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Abstract. The paper presents an improving
speed control method using a field-oriented con-
trol (FOC) technique for the hysteresis current
(HC) controller in the induction motor drive.
The basic principle of a controller applying hys-
teresis band current is comparing reference cur-
rents and the measured currents to generate
switching pulses for controlling an inverter. In
the typical FOC for the HC controller, the rotor
flux angle’s value will increase to infinity due
to the integral algorithm’s error accumulation.
This problem can lead to the faulty operation of
the induction motor drive (IMD) system. In this
paper, a current model with the advantage of pre-
cisely determining the periodic rotor flux angle
is used in the FOC technique to provide refer-
ence currents for the current controller. The ro-
tor flux angle will periodically change according
to the motor speed in the range [-π π] during
the operation of IMD. The operation of the in-
duction motor drive is implemented and tested
by MATLAB/SIMULINK software. The sim-
ulation results have demonstrated the effective-
ness of the HC control method based FOC tech-
nique with periodic rotor flux angle in controlling
motor speed.
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Nomenclature

ΨS
S – Stator flux vector in [α, β] coordinate sys-

tem.

ΨS
R – Rotor flux vector in [α, β] coordinate sys-

tem.

iSS – Stator current vector in [α, β] coordinate
system.

iSR – Rotor current vector in [α, β] coordinate
system.

uSS – Stator voltage vector in [α, β] coordinate
system.

uSα, uSβ – Stator voltage component in [α, β]
system.

uSx, uSy – Stator voltage component in [x, y ]
system.
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ua, ub, uc – Stator voltage component in [a, b, c]
system.

iSx – Flux current component.

iSy – Torque current component.

im – Magnetizing current.

RS , RR – Stator and rotor resistance.

LS , LR – Stator and rotor induction.

Lm – Magnetizing induction.

TR – Rotor time constant.

ωm – Mechanical angular speed.

p – Pole pair number.

ψR – Nominal rotor flux.

γ – Rotor flux angle.

1. Introduction

Induction motors (IMs) with outstanding man-
ufacturing cost, size, and durability are among
the most popular machine types. In the past,
due to the non-linearity in control, induction
motors mostly only worked in general applica-
tions with a fixed operating speed [1]. In re-
cent times, with the development of the power
electronics field, inverters, and microcontroller
technology, modern control methods applied to
IM have been developed to satisfy speed control
applications.

Scalar control and vector control are consid-
ered two main groups of speed control methods
of IMDs. The scalar control (SLC) method’s
principle is to keep the voltage per frequency
ratio constant corresponding to rated flux by
controlling the supply voltage and frequency
through an inverter [2-6]. By this approach, the
typical SLC method does not require feedback
sensors and is not affected by machine parameter
changes during operation. Thus, IMDs that ap-
plied the SLC method have fast control response
and low-cost manufacturing. However, because
the SLC method does not use feedback signals,
it can not precisely control the rotor speed and
torque [7]. On the other hand, when the motor
operates at the low-speed range, the high drop

voltage on the stator side can seriously affect the
SLC method’s control feature.

The vector control method, typically the FOC
method, is a modern control method suitable for
speed control applications requiring high preci-
sion. The FOC method’s principle is to apply a
current space vector, separated into two orthog-
onal components: “isx and isy” for the rotor flux
and torque control independently [8-10]. Thus,
the FOC method reduces the complexity of the
non-linearity structure in the controlling IMD.
Although the FOC method has a high perfor-
mance in speed control, however, this method
requires high machine parameter accuracy and
high hardware requirements [1, 11].

In the IMD system applying the FOC algo-
rithm requires feedback current and speed sig-
nals from the sensors [12]. The feedback current
signal in [a, b, c] stationary coordinate system
is transformed into the [x, y ] rotating coordi-
nate system to separate into two components:
isx for flux control and isy for torque control.
These components combine with the setting val-
ues such as flux, rotor speed, and the control al-
gorithm to generate the reference control signal.
In case the reference control signal is the voltage
signals, the Pulse Width Modulation (PWM)
method can be used to produce the switching
pulse to control the inverter. In case this signal
is current, the hysteresis current control method
can be used for generating the switching pulses
[13, 14]. Although the current of IMD applying
HC method is high ripple, however, due to its
simple structure, low switching losses, and fast
response, the HC method is preferred in practice
[15, 16].

The rotating coordinate system in the FOC
method is oriented in the rotor flux direction, as
in Fig. 1. Therefore, determining the rotor flux
angle is extremely important in the FOCmethod
with the HC controller. A typical FOC applied
for HC controller with the flux angle calculating
form integral algorithm is presented in [13, 17,
18]. The simulation results have demonstrated
the effectiveness of this method. However, the
integral algorithm’s error accumulation leads to
the inaccuracy of the value rotor flux angle; its
value will increase to infinity. Each variable will
declare a data type in the actual control model.
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And each data type has a limit; the value of the
variable will automatically return to zero when
it exceeds the limit of the data type. As a result,
this control method may meet some problems in
the actual operation when the value of the rotor
flux angle overcomes the data type limitations.

This paper reviews the typical FOC method
used for the HC controller in [13, 17, 18] and
then proposes an improvement based on the cur-
rent model for calculating the rotor flux angle.
The result is that the estimated flux angle is a
periodic function. The periodic rotor flux angle
will match the actual model and prevent data
overflow of the flux variable in real operation.
The simulations will implement for two cases to
demonstrate the feasibility of the proposed revi-
sion.

An Improving Hysteresis Current Control Method Based on FOC Technique for Induction Motor Drive 
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Fig. 1. Vector diagram of FOC method. 
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Fig. 1: Vector diagram of FOC method.

2. The FOC method for
hysteresis controller

In this part, the FOC method’s model applied
for the HC controller in IMD is presented.

2.1. The typical FOC method
for hysteresis current
controller

The basic principle of the FOC method is that
the magnetic flux control is independent of
torque control. Therefore the three-phase cur-
rent is feedback to the FOC loop through the
current sensors, as in Fig. 2.

In the first step, the reference iSx component
is estimated from the setup value of rotor flux

by the below equation:

i∗Sx =
ψ∗R
Lm

(1)

The three-phase current has two functions:
one is used in the HC controller to generate con-
trol switching pulses to the inverter, the other is
applied modified Clarke’s and Park’s transfor-
mations to converted from [a, b, c] coordinate
system into [x, y ] rotating coordinate system, as
below [17, 18]:[

iSx
iSy

]
=

2

3

×
[

cos(γ) cos(γ − 2π
3 ) cos(γ + 2π

3 )
− sin(γ) − sin(γ − 2π

3 ) − sin(γ + 2π
3 )

]

×

 ia
ib
ic

 (2)

The iSx is used to estimate the rotor flux by
the transfer function as below:

ψR =
1

TRs+ 1
LmiSx (3)

The difference between the reference rotor
speed and the measured speed is used to gen-
erate the reference torque by the PI controller.
The torque combining rotor flux is used to esti-
mate the reference iSy component, as below:

i∗Sy =
1

p

2

3

LR
Lm

T ∗e
ψR

(4)

The iSy is used to estimate the rotor slip by
the followings:

ωsl =
Lm
TR

iSy
ψR

(5)

The rotor flux angle “γ” is calculated from
measured rotor speed and the slip speed by Eq.
(6):

γ =

∫
(p.ωm + ωsl)dt (6)

The reference current in [x, y ] coordinate sys-
tem combining to rotor flux angle is inverse
transformed into [a, b, c] system, and then sent
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The magnetizing current in [d, q] coordinate is 
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Fig. 2: Block diagram of the FOC method applied for

HC controller.

to the HC controller to generate the switching
pulses, as in block diagram.

This model’s advantage is that the algorithm
is simple and quickly responds to the control
commands. However, the value of the rotor flux
angle in the integral algorithm of Eq. (6) will in-
crease indefinitely. This problem will seriously
affect the actual performance of IMD due to the
limitation of the data type.

2.2. The FOC method using the
current model for
hysteresis current
controller

A current model will be applied in the proposed
structure to determine the rotor flux’s magni-
tude and rotation angle [19, 20], as shown in
the block diagram of Fig. 3. The stator current
in [a, b, c] coordinate system is converted into
[α, β] stationary coordinate system by Clarke’s
transformations, as below:

[
iα
iβ

]
=

[ 2
3 − 1

3 − 1
3

0 1√
3

− 1√
3

] ia
ib
ic

 (7)

The current in [α, β] coordinate system com-
bining with rotor speed to convert into [d, q ] ro-
tating coordinate system corresponding to rotor
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Fig. 3: Block diagram of the FOC method with current
model applied for HC controller.

axis as below:[
iSd
iSq

]
=

[
cos ε sin ε
− sin ε cos ε

] [
iSα
iSβ

]
(8)

where ε =
∫
pωmdt.

The magnetizing current “im” in [d, q ] coor-
dinate system are determined by Eq. (9):{

imd = 1
TRs+1 iSd

imq = 1
TRs+1 iSq

(9)

The magnetizing current in [d, q ] coordinate
is converted back into [α, β] system to determine
the amplitude of rotor flux and the flux angle,
as in Eqs. (10) and (11).[

imα
imβ

]
=

[
cos ε − sin ε
sin ε cos ε

] [
imd
imq

]
(10)


im =

√
(i2mα + i2mβ)

ψR = Lmim

γ = arctg(
imβ
imα

)

(11)

In this way, the estimated flux angle is a pe-
riodic function that is suitable with the actual
control model.
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The rotor flux and rotor flux angle are used in
the control algorithms to generate the reference
stator currents for the FOC method with the HC
controller.

3. Simulation results

Simulation results of two FOCmethods applying
for HC controller in speed control of IMD are
presented in this section. The machine model
and the inverter are extracted from the library of
MATLAB/SIMULINK software. The machine
parameters are listed as follows:

Pr = 4.0 kW, ωn = 1430 rpm,

p = 2, Ur = 400 V,

RS = 1.405 Ω, RR = 1.395 Ω,

LS = 0.178 H, LR = 0.178 H, Lm = 0.172 H.

Figure 4 presents the typical FOC method’s
control structure in MATLAB/SIMULINK en-
vironment; in this model, the amplitude and the
angle of rotor flux are determined in section 2.1.
Figure 5 corresponds to the control structure of
the FOC method using the current model. The
components of estimated rotor flux are deter-
mined by the current model as presented in sec-
tion 2.2.

The simulations in a no-load condition and a
load of 10 (N.m) are implemented corresponding
to various speed areas. The rotor speed, stator
currents, and rotor flux responses are shown for
both models.

Study 1:

The operation of the IMD system is simulated
at the normal speed range in 2 seconds intervals.
The reference speed is set to follow the ramp
from a value of zero to 750 rpm in 0.2 seconds
in a no-load condition.

Figure 6 presents the performance of the typi-
cal FOC with HC controller in the speed control
for IMD. Figure 6(a) depicts the performance
of the HC control method based on the FOC
technique. The rotor speed follows the set speed
precisely and quickly. The current stator in Fig.
6(b) has a high ripple corresponding to the HC
control technique’s characteristic. The total har-

monic distortion value of phase current (THDI)
is 12.3%. The flux magnitude has quickly in-
creased and kept as a constant during the FOC
method’s operation, as in Fig. 6(c). The rotor
flux angle increases indefinitely due to the error
of accumulation of the integral algorithm in Fig.
6(d), leading to a problem in the experimental
model due to data types’ limitation. When the
value of the flux angle variable is greater than
the limit of data types, it can be set to zero,
which can lead to a mistake control in the oper-
ation of IMD.

The FOC’s performance using the current
model is shown in Fig. 7 at the same simulation
condition. Figure 7(a, b, c) present the speed
characteristic, three-phase stator current, and
the flux magnitude of the improvement method.
The THDI value of this model is equivalent to
the typical FOC. The rotor flux angle is proved
as a periodic function in Fig. 7(d), and its value
varies in the range [-π π] The simulation results
have demonstrated the effectiveness of the im-
provement method.

Study 2:

The operation of the IMD system is simulated
at the low-speed range in 2 seconds intervals.
The reference speed is set to follow the ramp
from a value of zero to 300 rpm in 0.2 seconds
with a load of 10 N.m during the IMD drive’s
operation time.

Figures 8(a, b, c) and 9(a, b, c) depict the
performance of two FOC method. Both IMD
systems have operated stably with the features
of the FOC method. The THDI value of both
methods is 15.9% in this case study. However,
there is a difference in rotor flux angle “gamma”
between the two methods. Gamma increases to
infinity in Fig. 8(d), but it is a periodic function
corresponding to the improvement method, as in
Fig. 9(d).

The rotor flux angle in FOC with the current
model is periodic, corresponding to the operat-
ing frequency of IMD. That can increase the re-
liability of the control method in speed control
of IMD.
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Fig. 4: Simulink-simulation structure of the typical FOC for hysteresis current controller.
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4. Conclusion

The paper proposes an improvement by applying
the current model for the FOC method with the
hysteresis current controller in the induction mo-
tor drive. The improving method has generated
the periodic rotor flux angle signal. The rotor
flux angle periodically changes according to the
motor speed in the range [-π π] during the op-
eration, which maintains the stable operation of
IMD against the date overflow error; thus, it is
more suitable for the experimental model. The
simulations have demonstrated the effectiveness
of the proposed method. The improving mod-
els’ control features for the rotor speed, stator
current, and rotor flux responses are quick and
precise in a wide speed range.
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