
51 0 0 400 710 1157 160 4 28 60.7
52 0 0 400 710 1157 160 4 56 67.1
53 0 0 400 710 1157 160 4 90 70.5
54 0 0 400 710 1157 160 4 180 70.6
55 15 0 400 690 1157 160 4.4 3 29.3
56 15 0 400 690 1157 160 4.4 7 39.9
57 15 0 400 690 1157 160 4.4 28 56
58 15 0 400 690 1157 160 4.4 56 63.4
59 15 0 400 690 1157 160 4.4 90 68.5
60 15 0 400 690 1157 160 4.4 180 72.1
61 25 0 400 660 1157 160 4.8 3 24.7
62 25 0 400 660 1157 160 4.8 7 33.7
63 25 0 400 660 1157 160 4.8 28 49.3
64 25 0 400 660 1157 160 4.8 56 60.8
65 25 0 400 660 1157 160 4.8 90 66.2
66 25 0 400 660 1157 160 4.8 180 70.2
67 45 0 400 634 1157 160 5.2 3 14.5
68 45 0 400 634 1157 160 5.2 7 20.3
69 45 0 400 634 1157 160 5.2 28 43.9
70 45 0 400 634 1157 160 5.2 56 54.1
71 45 0 400 634 1157 160 5.2 90 61.2
72 45 0 400 634 1157 160 5.2 180 63.7
73 55 0 400 621 1157 160 5.5 3 13.6
74 55 0 400 621 1157 160 5.5 7 19.8
75 55 0 400 621 1157 160 5.5 28 37.3
76 55 0 400 621 1157 160 5.5 56 47.1
77 55 0 400 621 1157 160 5.5 90 52.9
78 55 0 400 621 1157 160 5.5 180 63.2
79 0 5 400 688 1157 160 5.5 3 37.3
80 0 5 400 688 1157 160 5.5 7 53
81 0 5 400 688 1157 160 5.5 28 69.4
82 0 5 400 688 1157 160 5.5 56 72.1
83 0 5 400 688 1157 160 5.5 90 73.7
84 0 5 400 688 1157 160 5.5 180 74.5
85 20 5 400 662 1157 160 5.5 3 28.9

(continued on next page)
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(continued from previous page)
S. number FA

(%)
SF
(%)

TCM
(kg/m3)

ssa
(kg/m3)

ca
(kg/m3)

W
(lt/m3)

HRWRA
(lt/m3)

Age
(days)

fc
(MPa)

86 20 5 400 662 1157 160 5.5 7 42.1
87 20 5 400 662 1157 160 5.5 28 62.3
88 20 5 400 662 1157 160 5.5 56 69.9
89 20 5 400 662 1157 160 5.5 90 72.4
90 20 5 400 662 1157 160 5.5 180 76
91 40 5 400 636 1157 160 6 3 14.5
92 40 5 400 636 1157 160 6 7 20.5
93 40 5 400 636 1157 160 6 28 44.6
94 40 5 400 636 1157 160 6 56 55.3
95 40 5 400 636 1157 160 6 90 59.1
96 40 5 400 636 1157 160 6 180 68.4
97 0 0 410 609 1132 205 0 3 26.1
98 0 0 410 609 1132 205 0 7 36.9
99 0 0 410 609 1132 205 0 28 50.8
100 0 0 410 609 1132 205 0 56 57.1
101 0 0 410 609 1132 205 0 90 58.1
102 0 0 410 609 1132 205 0 180 60.6
103 15 0 410 589 1132 205 0 3 23.3
104 15 0 410 589 1132 205 0 7 32.3
105 15 0 410 589 1132 205 0 28 48.9
106 15 0 410 589 1132 205 0 56 55.7
107 15 0 410 589 1132 205 0 90 62.6
108 15 0 410 589 1132 205 0 180 64.8
109 25 0 410 576 1132 205 0 3 18.4
110 25 0 410 576 1132 205 0 7 26.2
111 25 0 410 576 1132 205 0 28 41.7
112 25 0 410 576 1132 205 0 56 49.1
113 25 0 410 576 1132 205 0 90 53.7
114 25 0 410 576 1132 205 0 180 57.9
115 45 0 410 549 1132 205 0 3 13.4
116 45 0 410 549 1132 205 0 7 18.4
117 45 0 410 549 1132 205 0 28 35.6
118 45 0 410 549 1132 205 0 56 47
119 45 0 410 549 1132 205 0 90 54.1
120 45 0 410 549 1132 205 0 180 56.6
121 55 0 410 536 1132 205 0 3 7.8
122 55 0 410 536 1132 205 0 7 11.3
123 55 0 410 536 1132 205 0 28 24
124 55 0 410 536 1132 205 0 56 33.7
125 55 0 410 536 1132 205 0 90 41.4
126 55 0 410 536 1132 205 0 180 48.4
127 0 5 410 605 1132 205 0 3 27.4
128 0 5 410 605 1132 205 0 7 39.2
129 0 5 410 605 1132 205 0 28 57.3
130 0 5 410 605 1132 205 0 56 59.6

(continued on next page)
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(continued from previous page)
S. number FA

(%)
SF
(%)

TCM
(kg/m3)

ssa
(kg/m3)

ca
(kg/m3)

W
(lt/m3)

HRWRA
(lt/m3)

Age
(days)

fc
(MPa)

131 0 5 410 605 1132 205 0 90 67.3
132 0 5 410 605 1132 205 0 180 66.3
133 20 5 410 578 1132 205 0 3 20.1
134 20 5 410 578 1132 205 0 7 30.6
135 20 5 410 578 1132 205 0 28 52.9
136 20 5 410 578 1132 205 0 56 60.7
137 20 5 410 578 1132 205 0 90 63.7
138 20 5 410 578 1132 205 0 180 68
139 40 5 410 552 1132 205 0 3 11.4
140 40 5 410 552 1132 205 0 7 11.68
141 40 5 410 552 1132 205 0 28 38.7
142 40 5 410 552 1132 205 0 56 45.9
143 40 5 410 552 1132 205 0 90 48.7
144 40 5 410 552 1132 205 0 180 58.4

Tab. 11: The RMSE values of ANN in training and testing phases (two-layer layer) (all data)

First
layer
neuron

Second
layer
neuron

Train Test

1 1 11.4671 15.89856
2 1 8.077351 7.891446
3 1 7.949106 8.088699
4 1 5.949252 6.512514
5 1 8.717519 9.439658
6 1 5.882827 17.44543
7 1 10.86265 21.58667
8 1 3.519971 4.203522
9 1 3.480376 4.148538
10 1 7.612163 8.888949
1 2 3.988789 5.743801
2 2 7.023603 8.62837
3 2 8.757661 9.98464
4 2 4.429534 6.819625
5 2 3.244493 4.099803
6 2 3.02195 4.548377
7 2 2.413124 3.971144
8 2 1.794021 5.661613
9 2 2.04402 3.212584
10 2 3.205188 13.00973
1 3 1.59428 7.433624
2 3 2.605283 4.077756
3 3 2.422984 5.601764
4 3 1.486778 2.595376
5 3 1.597706 4.780559

(continued on next page)
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(continued from previous page)
first
layer
neuron

second
layer
neuron

train test

6 3 0.95611 5.570873
7 3 1.042316 4.965718
8 3 0.708144 14.35391
9 3 1.539122 3.558423
10 3 2.61746 6.872141
1 4 1.847486 6.735188
2 4 1.389969 6.713467
3 4 0.644357 6.445502
4 4 0.563873 10.68091
5 4 0.95852 10.96912
6 4 1.534524 2.208552
7 4 0.914569 7.634039
8 4 1.287565 4.734597
9 4 1.163599 9.779257
10 4 0.38738 19.30937
1 5 1.148456 293.8489
2 5 0.264395 17.6362
3 5 1.106133 3.357923
4 5 8.895453 10.03507
5 5 0.619114 7.448675
6 5 0.281349 7.574561
7 5 0.235413 9.081563
8 5 0.158538 44.88652
9 5 9.53E-07 6.451442
10 5 1.313994 3.45978
1 6 1.082255 13.1393
2 6 0.396487 9.661204
3 6 0.060666 8.296369
4 6 0.047403 13.88591
5 6 2.49E-07 9.379142
6 6 2.70E-09 14.28784
7 6 1.095173 5.670521
8 6 0.224708 12.72747
9 6 0.004833 5.593437
10 6 2.09E-08 8.372776
1 7 0.107252 30.53993
2 7 5.90E-10 9.585075
3 7 4.15E-09 9.668321
4 7 0.551107 7.367329
5 7 0.259927 5.803591
6 7 0.053599 6.389661
7 7 1.08E-06 8.827009
8 7 1.08E-10 5.963369
9 7 6.19E-10 25.21877
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© 2021 Journal of Advanced Engineering and Computation (JAEC) 73



VOLUME: 5 | ISSUE: 1 | 2021 | June

(continued from previous page)
first
layer
neuron

second
layer
neuron

train test

10 7 1.27E-08 5.772461
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