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Abstract. In this article, a sliding mode con-
trol (SMC) is proposed to deal with the frequency
deviation problem in interconnected time-delay
power systems (ITDPS) with two source power
generations. First, the proportional and integral
switching surface is used for each area to guar-
antee the frequency deviation reach zero in nor-
mal operating conditions. Then, the stability of
the system is ensured with a new Linear Matrix
Inequality (LMI) via Lyapunov stability theory.
In addition, the SMC law is designed to guar-
antee the finite time reachability of the system.
Finally, impacts of certain physical constraints
affecting dynamic performance of the power net-
work such as time-delay is proposed to consider
the signal delay in the controller. Effectiveness
of the suggested method is validated by simula-
tion studies on the load frequency control under
time-delays in the two-area, the step load distur-
bance and the mismatched uncertainty.
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1. Introduction

Load frequency control (LFC) is one of the vital
and challenging problems in a power network.
In a multi-area power system (MAPS), LFC has
a significant role in terms of operating in the dif-
ferent structures and complex MAPS. The goals
of the LFC are to keep the tie-line power and
frequency interchanging in the MAPS at the de-
sired values. In the past decades, researchers
have applied both traditional and modern tech-
niques to solve LFC problem [1-5].

In traditional approaches, PI and PID con-
trollers are classical control methods that have
been first designed to solve the LFC problem.
They are very simple to design a structure for
the PID controller in the power system by tun-
ing the parameters. Sexana and Hote proposed a
robust PID control method for the LFC problem
in MAPS with different turbine devices by using
Kharitonov’s theorem [1]. The tuning method
was proposed for PID-based LFC in the MAPS
based on the internal model control method [6].
This approach aimed to attenuate the affec-
tion of the disturbance for improving the perfor-
mance of the ITDPS. To decrease the required
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control effort and guarantee the settling time,
overshoot, an optimal PID control method was
designed based on LMI for both single power
system and MAPS [7].

However, the PID controller has a limitation
with the complex and non-linear power system
because the PID controller is always considered
constant parameters for a fixed structure in the
power system. In addition, PID cannot achieve
an expectation performance when the distur-
bance is applied in the system. Therefore, the
combination of intelligent control and optimiza-
tion technique has been proposed to choose the
optimal parameters for the PID controller to im-
prove the system stability and performance in
the LFC of the MAPS. The method given in
[8] proposed a robust PID control method for
LFC by applying the imperialist competitive al-
gorithm to reduce the disturbance affection. Re-
jesh and Dash proposed an improvement sine
and cosine algorithm to tune the parameters for
a PID-based fuzzy logic (FL) controller for the
LFC of the ITDPS [9]. To handle the load dis-
turbance and the system parameter uncertainty,
some studies designed a fractional order-based
PID for the LFC of the power network [10, 11].

In modern control approaches, some advanced
control methods have been suggested to handle
the LFC problem. Cuckoo search and optimiza-
tion method were proposed for the LFC in the
power network to enhance the system perfor-
mance in case of various loading conditions [12,
13]. The method given in [14] proposed a de-
centralized control approach based on the Lya-
punov theory for the LFC of MAPS in case of
boundary disturbance. Yousef et al. designed an
adaptive FLC with direct and indirect schemes
for the LFC of MAPS in case of having unknown
parameters [15]. Moreover, a robust control was
deployed for the LFC of the MAPS given in [16,
17] to satisfy the robust performance with the
load variation and guarantee the internal stabil-
ity of the ITDPS.

Sliding mode control (SMC) method is non-
linear and variable structure control method.
SMC has been applied in many different fields,
such as induction motor drives [18], micro-grid
[19], converter [20], vehicle systems [21, 22],
interconnected electrical systems [23, 24], and

robotics [25]. Since the characteristics of the
components in almost all systems are also non-
linear, it is suitable to improve the system sta-
bility and performance by applying SMC and its
relevant control methods. Besides, SMC is well-
known as one of the modern control methods
that have been investigated to resolve the LFC
of the MAPS in the past decade. In [26], a de-
centralized SMC method is designed for the LFC
of the MAPS with wind turbine under matched
and mismatched uncertainties. However, the
integral sliding surface gives low accuracy due
to chattering phenomenon. Therefore, Le Ngoc
Minh et al. proposed a double integral slid-
ing surface based on the decentralized adaptive
control to solve the above problem [27]. More-
over, researchers have tried to combine intelli-
gent techniques with SMC to design the optimal
and robust control for the LFC of the MAPS.
Mu et al. combined adaptive learning and SMC
for the LFC of the power network to improve
the system performance under load disturbances
and parameter uncertainties [28]. Guo and Liu
proposed an SMC method based on PSO for the
LFC in the MAPS that helped to find the opti-
mal values for transferring vector and feedback
gains, and hence, reduce overshoot [29].

Practically, in the real power system, the
time-delay or the communication delay is fo-
cused on investigating the LFC problem in the
MAPS. Mi et al. designed a novel SMC based on
decentralizing control to ensure the system sta-
bility under time-delay for the LFC of the MAPS
with wind power integration [30]. Onyeka et
al. designed a robust decentralized LFC for
the MAPS under the time-delay effect by us-
ing the SMC technique with Lyapunov function
to manage the frequency deviation and power
interchange [31]. Sun et al. developed a new
sliding surface for designing SMC law which is
robust stability in terms of LMI for the LFC of
the MAPS with time-delay [32].

In this article, the robustness of integral slid-
ing surface is designed for the LFC of the MAPS
with two-source power generation under commu-
nication delay. Our main contribution is pre-
sented as follows:
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- The sliding mode controller is suggested for
different area power network with thermal and
hydro power plants under communication delay.

- The stability of the ITDPS is ensured based
on the Lyapunov theory with the new LMI ap-
proach.

- Experimental simulation results indicate
that the system performance is better than re-
cently researches in terms of overshoot and set-
tling time.

2. Mathematical model of
interconnected
time-delay power
system (ITDPS)

Schematic model of the ITDPS with the thermal
power station in the first area and the hydro
power station in second area is shown as Fig. 1.

From Fig. 1, in the dynamic equations of the
above power network may be expressed as fol-
lowing

∆ḟ1(t) = − 1

Tp1
∆f1(t) +

Kp1

Tp1
∆Pm1(t)

− Kp1

Tp1
∆Ptie1,2(t)− Kp1

Tp1
∆Pd1 (1)

∆Ṗm1(t) =

(
1

Tr1
− Kr1

Tth1

)
∆Pth1(t)

+
Kr1

Tth1
∆Pv1(t)− 1

Tr1
∆Pm1(t) (2)

∆Ṗth1(t) =
1

Tth1
∆Pv1(t)− 1

Tth1
∆Pth1(t) (3)

∆Ṗv1(t) = − 1

Tg1R1
∆f1(t)− 1

Tg1
∆Pv1(t)

− 1

Tg1
∆E1(t− ψ) +

1

Tg1
∆Pref1(t)

(4)

∆ḟ2(t) = − 1

Tp2
∆f2(t) +

Kp2

Tp2
∆Pm2(t)

− a12
Kp2

Tp2
∆Ptie1,2(t)− Kp2

Tp2
∆Pd2(t)

(5)

∆Pm2(t) =

(
2Trs2
Trh2Tg2

− 2

Trh2

)
∆Pg2(t)

+

(
2

Tw2
+

2

Trh2

)
∆Pv2(t)

− 2

Tw2
∆Pm2(t) +

2Trs2
Trh2Tg2R2i

∆f2(t)

− 2Trs2
Trh2Tg2

∆Pref2(t) (6)

∆Pv2 =
−Trs2

Trh2Th2R2i
∆f2(t)

+

(
1

Trh2
− Trs2
Trh2Tg2

)
∆Pg2(t)

+
−1

Trh2
∆Pv2(t) +

Trs2
Trh2Tg2

∆Pref2(t)

(7)

∆Ṗg2(t) = − 1

Tg2R2
∆f2(t)− 1

Tg2
∆Pg2(t)

− 1

Tg2
∆E2(t− ς) +

1

Tg2
∆Pref2(t)

(8)

∆Ṗtie1,2(t) = 2πT12[∆f1(t)−∆f2(t)] (9)

∆Ė1(t) = KB1∆f1(t) + ∆Ptie1,2(t) (10)

∆Ė2(t) = KB2∆f2(t) + a12∆Ptie1,2(t) (11)

All parameters and symbols of the above dy-
namic equations (1)-(11) are defined in the Ap-
pendix A. So, the two-area interconnected elec-
tricity network with communication delays is
given by Fig. 1 which can be rewritten in the
state-space representation as below

ż(t) = Az(t) +Dz(t− ψ) + Tz(t− ς)
+Bu(t) + F∆PD(t) (12)

n(t) = Cz(t)

where the state vector is denoted as below

z(t) = [ ∆F1(t) ∆Pm1(t) ∆Pth1(t)
∆Pv1(t) ∆F2(t) ∆Pm2(t)
∆Pv2(t) ∆Pg2(t) ∆Ptie,1(t)
∆E1(t) ∆E2(t) ]T
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Fig. 1: The structure of the different-area LFC model in a power network with time-delay. 
Fig. 1: The structure of the different-area LFC model in a power network with time-delay.

and the system matrices A, B, F, D, T are
given as below

D =


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0 0 0 0 0 0 0 0 0 0 0
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In addition, by considering time-delay com-
munication issues, so the dynamic model of the
ITDPS in Eq. (12) is re-written as

ż(t) = [A+ ∆A(z, t)]z(t)

+ [D + ∆D(z, t− ψ)]z(t− ψ)

+ [T + ∆T (z, t− ς)]z(t− ς)
+B[u(t) + ξ(z, t)] + F∆PD(t)

= Az(t) +Dz(t− τ)

+ Tz(t− ς) +B u(t) + w(z, t) (13)
n(t) = Cz(t)

where A, B, D, T, F is the nominal values, the
unknown matrices ∆A(z, t), ∆D(z, t − τ) and
∆T (z, t − ς) are denoted by their time variant
system of parametric variations and Bξ(z, t) is
the disturbance input signal; w(z, t) is called the
lumped uncertainties which can be estimated
and we can define it as the following

w(z, t) = ∆A(z, t)z(t) + ∆D(z, t− ψ)z(t− ψ)

+ ∆T (z, t− ς)z(t− ς)
+Bξ(z, t) + F∆PD(t) (14)

Remark 1: In the real power network, the time
delay usually exists in sending a plant signal
between the sensor and the controller ψ1 and
in sending control signals between the controller
and LFC system ψ2 [37]. In this approach, we
combine the two above time delay as a single de-
lay component ψ = ψ1 + ψ2 for each area which
is the same with the method given in [37]. How-
ever, the time delay of each area has differential
value which is more general than the one in [37].

In the best possible way, some assumptions are
indicated to describe the reality and feasibility
of the power system as well as the system param-
eters based LFC strategies under certain condi-
tions.

Assumption 1: The lumped uncertainties
w(z, t), which includes time-delay in the state
matrix and the differential of ẇ(z, t) is bounded.
i.e., there exist the known scalars γ and γ̄ such
that ‖w(z, t)‖ ≤ γ and ‖ẇ(z, t)‖ ≤ γ̄, where ‖.‖
is matrix norm.

Assumption 2: The time delay state vector
must be satisfied the conditions

‖z(t− τ)‖ ≤ zmax and ‖z(t− ς)‖ ≤ zmax,
zmax = max ‖z‖.
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In addition, some lemmas are recalled for prov-
ing the system stability as given in [33] and [34]:

Lemma 1 [33]: LetX and Y are actual matrices
with appropriate dimension then, for any scalar
µ > 0, the sequent matrix inequality obtains

XTY + Y TX ≤ µXTX + µ−1Y TY. (15)

Lemma 2 [34]: If the matrix:[
P (z) Γ(z)
ΓT (z) Q(z)

]
> 0 (16)

where P (z) = PT (z), Q(z) = QT (z) and Γ(z)
which depends affinitively on z. Therefore,
Q(z) > 0 and P (z)− Γ(z)Q−1(z)ΓT (z) > 0.

Lemma 3 [34]: Assume that z ∈ Rn, y ∈ Rn,
M ∈ Rn×n, M is the positive definite matrix.
Then, the inequality

zTMy + yTMz ≤ 1

ε
zTMz + εyTMy (17)

holds for all ε > 0.

3. Proposed sliding mode
controller design with
time-delay

In this approach, an integral SMC method is
suggested and improved for the MAPS (13) with
parametric disturbances and uncertainties.

σ[z(t)] = Nz(t)−
∫ t

0

N(A−BK)z(τ)dτ (18)

where the matrix N is chosen to ensure that ma-
trix NB is non-singular. Matrix K is achieved
via pole assignment so that the eigenvalues of
matrix (A−BK) are smaller than zero.

If we recognize and differentiate σ[z(t)] related
to time combined with (13), then

σ̇[z(t)] = N [Az(t) +Dz(t− ψ) + Tz(t− ς)
+Bu(t) + w(z, t)]−N(A−BK)z(t)

(19)

So, the setting σ[z(t)] = σ̇[z(t)] = 0, the control
is re-written by

ueq(t) = −(NB)−1[NAz(t) +NDz(t− ψ)

+NTz(t− ς) +Nw(z, t)]

−N(A−BK)z(t) (20)

To satisfy the reaching condition, the design con-
troller becomes

u(t) = ueq(t)− δsgn (σ [z(t)]) (21)

where u(t) is the proposed controller for MAPS.
Then controller is further rewritten as

u(t) = −(NB)−1[NBKz(t) +NDz(t− ψ)

+NTz(t− ς) +Nw(z, t)]

− δsgn (σ [z(t)]) (22)

As studied in SMC theory, to determine the dy-
namic equation on the ISS, we make u(t) =
ueq(t) and substitute into Eq. (13), we get

ż(t) = (A−BK)z(t)

+ [I −B(NB)−1N ]Dz(t− ψ)

+ [I −B(NB)−1N ]Tz(t− ς)
+ [I −B(NB)−1N ]w(z, t) (23)

Then, the dynamic equation (23) of sliding mode
is asymptotically stable based on below Theo-
rem.

Theorem 1: The sliding mode dynamic equa-
tion (23) is asymptotically stable if and only if
there includes the symmetric positive definite
matrices Q, P, Rand positive scalars χ and q as
the following LMIs hold

[Eq. (24) on the next page]

where
∏

= (A−BK)TQ+Q(A−BK) + 2Q+
P +R.

Proof 1 : To research and analyze the stability
of the sliding motion (23), the Lyapunov func-
tion is selected as below

V = zT (t)Qz(t) +

∫ t

t−ψ
zT (s)Pz(s) ds

+

∫ t

t−ς
zT (s)Rz(s) ds (25)

where Q, P, R > 0 satisfies Eq. (25). Then,
taking the time derivative of Eq. (25) and using
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]
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−
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−
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       <
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(2
4) Eq. (23), we have

V̇ = [zT (t)[(A−BK)TQ+Q(A−BK)]z(t)

+ zT (t− ψ)DT [I −B(NB)−1N ]TQz(t)

+ zT (t)Q[I −B(NB)−1N ]Dz(t− ψ)

+ zT (t− ς)TT [I −B(NB)−1N ]TQz(t)

+ zT (t)Q[I −B(NB)−1N ]Tz(t− ς)
+ wT (z, t)[I −B(NB)−1N ]TQz(t)

+ zT (t)Q[I −B(NB)−1N ]w(z, t)]

+ zT (t)Pz(t)− zT (t− ψ)Pz(t− ψ)

+ zT (t)Rz(t)− zT (t− ς)Rz(t− ς) (26)

To apply the Lemma 1 to Eq. (26), we have

V̇ ≤ zT (t)[(A−BK)TQ+Q(A−BK)]z(t)

+ zT (t− ψ)DT [I −B(NB)−1N ]TQz(t)

+ zT (t)Q[I −B(NB)−1N ]Dz(t− ψ)

+ zT (t− ς)TT [I −B(NB)−1N ]TQz(t)

+ zT (t)Q[I −B(NB)−1N ]Tz(t− ς)
+ χ−1zT (t)Q[I −B(NB)−1N ]

× [I −B(NB)−1N ]TQz(t)

+ χwT (z, t)w(z, t)

+ zT (t)Pz(t)− zT (t− ψ)Pz(t− ψ)

+ zT (t)Rz(t)− zT (t− ς)Rz(t− ς) (27)

Combining Lemma 3 and Eq. (27), we obtain

V̇ ≤ zT (t)[(A−BK)TQ+Q(A−BK)]z(t)

+ zT (t− ψ)DT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]Dz(t− ψ)

+ zT (t− ς)TT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]Tz(t− ς)
+ χ−1zT (t)Q[I −B(NB)−1N ]

× [I −B(NB)−1N ]TQz(t)

+ zT (t)Qz(t) + zT (t)Qz(t)

+ χwT (z, t)w(z, t)

+ zT (t)Pz(t)− zT (t− ψ)Pz(t− ψ)

+ zT (t)Rz(t)− zT (t− ς)Rz(t− ς) (28)

The matrix DT [I − B(NB)−1N ]TQ[I −
B(NB)−1N ]D and TT [I −B(NB)−1N ]TQ[I −
B(NB)−1N ]T are semi-positive definite. Since
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the z(t) is independent of each other. Then,
from Eq. (31) of paper [35], the following is
true

V (z(t− ψ), z(t− ς)) ≤ qV (z(t)) (29)

for q > 1, is equivalent to

zT (t− ψ)DT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]Dz(t− ψ)

≤ qzT (t)DT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]Dz(t) (30)

and

zT (t− ς)TT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]Tz(t− ς)
≤ qzT (t)TT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]Tz(t) (31)

Then, the following equation can be achieved

V̇ ≤ zT (t)[(A−BK)TQ+Q(A−BK)

+ qDT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]D

+ qTT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]T

+ χ−1Q[I −B(NB)−1N ]

× [I −B(NB)−1N ]TQ

+ 2Q+ P +R]z(t)

− zT (t− ψ)Pz(t− ψ)

− zT (t− ς)Rz(t− ς)
+ χiw

T
i (zi, t)wi(zi, t) (32)

Using the assumption 1, Eq. (32) becomes

V̇ ≤ zT (t)[(A−BK)TQ+Q(A−BK)

+ qDT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]D

+ qTT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]T

+ χ−1Q[I −B(NB)−1N ]

× [I −B(NB)−1N ]TQ

+ 2Q+ P +R]z(t)

− zT (t− ψ)Pz(t− ψ)

− zT (t− ς)Rz(t− ς) + ι (33)

where ι = χγ2.

Define the extended vector

Ψ(t) =
[
zT (t) zT (t− ψ) zT (t− ς)

]T
(34)

and
V̇ ≤ ΨT (t)ΘΨ(t) + ι (35)

Combining LMI (24) and Lemma 2, we obtain

Θ = −

 Ξ 0 0
0 −P 0
0 0 −R

 > 0 (36)

where

Ξ = −[(A−BK)TQ+Q(A−BK)

+ qDT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]D

+ qTT [I −B(NB)−1N ]T

×Q[I −B(NB)−1N ]T

+ χ−1Q[I −B(NB)−1N ]

× [I −B(NB)−1N ]TQ

+ 2Q+ P +R] > 0 (37)

Combining Eqs. (35) and (36), we have

V̇ [z(t)] ≤ −λmin(Θ) ‖Ψ(t)‖2 + ι (38)

where the eigenvalue λmin(Θ) > 0 and the con-
stant value ι. Therefore, V̇ < 0 is achieved with
‖z(t)‖ >

√
ι

λmin(Θ) . The sliding motion of sys-

tem (23) is asymptotically stable.

If V̇[z(t)] ≤ 0 shows that, the LMI (24) holds,
therefore, it further explains that the system
(13) is asymptotically stable. To prove the
reachability of state variable z(t), we again use
Lyapunov stability theory. We assumed there
exist z(t) > 0, then Lyapunov function becomes

V [z(t)] =
1

2
σ[z(t)]

2 (39)

By taking the derivative of Eq. (39), we get

V̇ [z(t)] = σ[z(t)]
T
σ̇[z(t)] (40)

Combining Eqs. (19) and (40), we obtain

V̇ [z(t)] = σ[z(t)]
T {NAz(t) +NBu(t)

+NDz(t− ψ) +NTz(t− ς) +Nw(z, t)

−N(A−BK)z(t)} (41)
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If we substitute u(t) into Eq. (41), it is further
simplified below

V̇ [z(t)] = −δsgn (σ[z(t)])σ[z(t)]
T (42)

Therefore, Eq. (42) shows that V̇[z(t)] <0
which demonstrates the reachability of the sys-
tem states to the sliding surface.

Remark 2: The recent SMC method is applied
for the ITDPS which can be seen in paper [38].
However, the approach given in [38] considers
only single time delay in the system dynamic
equation with only one kind of power plant. In
this approach, the ITDPS is considered with dif-
ferent kind of power plant for each area and the
system dynamic equation (13) has two kinds of
time delay and different value of the time delay
for each area. Therefore, the proposed approach
is a better choice for the LFC of real ITDPS.

Remark 3: The new LFC method for the
MAPS is given by [39]. The approach given in
[39] is achieved under the assumptions that there
is not time delay in the MAPS and there is only
one kind of power plant. Therefore, in the pro-
posed approach, the two above limitations have
been solved.

4. Results and discussions

Based on the two-area ITDPS where thermal
and hydro power stations in first and second ar-
eas, respectively. Three cases are presented to
demonstrate the power of the suggested SMC
under load disturbances and mismatched uncer-
tainties. A conventional two-area power network
(TAPN) is analyzed for the robustness and ef-
fectiveness of the suggested integral SMC. The
parameters of TAPN were presented in [36] as
display in Appendix B.

Case 1: The nominal value is used for the sys-
tem parameters. The step load disturbances set
as the same [36] with value at the first area is
0.007 pu at t = 1 s and the second area is 0.01
pu at t = 3 s. The constant delays of ψ = 0.1 s
in the first area and ς = 0.2 s in the second area
are considered in this simulation. The results of
frequency variation in both areas ∆f1, ∆f2 with
the proposed controller are displayed in Fig. 2.
The tie-line power deviation ∆Ptie is displayed

in Fig. 3. The test results are based on fre-
quency and tie-line deviation of proposed inte-
gral SMC is compared with [36].
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Remark 4: In this case, the suggested controller is still 

good performance in term of smaller over shoot and faster 

settling time even though the influence of communication 

delay is considered in different areas power network in 

comparing with [36]. Clearly, the proposed control 

approach is powerful and useful to control ITDPS under 

step load disturbance. 

Case 2: The ITDPS is simulated under random load 

disturbances at every 6s as shown in Fig. 4. The maximum 

frequency variation 1 2,f f   of two areas under time-

delay the same with previous case are shown in Fig. 5 
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0.031 pu. The proposed method has significantly 

improved the performance of frequency stability in the 
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Fig. 2: Frequency variation.
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Remark 4: In this case, the suggested con-
troller is still good performance in term of
smaller over shoot and faster settling time even
though the influence of communication delay is
considered in different areas power network in
comparing with [36]. Clearly, the proposed con-
trol approach is powerful and useful to control
ITDPS under step load disturbance.

Case 2: The ITDPS is simulated under random
load disturbances at every 6s as shown in Fig.
4. The maximum frequency variation ∆f1, ∆f2

of two areas under time-delay the same with the
previous case are shown in Fig. 5 with values
of 0.06 Hz and 0.07 Hz, respectively. The maxi-
mum tie-line variation ∆Ptie1,2 between the first
area and the second area is displayed in Fig. 6
with value of 0.031 pu. The proposed method
has significantly improved the performance of
frequency stability in the ITDPS.
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Fig. 4: Load variations. 
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Remark 5: The powerful of integral SMC is examined 

against via random load disturbances. The performance of 

system is better in term of faster settling time and smaller 

overshoot. It also demonstrates that the suggested 

controller can be applied to the real power network with 

communication delay. 

Case 3: In this case, the effectiveness of the suggested 

method is examined with different conditions including 

the step load disturbance and the mismatched uncertainty. 

In which, the values of step load disturbances are assumed 

as 1( ) 0.015dP t  at 1s in the first area and 

2 ( ) 0.005dP t   at 1s in the second area. To examine 

robustness of the proposed SMC controller, the 

mismatched parameter uncertainty of TAPN is selected 

with value the same with [38] and is rewritten as A .  

In cases 1 and 2, the effect of GRC is not mentioned. 

In this case, the GRC limiter is considered for the dynamic 

responses of the TAPS. The open loop modeling of GRC 

is displayed in Fig. 7 for the thermal power station and Fig. 

8 for hydro power stations [40]. The responses of the 

suggested method for the TAPN with GRC of 0.01 pu/min, 

or 0.0017 pu/sec are displayed in Fig. 9, Fig. 10 and Fig. 

11. In which, Fig. 9, Fig. 10 represent frequency variation

1 2( , )f f  in both areas. We easily observe that the system 

frequency is kept in nominal value due to there are no 

change in load at the initial time. After one second, with 

the sudden change of load, the frequency deviation is 

changed from the desired value to the maximum deviation 

as -0.014 pu of area 1 and -0.011 pu of area 2. Then, the 

proposed controller starts operating and controlling valve 

position to adjust steam/water into the turbine for 

balancing the generator power and load power. Fig. 10 

displays the deviation of tie-line power. 
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Fig. 5: Frequency variation.
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Fig. 4: Load variations. 

 

Fig. 5: Frequency variation. 

 

Fig. 6: Tie-line variation. 

 

Remark 5: The powerful of integral SMC is examined 

against via random load disturbances. The performance of 

system is better in term of faster settling time and smaller 

overshoot. It also demonstrates that the suggested 

controller can be applied to the real power network with 

communication delay. 

Case 3: In this case, the effectiveness of the suggested 

method is examined with different conditions including 

the step load disturbance and the mismatched uncertainty. 

In which, the values of step load disturbances are assumed 

as 1( ) 0.015dP t  at 1s in the first area and 

2 ( ) 0.005dP t   at 1s in the second area. To examine 

robustness of the proposed SMC controller, the 

mismatched parameter uncertainty of TAPN is selected 

with value the same with [38] and is rewritten as A .  

In cases 1 and 2, the effect of GRC is not mentioned. 

In this case, the GRC limiter is considered for the dynamic 

responses of the TAPS. The open loop modeling of GRC 

is displayed in Fig. 7 for the thermal power station and Fig. 

8 for hydro power stations [40]. The responses of the 

suggested method for the TAPN with GRC of 0.01 pu/min, 

or 0.0017 pu/sec are displayed in Fig. 9, Fig. 10 and Fig. 

11. In which, Fig. 9, Fig. 10 represent frequency variation

1 2( , )f f  in both areas. We easily observe that the system 

frequency is kept in nominal value due to there are no 

change in load at the initial time. After one second, with 

the sudden change of load, the frequency deviation is 

changed from the desired value to the maximum deviation 

as -0.014 pu of area 1 and -0.011 pu of area 2. Then, the 

proposed controller starts operating and controlling valve 

position to adjust steam/water into the turbine for 

balancing the generator power and load power. Fig. 10 

displays the deviation of tie-line power. 
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Fig. 6: Tie-line variation.

Remark 5: The powerful of integral SMC is
examined against via random load disturbances.
The performance of system is better in term of
faster settling time and smaller overshoot. It
also demonstrates that the suggested controller
can be applied to the real power network with
communication delay.

Case 3: In this case, the effectiveness of
the suggested method is examined with different
conditions including the step load disturbance
and the mismatched uncertainty. In which, the

values of step load disturbances are assumed as
∆Pd1(t) = 0.015 at 1s in the first area and
∆Pd2(t) = 0.005 at 1s in the second area. To
examine robustness of the proposed SMC con-
troller, the mismatched parameter uncertainty
of TAPN is selected with value the same with
[38] and is rewritten as ∆A (see on the next
page).

In cases 1 and 2, the effect of GRC is not
mentioned. In this case, the GRC limiter is con-
sidered for the dynamic responses of the TAPS.
The open loop modeling of GRC is displayed in
Fig. 7 for the thermal power station and Fig. 8
for hydro power stations [40]. The responses of
the suggested method for the TAPN with GRC
of 0.01 pu/min, or 0.0017 pu/sec are displayed
in Figs. 9–11. In which, Figs. 9 and 10 repre-
sent frequency variation (∆f1,∆f2) in both ar-
eas. We easily observe that the system frequency
is kept in nominal value due to there is no change
in load at the initial time. After one second, with
the sudden change of load, the frequency devi-
ation is changed from the desired value to the
maximum deviation as -0.014 pu of area 1 and
-0.011 pu of area 2. Then, the proposed con-
troller starts operating and controlling valve po-
sition to adjust steam/water into the turbine for
balancing the generator power and load power.
Fig. 10 displays the deviation of tie-line power. VOLUME: XX | ISSUE: XX | XXX | XXXX 
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Fig. 7: Open loop modeling of thermal turbine with GRC. 

 

Fig. 8: Open loop modeling of hydro turbine with GRC. 

 

Fig. 9: Frequency variation of the 1
st
 area. 

 

Fig. 10: Frequency variation of the 2
nd

 area. 

 

Fig. 11: Tie-line variation. 

   The GRC impacts significantly the performance of the 

ITDPS. Observing the simulation results of three cases, 

we easily realize that the settling time is longer in case of 

considering the GRC than other cases. Hence, system 

performance is better without the GRC. Fig. 9 and Fig. 10  

also show that the suggested controller can make the 

system stable with GRC. 

Remark 6: The amplitude of the frequency deviation 1f  

always greater than amplitude of the frequency deviation 

2f  because the changing of the power output of the 

thermal power station in the area 1 is slower than the 

changing of the power output of the hydro power station in 

the area 2. 

Remark 7: The simulation results prove that the 

suggested method is robust and can prevent the system 

from the affection of mismatched parameter uncertainty 

and communication delay. However, there are still small 

oscillations around equilibrium point. This is the need of 

the research in the future by applying higher-order SMC. 

V. CONCLUSIONS 

In this paper, we present a sliding mode control for 

ITDPS with two source power generations to solve the 

LFC problem. The suggested controller is implemented by 

the SMC method. The stability of the ITDPS is guaranteed 

via the LMI technique which is derived based on 

Lyapunov stability theory. The experimental simulations 

are applied for the two-area power network with thermal 

and hydro power stations under different value of the time 

delay for each area. The controller action effectively 

adjusts the power generation of two areas to minimize tie-

line power flows and frequency error deviation. 

At present, due to the difficulty in measurement of the 

system state of the ITDPS, the combination of observer 

and higher order SMC for the LFC of the ITDPS has 

always been a topic of concern, which motivates us to 

carry out in the future. 

Appendix A. 

1 2,B BK K  Frequency bias constant of  

 ith control area, pu MW/Hz 

1 2,g gT T  Speed governor time constant, s 

1thT  Steam turbine time constant, s 

1 2,p pT T  Power system time constant, s 

1 2,p pK K  Power system gain, Hz/pu MW 

1rK  Steam turbine reheats constant 

1rT  Steam turbine reheats time constant, s 

w2T  Nominal starting time of water in 

penstock, s 

2rsT  Hydro turbine speed governor reset 

time, s 

2rhT  Hydro turbine speed governor 

transient droop time constant, s 

12T  Tie line power coefficient  

1 2,f f   Incremental change in frequency of 

ith control area, Hz 

12tieP  Incremental change in actual tie line 

power flow from control area-1 to 2 

1 2,d dP P   Total incremental change in local load 

of ith control area, pu MW 

1 2E , E   Area control error of ith control  

 area, pu MW 

 

Fig. 7: Open loop modeling of thermal turbine with
GRC.
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Fig. 7: Open loop modeling of thermal turbine with GRC. 

 

Fig. 8: Open loop modeling of hydro turbine with GRC. 

 

Fig. 9: Frequency variation of the 1
st
 area. 

 

Fig. 10: Frequency variation of the 2
nd

 area. 

 

Fig. 11: Tie-line variation. 

   The GRC impacts significantly the performance of the 

ITDPS. Observing the simulation results of three cases, 

we easily realize that the settling time is longer in case of 

considering the GRC than other cases. Hence, system 

performance is better without the GRC. Fig. 9 and Fig. 10  

also show that the suggested controller can make the 

system stable with GRC. 

Remark 6: The amplitude of the frequency deviation 1f  

always greater than amplitude of the frequency deviation 

2f  because the changing of the power output of the 

thermal power station in the area 1 is slower than the 

changing of the power output of the hydro power station in 

the area 2. 

Remark 7: The simulation results prove that the 

suggested method is robust and can prevent the system 

from the affection of mismatched parameter uncertainty 

and communication delay. However, there are still small 

oscillations around equilibrium point. This is the need of 

the research in the future by applying higher-order SMC. 

V. CONCLUSIONS 

In this paper, we present a sliding mode control for 

ITDPS with two source power generations to solve the 

LFC problem. The suggested controller is implemented by 

the SMC method. The stability of the ITDPS is guaranteed 

via the LMI technique which is derived based on 

Lyapunov stability theory. The experimental simulations 

are applied for the two-area power network with thermal 

and hydro power stations under different value of the time 

delay for each area. The controller action effectively 

adjusts the power generation of two areas to minimize tie-

line power flows and frequency error deviation. 

At present, due to the difficulty in measurement of the 

system state of the ITDPS, the combination of observer 

and higher order SMC for the LFC of the ITDPS has 

always been a topic of concern, which motivates us to 

carry out in the future. 

Appendix A. 

1 2,B BK K  Frequency bias constant of  

 ith control area, pu MW/Hz 

1 2,g gT T  Speed governor time constant, s 

1thT  Steam turbine time constant, s 

1 2,p pT T  Power system time constant, s 

1 2,p pK K  Power system gain, Hz/pu MW 

1rK  Steam turbine reheats constant 

1rT  Steam turbine reheats time constant, s 

w2T  Nominal starting time of water in 

penstock, s 

2rsT  Hydro turbine speed governor reset 

time, s 

2rhT  Hydro turbine speed governor 

transient droop time constant, s 

12T  Tie line power coefficient  

1 2,f f   Incremental change in frequency of 

ith control area, Hz 

12tieP  Incremental change in actual tie line 

power flow from control area-1 to 2 

1 2,d dP P   Total incremental change in local load 

of ith control area, pu MW 

1 2E , E   Area control error of ith control  

 area, pu MW 

 

Fig. 8: Open loop modeling of hydro turbine with GRC.

The GRC impacts significantly the performance
of the ITDPS. Observing the simulation results
of three cases, we easily realize that the settling
time is longer in case of considering the GRC
than other cases. Hence, system performance is
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Fig. 7: Open loop modeling of thermal turbine with GRC. 

 

Fig. 8: Open loop modeling of hydro turbine with GRC. 

 

Fig. 9: Frequency variation of the 1
st
 area. 

 

Fig. 10: Frequency variation of the 2
nd

 area. 

 

Fig. 11: Tie-line variation. 

   The GRC impacts significantly the performance of the 

ITDPS. Observing the simulation results of three cases, 

we easily realize that the settling time is longer in case of 

considering the GRC than other cases. Hence, system 

performance is better without the GRC. Fig. 9 and Fig. 10  

also show that the suggested controller can make the 

system stable with GRC. 

Remark 6: The amplitude of the frequency deviation 1f  

always greater than amplitude of the frequency deviation 

2f  because the changing of the power output of the 

thermal power station in the area 1 is slower than the 

changing of the power output of the hydro power station in 

the area 2. 

Remark 7: The simulation results prove that the 

suggested method is robust and can prevent the system 

from the affection of mismatched parameter uncertainty 

and communication delay. However, there are still small 

oscillations around equilibrium point. This is the need of 

the research in the future by applying higher-order SMC. 

V. CONCLUSIONS 

In this paper, we present a sliding mode control for 

ITDPS with two source power generations to solve the 

LFC problem. The suggested controller is implemented by 

the SMC method. The stability of the ITDPS is guaranteed 

via the LMI technique which is derived based on 

Lyapunov stability theory. The experimental simulations 

are applied for the two-area power network with thermal 

and hydro power stations under different value of the time 

delay for each area. The controller action effectively 

adjusts the power generation of two areas to minimize tie-

line power flows and frequency error deviation. 

At present, due to the difficulty in measurement of the 

system state of the ITDPS, the combination of observer 

and higher order SMC for the LFC of the ITDPS has 

always been a topic of concern, which motivates us to 

carry out in the future. 

Appendix A. 

1 2,B BK K  Frequency bias constant of  

 ith control area, pu MW/Hz 

1 2,g gT T  Speed governor time constant, s 

1thT  Steam turbine time constant, s 

1 2,p pT T  Power system time constant, s 

1 2,p pK K  Power system gain, Hz/pu MW 

1rK  Steam turbine reheats constant 

1rT  Steam turbine reheats time constant, s 

w2T  Nominal starting time of water in 

penstock, s 

2rsT  Hydro turbine speed governor reset 

time, s 

2rhT  Hydro turbine speed governor 

transient droop time constant, s 

12T  Tie line power coefficient  

1 2,f f   Incremental change in frequency of 

ith control area, Hz 

12tieP  Incremental change in actual tie line 

power flow from control area-1 to 2 

1 2,d dP P   Total incremental change in local load 

of ith control area, pu MW 

1 2E , E   Area control error of ith control  

 area, pu MW 

 

Fig. 9: Frequency variation of the 1st area.
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Fig. 7: Open loop modeling of thermal turbine with GRC. 

 

Fig. 8: Open loop modeling of hydro turbine with GRC. 

 

Fig. 9: Frequency variation of the 1
st
 area. 

 

Fig. 10: Frequency variation of the 2
nd

 area. 

 

Fig. 11: Tie-line variation. 

   The GRC impacts significantly the performance of the 

ITDPS. Observing the simulation results of three cases, 

we easily realize that the settling time is longer in case of 

considering the GRC than other cases. Hence, system 

performance is better without the GRC. Fig. 9 and Fig. 10  

also show that the suggested controller can make the 

system stable with GRC. 

Remark 6: The amplitude of the frequency deviation 1f  

always greater than amplitude of the frequency deviation 

2f  because the changing of the power output of the 

thermal power station in the area 1 is slower than the 

changing of the power output of the hydro power station in 

the area 2. 

Remark 7: The simulation results prove that the 

suggested method is robust and can prevent the system 

from the affection of mismatched parameter uncertainty 

and communication delay. However, there are still small 

oscillations around equilibrium point. This is the need of 

the research in the future by applying higher-order SMC. 

V. CONCLUSIONS 

In this paper, we present a sliding mode control for 

ITDPS with two source power generations to solve the 

LFC problem. The suggested controller is implemented by 

the SMC method. The stability of the ITDPS is guaranteed 

via the LMI technique which is derived based on 

Lyapunov stability theory. The experimental simulations 

are applied for the two-area power network with thermal 

and hydro power stations under different value of the time 

delay for each area. The controller action effectively 

adjusts the power generation of two areas to minimize tie-

line power flows and frequency error deviation. 

At present, due to the difficulty in measurement of the 

system state of the ITDPS, the combination of observer 

and higher order SMC for the LFC of the ITDPS has 

always been a topic of concern, which motivates us to 

carry out in the future. 

Appendix A. 

1 2,B BK K  Frequency bias constant of  

 ith control area, pu MW/Hz 

1 2,g gT T  Speed governor time constant, s 

1thT  Steam turbine time constant, s 

1 2,p pT T  Power system time constant, s 

1 2,p pK K  Power system gain, Hz/pu MW 

1rK  Steam turbine reheats constant 

1rT  Steam turbine reheats time constant, s 

w2T  Nominal starting time of water in 

penstock, s 

2rsT  Hydro turbine speed governor reset 

time, s 

2rhT  Hydro turbine speed governor 

transient droop time constant, s 

12T  Tie line power coefficient  

1 2,f f   Incremental change in frequency of 

ith control area, Hz 

12tieP  Incremental change in actual tie line 

power flow from control area-1 to 2 

1 2,d dP P   Total incremental change in local load 

of ith control area, pu MW 

1 2E , E   Area control error of ith control  

 area, pu MW 

 

Fig. 10: Frequency variation of the 2nd area.
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Fig. 7: Open loop modeling of thermal turbine with GRC. 

 

Fig. 8: Open loop modeling of hydro turbine with GRC. 

 

Fig. 9: Frequency variation of the 1
st
 area. 

 

Fig. 10: Frequency variation of the 2
nd

 area. 

 

Fig. 11: Tie-line variation. 

   The GRC impacts significantly the performance of the 

ITDPS. Observing the simulation results of three cases, 

we easily realize that the settling time is longer in case of 

considering the GRC than other cases. Hence, system 

performance is better without the GRC. Fig. 9 and Fig. 10  

also show that the suggested controller can make the 

system stable with GRC. 

Remark 6: The amplitude of the frequency deviation 1f  

always greater than amplitude of the frequency deviation 

2f  because the changing of the power output of the 

thermal power station in the area 1 is slower than the 

changing of the power output of the hydro power station in 

the area 2. 

Remark 7: The simulation results prove that the 

suggested method is robust and can prevent the system 

from the affection of mismatched parameter uncertainty 

and communication delay. However, there are still small 

oscillations around equilibrium point. This is the need of 

the research in the future by applying higher-order SMC. 

V. CONCLUSIONS 

In this paper, we present a sliding mode control for 

ITDPS with two source power generations to solve the 

LFC problem. The suggested controller is implemented by 

the SMC method. The stability of the ITDPS is guaranteed 

via the LMI technique which is derived based on 

Lyapunov stability theory. The experimental simulations 

are applied for the two-area power network with thermal 

and hydro power stations under different value of the time 

delay for each area. The controller action effectively 

adjusts the power generation of two areas to minimize tie-

line power flows and frequency error deviation. 

At present, due to the difficulty in measurement of the 

system state of the ITDPS, the combination of observer 

and higher order SMC for the LFC of the ITDPS has 

always been a topic of concern, which motivates us to 

carry out in the future. 

Appendix A. 

1 2,B BK K  Frequency bias constant of  

 ith control area, pu MW/Hz 

1 2,g gT T  Speed governor time constant, s 

1thT  Steam turbine time constant, s 

1 2,p pT T  Power system time constant, s 

1 2,p pK K  Power system gain, Hz/pu MW 

1rK  Steam turbine reheats constant 

1rT  Steam turbine reheats time constant, s 

w2T  Nominal starting time of water in 

penstock, s 

2rsT  Hydro turbine speed governor reset 

time, s 

2rhT  Hydro turbine speed governor 

transient droop time constant, s 

12T  Tie line power coefficient  

1 2,f f   Incremental change in frequency of 

ith control area, Hz 

12tieP  Incremental change in actual tie line 

power flow from control area-1 to 2 

1 2,d dP P   Total incremental change in local load 

of ith control area, pu MW 

1 2E , E   Area control error of ith control  

 area, pu MW 

 

Fig. 11: Tie-line variation.

better without the GRC. Fig. 9 and Fig. 10 also
show that the suggested controller can make the
system stable with GRC.

Remark 6: The amplitude of the frequency de-
viation ∆f1 always greater than amplitude of
the frequency deviation ∆f2 because the chang-
ing of the power output of the thermal power sta-
tion in the area 1 is slower than the changing of
the power output of the hydro power station in
the area 2.
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Remark 7: The simulation results prove that
the suggested method is robust and can prevent
the system from the affection of mismatched
parameter uncertainty and communication de-
lay. However, there are still small oscillations
around equilibrium point. This is the need of the
research in the future by applying higher-order
SMC.

5. Conclusions

In this paper, we present a sliding mode con-
trol for ITDPS with two source power genera-
tions to solve the LFC problem. The suggested
controller is implemented by the SMC method.
The stability of the ITDPS is guaranteed via
the LMI technique which is derived based on
Lyapunov stability theory. The experimental
simulations are applied for the two-area power
network with thermal and hydro power stations
under different value of the time delay for each
area. The controller action effectively adjusts
the power generation of two areas to minimize
tie-line power flows and frequency error devia-
tion.

At present, due to the difficulty in measure-
ment of the system state of the ITDPS, the com-
bination of observer and higher order SMC for
the LFC of the ITDPS has always been a topic
of concern, which motivates us to carry out in
the future.

Appendix A

KB1, KB2 – Frequency bias constant of ith con-
trol area, pu MW/Hz

Tg1, Tg2 – Speed governor time constant, s

Tth1 – Steam turbine time constant, s

Tp1, Tp2 – Power system time constant, s

Kp1, Kp2 – Power system gain, Hz/pu MW

Kr1 – Steam turbine reheats constant

Tr1 – Steam turbine reheats time constant, s

Tw2 – Nominal starting time of water in pen-
stock, s

Trs2 – Hydro turbine speed governor reset time,
s

Trh2 – Hydro turbine speed governor transient
droop time constant, s

T12 – Tie line power coefficient

∆f1, ∆f2 – Incremental change in frequency of
ith control area, Hz

∆Ptie12 – Incremental change in actual tie line
power flow from control area-1 to 2

∆Pd1, ∆Pd2 – Total incremental change in local
load of ith control area, pu MW

∆E1, ∆E2 – Area control error of ith control
area, pu MW

∆Pm1,∆Pm2 – Incremental change in power
output of ith generating unit, pu MW

∆Pref1,∆Pref2 – Incremental change in speed
changer position of ith of area, pu MW

∆Pg2 – Incremental change in governor output
command, pu MW

∆Pth1 – Incremental change steam turbine, pu
MW

∆Pv1,∆Pv2 – Incremental change in governor
valve position, pu MW.

Appendix B

General KP1 = KP2 = 65.2174 Hz/pu MW;
TP1 = TP2 = 10.8696 s; KE1 = KE2 = 1;
T12 = 0.0433; KB1 = KB2 = 1; R1 = R2 = 2.4
Hz/pu MW;

Reheat Turbine Tth1 = 0.08 s; KR1 = 0.3; Tr1 =
10 s; Tg1 = 0.3 s;

Hydro Turbine Tg2 = 0.2 s; Trs2 = 5 s; Trh2 =
28.75 s;
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