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Abstract. In the recent era, unmanned aerial
vehicle (UAV) plays an important role in nu-
merous application fields related to the wire-
less communication system. Due to its pre-
cise control, efficient deployment, and afford-
able cost, UAV-assisted communication attracts
significant attention to all the sectors includ-
ing the defense sector, agriculture sector, and
security purpose, and so on. Though UAV-
assisted relaying has enormous advantages but
there are potential challenges while UAV deploys
as a relay. For example, deploying UAV in the
wireless communication field, its battery life is
the main concern due to its limited battery size
and storage capacity. To get significant bene-
fits from UAV while deployed in the cooperative
communication network, the battery status of the
UAV is an unavoidable issue. To minimize the
aforementioned problem, energy harvesting (EH)
techniques can be an efficient solution. The UAV
can harvest energy from the transmitted power
by the source and with the help of this harvested
energy UAV can retransmit the signal to the des-
tination. However, there are several parameters
that also significantly influence the UAV-based
cooperative system performance such as UAV’s
position, time allocation factor and power allo-
cation factor, and UAV’s height. Considering
the importance of the aforementioned parame-
ters, in this paper, we have considered simul-
taneous wireless information and power trans-
fer (SWIPT) enabled UAV-assisted relaying net-
work and evaluate the system outage perfor-

mance with different parameters aspects. We
have provided some insight about the parameters
such as the UAV’s position, the power alloca-
tion factor and the time allocation factor and
the UAV’s height by providing simulation results
such as the outage probability versus transmit
power in the different urban scenario, the out-
age probability versus time allocation factor and
power allocation factor and the outage probabil-
ity versus UAV’s height. These simulation re-
sults clearly show the significance of the above-
mentioned parameters in wireless-powered UAV-
assisted cooperative communication.
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1. Introduction

Recently, unmanned aerial vehicle (UAV) draws
significant attraction for numerous applications
due to their affordable cost, fast deployment,
and precise control. Nowadays, UAV provided
various facility including disaster monitoring,
frontier surveillance, product delivery purpose,
any kind of medical emergency, and so on [1]. On
the other hand, the utilization of UAV-assisted
wireless communications includes various chal-
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lenges such as networking architectures, channel
characteristics, etc [2]. UAV also served as a
flying base station to facilitate wireless coverage
in the different geographical areas [3]. UAV can
also deploy in 5G technology which could be an
important component to provide wireless com-
munication networks with enhanced data rate
[4]. However, UAV can also play a potential role
in the Internet of Things (IoT) to serve small
battery-constraint devices such as sensor net-
works [5].

2. Related works

At present, numerous research activities are on-
going on UAV-based wireless communication
systems. UAV altitude is an important param-
eter to extend network coverage. In [6], analy-
sis shows that optimum altitude is the function
of the statistical parameters of the different ur-
ban environments and maximum allowed path-
loss. While UAV served as a mobile base station
to ensure the coverage to all the ground termi-
nals by placement optimization techniques pre-
sented in [7]. Height- dependent path-loss expo-
nent was introduced in [8], which minimizes the
system outage probability of an A2G link. Opti-
mum altitudes for both static and mobile UAV
are studied in [9]. However, the utilization of
multiple UAV can enhance system performance.
The capacity increases as the number of UAV
increases proportionally showed in [10]. Con-
sidering multi UAV relaying [11], the dual-hop
multilink scenario provides better performance
than the multi-hop single link. Nevertheless, the
UAV’s Limited energy storage capacity is one
of the main concerns while deploying UAV in
a wireless cooperative network. Meanwhile, en-
ergy harvesting (EH) can be an efficient solution
for this problem. UAV-enabled relaying with en-
ergy harvesting techniques in the different ur-
ban scenarios has been studied in [12]. Simulta-
neous Wireless Information and Power Transfer
(SWIPT) is now one of the potential editions
in wireless communication systems. To trans-
fer energy and information to incorporate be-
tween smart communications systems, SWIPT
plays an important role including 5G technol-
ogy, IoT technology and mobile edge computing,

and so on. Different SWIPT architecture has
been studied in [13] including recent advances
and future directions. UAV assisted communi-
cation with mmWave SWIPT techniques to pro-
vide secrecy performance evaluation studied in
[14]. With time splitting (TS) and power split-
ting (PS) scheme, UAV-assisted decode and for-
ward network were considered to provide closed-
form expression of outage and BER with ag-
gregate interference showed in [15]. Consider-
ing SWIPT technology in [16], they optimized
trajectory profile, PS ratio and power profile
to maximize throughput. In our previous work
[17], we have considered SWIPT enabled UAV
to search optimal UAV position for low altitude
base UAV’s channel. To find the optimal solu-
tion with two steps, first of all we optimized the
power splitting factor with given TA then we op-
timized TA with conditionally optimized power
splitting factor expressed in the closed form [18].

Considering the above-mentioned work, we
can easily relate that several factors need to be
taken into account while utilizes UAV as a relay
in a cooperative communication system. Such as
UAV’s battery status as well as the parameters
like the UAV’s position, the time allocation fac-
tor, the power allocation factor, and the UAV’s
height which has a significant role in the system
performance.

Motivated by the aforementioned performance
controlling factors, in this paper, we have de-
signed a UAV-assisted wireless communication
system with SWIPT technology. We evaluate
the system outage performance with various pa-
rameters aspects. We evaluate the system out-
age performance as a function of UAV’s position,
power allocation factor and time allocation fac-
tor as well as UAV’s height which is also a key
factor for a reliable UAV-based wireless commu-
nication system. Simulation results clearly show
that the significance of SWIPT technology in
UAV-assisted cooperative networks and as well
as the important insight of different performance
measuring parameters.
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3. System model

We have considered a system illustrated in Fig.
1 with a single base station (S), a mobile sta-
tion (D) and a UAV which deploys as decode
and forward relay. All the nodes are equipped
with single antenna. The UAV having altitude
H including the ground distance r1 and r2 from
S, D respectively. The distance between S-to-
UAV and UAV-to-D is denoted by d1, d2 respec-
tively. While θ1, θ2 represent the elevation angle
between S to UAV and UAV to D respectively.
The relationship between the parameters can be
expressed as θi = tan−1H

ri
.
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Fig. 1: UAV-assisted cooperative communication.

The wireless channel between S-UAV and
UAV-D experienced small-scale fading and
large-scale path-loss. Since the receiver experi-
enced LoS and multipath scattering, Rician dis-
tribution is the suitable choice to model small-
scale fading. The channel fading power can be
modeled as

Xi = |hi|2 (1)

Xi ∼ noncentral χ2 (Ki) , which can be ex-
pressed as [19]

fXi (x) =
(ki + 1)

Xi

e−kie
−
(

(ki+1)x
Xi

)

× Io

(
2

√
(ki + 1)x

Xi

)
; x ≥ 0 (2)

where Xi is the mean and Io(.) is the zero order
modified Bessel function of first kind [20]; Ki is
the Rician factor which is defined as the ratio
of the power in LoS and NLoS power in multi-
scatters.

Figure 2 represents the system relaying proto-
cols where in phase I, source transmits the sig-
nal towards the UAV relay which then harvests
energy from the received signal and as well as
decodes it at τT time, where τ ∈ (0, 1). With
this harvested energy, the UAV transfers the in-
formation to the destination with (1− τ)T time
in the second phase. The power splitting ratio
is (1− α) : α, where α ∈ (0, 1). Without loss of
generality, we assume T = 1 in this system.
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The harvested energy at the UAV device can
be expressed as

Eh = η (1− α)P1X1τPL1
−1 (3)

where η is the energy harvesting efficiency and
P1 is the transmit power of S. PL1 is the path-
loss between S to UAV which can be expressed
as

PL1 =
ηLOS1 − ηNLOS1

1 + a1e−b1(θ1−a1)
+ 20log10

(√
r1

2 + h2
)

+ 20log10

(
4πf

c

)
+ ηNLOS1 (4)

where ηLOS1, ηNLOS1, a1, b1 are the constant
parameters belongs to the propagation environ-
ment [21]. c = 3 × 108 m/s & f = 2 GHz is the
speed of light and frequency respectively.

The deliverable rate from S to UAV is ex-
pressed as

R1 = τ log2

(
1 +

P1αX1

σ1
2PL1

)
(5)

where σ1
2 is the noise power at UAV.

The deliverable rate from UAV to D is ex-
pressed as

R2 = (1− τ) log2

(
1 +

ηP1 (1− α) τX1X2

σ2
2 (1− τ)PL1PL2

)
(6)
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where σ2
2 the noise power at D. PL2 is the path-

loss between UAV to D which can be expressed
as

PL2 =
ηLOS2 − ηNLOS2

1 + a2e−b2(θ2−a2)
+ 20log10

(√
r2

2 + h2
)

+ 20log10

(
4πf

c

)
+ ηNLOS2 (7)

where ηLOS2, ηNLOS2, a2, b2 are the constant
parameters belonging to the propagation envi-
ronment.

4. Outage probability
analysis

The outage probability of the system considering
information rate Rt is given by

POut = P [min (R1, R2 < Rt) ] (8)

Equation (8) can be further modified as

POut = 1− P [X1 ≥ Γ1, X1X2 ≥ Γ2] (9)

where, Γ1 =

(
2
Rt
τ −1

)
σ1

2PL1

P1α
and

Γ2 =

(
2(

Rt
1−τ )−1

)
σ2

2(1−τ)PL1PL2

ηP1τ(1−α)

POut can be represented as

POut = 1−
∫ ∞

Γ1

FX2

c

(
Γ2

u

)
fX1(u)du (10)

where FX2

c
(

Γ2

u

)
is the CCDF of the random

variable X2 which can be given by

FX2

c

(
Γ2

u

)
= Q1

(√
2K2,

√
2 (1 +K2) Γ2

X2u

)
(11)

where Q1(., .) is the first order Marcum Q-
function [22]. Now, the pdf of the random vari-
able X1 is given by

FX1 (u) =
(k1 + 1)

X1

e−k1e
−
(

(k1+1)u

X1

)

× Io

(
2

√
(k1 + 1)u

X1

)
(12)

Now substituting (11) and (12) in (10), the out-
age probability is finally expressed as

POut = 1−
∫ ∞

Γ1

(
(k1 + 1)

X1

e−k1e
−
(

(k1+1)u

X1

)

× Io

(
2

√
(k1 + 1)u

X1

)

×Q1

(√
2K2,

√
2 (1 +K2) Γ2

X2u

))
du

(13)

5. Simulation results

To verify the system performance, various sim-
ulation results are shown in this section. We
evaluate the system performance with different
parameters aspects. To perform the simulation
we set up parameters values which are provided
in Tab. 1.

Tab. 1: Parameters for simulation.

Parameter Description Value
r1 Source location 10 m
r2 Destination

location
10 m

α Power allocation
factor

0.5

τ Time allocation
factor

0.5

H UAV height 10 m
Rt Target rate 0.5

bit/sec/Hz
σ1

2, σ2
2 Noise power -104 dBm

η Energy harvest-
ing efficiency

0.6

P1 Transmit power [10-40]
dBm

Figure 3 represents outage performance in dif-
ferent urban scenarios as a function of source
transmit power. The performance was evalu-
ated with k1 = k2 = 4 where solid lines indi-
cate analytical results and the marker represents
the Monte Carlo simulation results which com-
pletely matched with each other. We observe the
outage probability performance for urban, sub-
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urban, dense urban and highrise environment
conditions.
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different 𝐾1,𝐾2 values in suburban environment. 

We also extend our simulation results to observe the 
outage performance for different transmission data rates. 
For this simulation we set up the parameters as 𝑟1 = 𝑟2 =
𝐻 = 10 𝑚, 𝐾1 = 𝐾2 = 4 for the suburban scenario. As 

we can see from figure 5, as the data rate increases the 
system outage performance degrades. This phenomenon 
happens as the system failed to maintain the requirements 
for higher data rate transmission.  

 

Fig. 5. Outage probability Vs transmits power 𝑃1  for 
different transmission data rate. 

Meanwhile, UAV’s position (𝐻, 𝑟1) is the most important 
parameter which influences the system’s performance 
mostly. To observe the issue, we also represent the outage 
probability Vs ground distance 𝑟1  and the UAV’s 
height 𝐻. As we can see from the figure 6 which represent 
the outage probability varies with different UAV location 
(𝐻, 𝑟1). From the figure, when the source and the UAV 
located far from each other, the outage performance is 
worst for this scenario.   

 Fig. 6. Outage probability Vs UAV position in suburban      
scenario with 𝑘1 = 𝑘2 = 4  and transmit power 𝑃1 =
40 dBm. 

It clearly indicates that there must be an optimal UAV’s 
position (𝐻, 𝑟1) which can minimize the outage of the 
network. The marker shows the optimal UAV’s 
location (𝐻, 𝑟1) in figure 6.

Fig. 3: Outage probability Vs transmits power P1 for
different urban environments.

As expected, the optimal result provided by the
suburban scenario due to the better LoS condi-
tion from other environment scenarios. Next we
show the outage probability versus different Ri-
cian factor setup to see the system performance.
As we all know, the lower K1,K2 values indicate
that a more severe fading scenario which reflects
in Fig. 4. When K1 = K2 = 1, the outage
performance is worst compared to results with
higher K1,K2 scenarios.
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We also extend our simulation results to ob-
serve the outage performance for different trans-

mission data rates. For this simulation we set
up the parameters as r1 = r2 = H = 10 m,
K1 = K2 = 4 for the suburban scenario. As we
can see from Fig. 5, as the data rate increases
the system outage performance degrades. This
phenomenon happens as the system failed to
maintain the requirements for higher data rate
transmission.
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Fig. 5: Outage probability Vs transmits power P1 for
different transmission data rate.

Meanwhile, UAV’s position (H, r1) is the most
important parameter which influences the sys-
tem’s performance mostly. To observe the is-
sue, we also represent the outage probability Vs
ground distance r1 and the UAV’s height H. As
we can see from the Fig. 6 which represents the
outage probability varies with different UAV lo-
cation (H, r1). From the figure, when the source
and the UAV located far from each other, the
outage performance is the worst for this sce-
nario.

It clearly indicates that there must be an opti-
mal UAV’s position (H, r1) which can minimize
the outage of the network. The marker shows
the optimal UAV’s location (H, r1) in Fig. 6.

However, other significant system performance
parameters are the time allocation factor and
the power allocation factor. To evaluate the in-
fluence of those parameters, we provide the out-
age probability Vs the time allocation and the
power allocation factor in Fig. 7 in a suburban
environment with transmit power P1 = 40 dBm
and k1 = k2 = 4. From Fig. 7, we can see that
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Fig. 6: Outage probability Vs UAV position in subur-
ban scenario with k1 = k2 = 4 and transmit
power P1 = 40 dBm.

when the τ is increasing which means that the
UAV gets more time in the harvesting part so
that the system performance improves but after
a certain value of τ the performance becomes de-
grade because the UAV failed to retransmit the
signal to the destination due to less time allo-
cated to the second phase of transmission. The
marker shows the optimal α, τ values set up for
this scenario which minimizes system outage. It
is obvious that as UAV harvests more energy the
system performance will be better.
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On the other hand, the UAV’s height has also a significant 
impact on the system performance. Considering this issue, 
we also evaluate the system outage probability as a 
function of UAV’s height in the different urban scenarios. 
We can easily observe from figure 8 that the outage 
probability first decreases as UAV’s height increases up-to 
a certain value then the outage probability again increases 
as UAV’s height increases. 

 

 Fig. 8. Outage probability Vs UAV’s height in different 
urban environments with 𝑃1 = 40 dBm and 𝑘1 = 𝑘2 = 4 

When the UAV’s height is very low, because of the NLoS 
issue the system outage probability is high. But as the 
UAV’s height starts increasing the outage probability 
decreases. Then suddenly after a certain height, the outage 
is again increasing due to a higher path loss which 
indicates that there exists an optimal UAV’s height which 
minimizes the system outage probability. 

VI. CONCLUSIONS 

UAV-assisted wireless communication recently gains 
potential attraction in recent period for its vast benefits 
and opportunities. However, it provides an enormous 
advantage where human access is impossible or 
dangerous. Though the UAV has significant benefits while 
deploying as a relay but on the other hand the challenges 
also take into account such as UAV’s battery life, precise 
design, accuracy, etc. Give priority to battery life issues of 
UAV, numerous researches are ongoing to provide UAV- 
based communication safer, faster and reliable. Recently 
SWIPT technology draws significant attention to the 
researcher. Utilizing SWIPT technology shows major 
improvement in UAV-assisted wireless communication. 
While UAV deploys as a relay, parameters such as UAV 
position, time and power allocation factors and, UAV’s 
height need to be considered. In this paper, we summarize 
the importance of those parameters with SWIPT 
technology with different simulation results. Our results 
indicate the convenience of SWIPT enabled UAV-assisted 
cooperative communication.  
 

References 
 
[1] S. Hayat, E. Yanmaz and R. Muzaffar (2016), "Survey on 

Unmanned Aerial Vehicle Networks for Civil Applications: 
A Communications Viewpoint," in IEEE Communications 
Surveys & Tutorials, vol. 18, no. 4, pp. 2624-2661. 

[2] Y. Zeng, R. Zhang and T. J. Lim (2016), "Wireless 
communications with unmanned aerial vehicles: 
opportunities and challenges," in IEEE Communications 
Magazine, vol. 54, no. 5, pp. 36-42. 

[3] M. Mozaffari, W. Saad, M. Bennis and M. Debbah (2016), 

Fig. 7: System outage probability Vs time allocation
factor and power allocation factor.

On the other hand, the UAV’s height has also
a significant impact on the system performance.
Considering this issue, we also evaluate the sys-
tem outage probability as a function of UAV’s

height in the different urban scenarios. We can
easily observe from Fig. 8 that the outage prob-
ability first decreases as UAV’s height increases
up-to a certain value then the outage probability
again increases as UAV’s height increases.

JOURNAL OF ADVANCED ENGINEERING AND COMPUTATION  http://dx.doi.org/...  
VOL. 0, NO. 0, 0-0, DEC. 0000 ISSN (online): …-… ∙ ISSN (print): …-… 

5 
Manuscript received …; Revised …; Accepted ... (ID No. …-…) 

 

However, other significant system performance 
parameters are the time allocation factor and the power 
allocation factor. To evaluate the influence of those 
parameters, we provide the outage probability Vs the time 
allocation and the power allocation factor in figure 7 in a 
suburban environment with transmit power 𝑃1 = 40 dBm 
amd 𝑘1 = 𝑘2 = 4. From figure 7, we can see that when 
the 𝜏 is increasing which means that the UAV gets more 
time in the harvesting part so that the system performance 
improves but after a certain value of 𝜏 the performance 
becomes degrade because the UAV failed to retransmit the 
signal to the destination due to less time allocated to the 
second phase of transmission. The marker shows the 
optimal 𝛼, 𝜏   values set up for this scenario which 
minimizes system outage. It is obvious that as UAV 
harvests more energy the system performance will be 
better. 

 

 

 

 Fig. 7. System outage probability Vs time allocation 
factor and power allocation factor 

On the other hand, the UAV’s height has also a significant 
impact on the system performance. Considering this issue, 
we also evaluate the system outage probability as a 
function of UAV’s height in the different urban scenarios. 
We can easily observe from figure 8 that the outage 
probability first decreases as UAV’s height increases up-to 
a certain value then the outage probability again increases 
as UAV’s height increases. 

 

 Fig. 8. Outage probability Vs UAV’s height in different 
urban environments with 𝑃1 = 40 dBm and 𝑘1 = 𝑘2 = 4 

When the UAV’s height is very low, because of the NLoS 
issue the system outage probability is high. But as the 
UAV’s height starts increasing the outage probability 
decreases. Then suddenly after a certain height, the outage 
is again increasing due to a higher path loss which 
indicates that there exists an optimal UAV’s height which 
minimizes the system outage probability. 

VI. CONCLUSIONS 

UAV-assisted wireless communication recently gains 
potential attraction in recent period for its vast benefits 
and opportunities. However, it provides an enormous 
advantage where human access is impossible or 
dangerous. Though the UAV has significant benefits while 
deploying as a relay but on the other hand the challenges 
also take into account such as UAV’s battery life, precise 
design, accuracy, etc. Give priority to battery life issues of 
UAV, numerous researches are ongoing to provide UAV- 
based communication safer, faster and reliable. Recently 
SWIPT technology draws significant attention to the 
researcher. Utilizing SWIPT technology shows major 
improvement in UAV-assisted wireless communication. 
While UAV deploys as a relay, parameters such as UAV 
position, time and power allocation factors and, UAV’s 
height need to be considered. In this paper, we summarize 
the importance of those parameters with SWIPT 
technology with different simulation results. Our results 
indicate the convenience of SWIPT enabled UAV-assisted 
cooperative communication.  
 

References 
 
[1] S. Hayat, E. Yanmaz and R. Muzaffar (2016), "Survey on 

Unmanned Aerial Vehicle Networks for Civil Applications: 
A Communications Viewpoint," in IEEE Communications 
Surveys & Tutorials, vol. 18, no. 4, pp. 2624-2661. 

[2] Y. Zeng, R. Zhang and T. J. Lim (2016), "Wireless 
communications with unmanned aerial vehicles: 
opportunities and challenges," in IEEE Communications 
Magazine, vol. 54, no. 5, pp. 36-42. 

[3] M. Mozaffari, W. Saad, M. Bennis and M. Debbah (2016), 

Fig. 8: Outage probability Vs UAV’s height in differ-
ent urban environments with P1 = 40 dBm and
k1 = k2 = 4.

When the UAV’s height is very low, because of
the NLoS issue the system outage probability is
high. But as the UAV’s height starts increas-
ing the outage probability decreases. Then sud-
denly after a certain height, the outage is again
increasing due to a higher path loss which indi-
cates that there exists an optimal UAV’s height
which minimizes the system outage probability.

6. Conclusions

UAV-assisted wireless communication recently
gains potential attraction in recent period for
its vast benefits and opportunities. However,
it provides an enormous advantage where hu-
man access is impossible or dangerous. Though
the UAV has significant benefits while deploying
as a relay but on the other hand the challenges
also take into account such as UAV’s battery
life, precise design, accuracy, etc. Give prior-
ity to battery life issues of UAV, numerous re-
searches are ongoing to provide UAV-based com-
munication safer, faster and reliable. Recently
SWIPT technology draws significant attention
to the researcher. Utilizing SWIPT technology
shows major improvement in UAV-assisted wire-
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less communication. While UAV deploys as a
relay, parameters such as UAV position, time
and power allocation factors and, UAV’s height
need to be considered. In this paper, we sum-
marize the importance of those parameters with
SWIPT technology with different simulation re-
sults. Our results indicate the convenience of
SWIPT enabled UAV-assisted cooperative com-
munication.
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