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Abstract. The paper deals with utilization
of Kalman �lter and fuzzy logic control in in-
duction motor drive with direct torque control
(DTC). In order to lower ripple of stator cur-
rent vector in DTC drive, pulse width modu-
lation technique with high switching frequency
is applied. However, performance of the DTC
also depends on the accuracy of both stator re-
sistance and stator current vector. In the paper,
the stator resistance and stator current compo-
nents are assumed to be distorted by Gaussian
noises. In order to reduce the e�ect of noises
especially at low speed and very low speed re-
gions, a simple Kalman �lter is applied for �l-
tering current components, and fuzzy logic the-
ory is used to increase �exibility of proportional-
integral (PI) compensator in the speed controller
of the drive structure. Simulations are imple-
mented in conditions of high-level noises of sta-
tor current and stator resistance, and a wide
range of load torque. An ITAE-based criterion is
utilized to evaluate performance of drive struc-

tures. Results con�rmed the expected dynamic
properties of the proposed drive structure.
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1. Introduction

Conventional direct torque control (DTC) tech-
nique proposed in the 1980s [1]-[2] were im-
plemented in high-performance applications of
induction motor (IM) drives. This technique
can be co-ranked with vector control (VC) tech-
nique introduced by Hasse and Blaschke [3]-[4],
although the control structures with DTC do
not contain many complicated frame transfor-
mations, current regulators as those with VC
[5]-[6]. Robustness of direct torque controlled
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drive systems is also guaranteed [7]. Several
DTC modi�cations are utilized to reduce ripples
of the stator �ux, the stator current, and the mo-
tor torque. In 12-sector method, locus of stator
�ux phasor is divided into twelve sectors, and
six auxiliary vectors are additively de�ned [8].
For direct calculation method [9], voltage vector
is a weighted sum vector of deviations of mo-
tor torque and stator �ux. The above methods
produce variable switching frequency of voltage
source inverter (VSI). Insertion of Pulse-Width
Modulation (PWM) into the DTC control struc-
ture makes switching frequency constant. Sinu-
soidal PWM (SPWM) and Space Vector PWM
(SVPWM) can be deployed for modulation. Ex-
citation, limitation of stator current, switching
losses reduction, total harmonic distortion mini-
mization for both two-level and three-level VSIs
are also guaranteed with PWM-DTC [10, 11].
Therefore, it is implemented in both sensor and
sensorless IM drives with DTC [10]-[12].

In practical IM drives, any errors in stator re-
sistance and stator current that are inputs of
signal calculation block in DTC schemes degrade
the IM drive performance especially at low speed
and very low speed areas [13]. Sources of the
noises are changes of operating conditions, er-
rors in o�ine/online identi�cation algorithms,
o�sets, gain errors and gain unbalances in the
transduced variables [14]-[16]. In order to re-
duce stator currents noises, one of most appro-
priate solutions is Kalman �lter (KF) that pro-
vides the optimal Bayesian estimates for lin-
ear systems which independent Gaussian pro-
cess and measurement noises are inserted into
their dynamics [17]-[18]. For nonlinear systems,
Taylor series expansions are applied in extended
Kalman �lter (EKF) to linearize nonlinear mod-
els about working points [19, 20]. In case of
highly nonlinear systems, in order to parame-
terize mean and covariance without linearization
steps, a set of points is sampled discretely for
Unscented Kalman �lter (UKF) [21]. Kitani-
dis Kalman �lter (KKF) and its extended ver-
sions (EKKF) are developed and applied for un-
known or highly non-Gaussian inputs for both
linear and nonlinear systems [22]-[26]. In the pa-
per, there are three assumptions as follows: un-
known IM state-space model, high switching fre-
quency of SVPWM technique, Gaussian noises

of stator currents and stator resistance. In �eld
of IM drive, various techniques have been com-
bined with KFs to improve performance of es-
timation. Di�erential evolution (DE) is utilized
to o�ine optimize the covariance matrices of a
KF-based algorithm which estimates the stator-
�ux linkage components [27]. Kalman �lter is
employed for the �ltration of stator currents and
obtaining their derivatives in sensorless IM drive
[28]. The motor speed and �ux are estimated
by a multiple-model EKF with Markov chain
[29]. Covariance matrices in EKF have been
optimized by using a particle swarm optimiza-
tion algorithm [30]. An adaptive algorithm is
inserted to update system noise covariance ma-
trix in EKF [31]. The system noise covariance
matrix is tuned by genetic algorithm [32]. In
the paper, improvement of KFs performance is
not focused, instead a combination of Kalman
�ltering and fuzzy logic control is utilized.

Fuzzy logic control (FLC) is chosen because it
is able to incorporate experience, intuition and
heuristics into the system instead of relying on
system dynamics models [33], or simulate behav-
ior of controller [34]. In order to reduce compu-
tation time, FLC employs reduced number of
fuzzy inference rules in IM drive with DTC [35].
Dynamic FLC is combined with predictive DTC
(P-DTC) to reduce the parameter dependency
of P-DTC [36]. An adaptive weight genetic al-
gorithm is utilized to �nd optimum membership
functions and control rules in gear shifting fuzzy
control of a vehicle equipped with an automated
manual transmission [37]. In permanent magnet
synchronous motor (PMSM) drive, an adaptive
fuzzy logic-based duty cycle vector modulator
and an extended Kalman estimator is combined
to avoid extra usage of multiple mechanical sen-
sors, reject external perturbations, reduce sta-
tor current harmonics and guarantee accurate
prediction model in model predictive DTC [38].
In order to reduce rigidity of conventional di-
rect power control and lower power ripples in an
active power �lter, fuzzy logic-based controller
is utilized to replace hysteresis controllers and
switching table [39]. FLC is employed in a max-
imum power point tracking algorithm to get en-
tire energy from PV modules for PMSM drive
system [40]. FLC is incorporated into model
predictive DTC to get optimal switching states
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that minimize electromagnetic torque and sta-
tor �ux errors in PMSM drive [41]. In speed
control of BLDC motor, a combination of deep
learning and fuzzy logic tunes gain values of PID
controller to obtain an e�ective speed regulator
[42]. Estimated position and speed error are op-
timized with ANFIS and fuzzy-PID methods in
sensorless speed control of switched reluctance
motor [43]. In IM drive with VC, self-tuning
technique is utilized to update the output scal-
ing factor of the main FLC speed controller [44],
and a hybrid fuzzy-fuzzy controller that con-
sists of fuzzy slip frequency controller and fuzzy
current amplitude controller is developed [45].
A 3-D Mamdani type-2 fuzzy controller gives
lower �ux and torque ripples than conventional
proportional-integral controller in IM drive with
DTC [46]. Next, control structure with com-
bination of Kalman �ltering and fuzzy logic is
described. Simulation results are presented in
next section. Finally, conclusions are given.

Fig. 1: Proposed drive structure.

2. Proposed control

structure of induction

motor drive

Figure 1 represents proposed IM drive structure
with combination of fuzzy logic and Kalman �l-

ter. Stator resistance whose variation a�ects
dominantly to performance of DTC strategy is
assumed to be distorted by zero-mean Gaussian
noise. Deformations of stator current vector in
process and measurement are also produced by
the noise. In the combination, Kalman �lter is
employed to smooth two components of stator
current vector, and parameters of proportional-
integral (PI) controller are adjusted by fuzzy
logic to cope with system uncertainty.

Important quantities of PWM-DTC strategy
are obtained according to Eqs. (1)-(5):

ψsα =

∫ (
usα − îsαRs

)
dt (1)

ψsβ =

∫ (
usβ − îsβRs

)
dt (2)

ψs =
√
ψ2
sα + ψ2

sβ (3)

γ = arcsin (ψsβ/ψs) (4)

Te = (3p/2)
(
îsβψsα − îsαψsβ

)
(5)

where inputs of Signal Calculation block:
usα, usβ - stator voltage vector components;

îsα, îsβ - �ltered components of stator current
vector; Rs - known value of stator resistance;
outputs of the block: ψs - magnitude of sta-
tor �ux vector; γ - orienting angle; Te - elec-
tromagnetic motor torque. Kalman Filter block
receives two signal inputs- isα, isβ from T3/2
block, and utilizes a compacted Kalman �lter
algorithm to obtain two signal outputs-̂isα, îsβ
according to Eqs. (6)-(13):

xk = Fxk−1 +wk−1 (6)

yk = Hxk + vk (7)

x̃k = Fx̂k−1 (8)

P̃k = FP̂k−1F
T +Q (9)

z̃k = yk −Hx̃k (10)

Kk = P̃kH
T
(
HP̃kH

T +R
)−1

(11)

x̂k = x̃k +Kkz̃k (12)

P̂k = (I−KkH) P̃k (13)

where: x = [isα isβ ]
T : state vector; F, H: state

transition matrix, measurement matrix, they are
Identify matrices because of unknown IM model
and measuring process; w, v: zero-mean Gaus-
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sian process, measurement noise vectors with co-
variances Q = σP

2I, R = σM
2I; symbols ∧, ∼

respectively denote estimated, predicted vectors.
Next, design of PI-FLC speed controller is car-
ried out.

Speed error eω is normalized to eωN by divid-
ing the eω by maximum value of reference speed
ωref . The eωN and its di�erence ∆eωN have 3
linguistic variables PO, ZE, NE which indicate
postive, zero, negative respectively. The PO,
ZE, NE have membership functions: Γ-function,
Λ-function, L-function respectively expressed by
Eqs. (14)-(19):

µPO(eωN ) =


1, eωN ≥ He
eωN
He

, 0 ≤ eωN < He

0, eωN < 0

(14)

µZE(eωN ) =



0, eωN ≥ He

He − eωN
He

, 0 ≤ eωN < He

He + eωN
He

, −He ≤ eωN < 0

0, eωN < 0

(15)

µNE(eωN ) =


0, eωN > 0

−eωN
He

, −He 6 eωN < 0

1, eωN < −He

(16)

µPO(∆eωN ) =


1, ∆eωN > H∆e

∆eωN
H∆e

, 0 6 ∆eωN < H∆e

0, ∆eωN < 0
(17)

µZE(∆eωN )

=



0, ∆eωN > H∆e

H∆e −∆eωN
H∆e

, 0 6 ∆eωN < H∆e

H∆e + ∆eωN
H∆e

, −H∆e 6 ∆eωN < 0

0, ∆eωN < −H∆e

(18)

µNE(∆eωN )

=


0, ∆eωN > 0

−∆eωN
H∆e

, −H∆e 6 ∆eωN < 0

1, ∆eωN < −H∆e

(19)

where limits He and H∆e are in the domain
(0, 1]. Fuzzy rule base with 9 rules receives
two inputs eω, ∆eω to obtain three linguistic
values L, M, S which respectively denote for
large, medium, small of controller parameters
KP , 1/TI (see Tab. 1).

Tab. 1: Fuzzy rule base.

∆eω
eω

PO ZE NE
PO L, S M, S S, S
ZE L, M M, M S, M
NE L, L M, L S, L

Gaussian membership functions that are de-
�ned in Eqs. (20)-(25) are chosen for values
L,M,S in because of their smoothness [47]. In
order to get crisp values of KP , 1/TI , centroid
method is selected to defuzzify.

µL(KP ) =


1, KP >MP

e
− (KP−MP )2

2σ21 , mP < KP < MP

0,KP 6 mP

(20)

µM (KP ) =


0, KP >MP

e
− (KP−CP )2

2σ21 ,mP < KP < MP

0, KP 6 mP

(21)

µS(KP ) =


0, KP >MP

e
− (KP−mP )2

2σ21 ,mP < KP < MP

1, KP 6 mP

(22)

µL(1/TI) =


1, 1/TI >MI

e
− (1/TI−MI )

2

2σ22 ,mI < 1/TI < MI

0, 1/TI 6 mI

(23)

µM (1/TI) =


0, 1/TI >MI

e
− (1/TI−CI )

2

2σ22 ,mI < 1/TI < MI

0, 1/TI 6 mI

(24)
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µS(1/TI) =


0, 1/TI >MI

e
− (1/TI−mI )

2

2σ22 ,mI < 1/TI < MI

1, 1/TI 6 mI

(25)

where 0 < mP < MP , 0 < mI < MI . Remain-
ing parameters are chosen so that symmetry of
membership functions graphs is ensured, and
intersections between membership functions for
pairs of variables L & M, S & M have a value
of 0.5 as in Eqs. (26)-(29):

CP = (mP +MP )/2 (26)

σ2
1 = (MP −mP )

2
/

(32 ln 2) (27)

CI = (mI +MI)/2 (28)

σ2
2 = (MI −mI)

2
/

(32 ln 2) (29)

3. Simulation results

In this section, simulations are implemented on
Matlab/Simulink environment with IM param-
eters given in Tab. 2 at reference speeds of 60
rpm and 6 rpm that represent low and very low
speed ranges respectively. The VSI has input
of 540 Vdc and switching diagrams of 6 IGBTs
are based on SVPWM method with frequency
of 20 kHz. Reference torque - output of speed
controller in drive structures is limited in range
±14 Nm. Graphs of important quantities are
recorded with load torque and reference speeds
shown in Figs. 2-3.

Tab. 2: IM speci�cations.

Parameter Value
Rated power 2.2 kW
Rated speed 1420 rpm
Rated voltage 230 V/400 V
Rated torque 14.8 Nm

Number of pole pairs 2
Moment of inertia 0.0047 kgm2

Stator resistance 3.179 W
Stator inductance 0.209 H
Mutual inductance 0.192 H
Rotor resistance 2.118 W

Rotor time constant 0.0987 s

Fig. 2: Load torque with load jump = 6 Nm at time
0.5s.

Fig. 3: Reference speeds ωref = 60 rpm and 6 rpm.

For simplicity, assume that, σP
2 = σM

2 =

Kσ and variance of added relative value of sta-
tor resistance is Kr. For performance compari-
son of drive structures, Integral Time Absolute
Error (ITAE) performance index (see Eq. (30))
is selected. Ratios of ITAE indices (RITAE)
are used to compare between proposed structure
and drive structure described in [7]:

ITAE =

1∫
0

t|eω(t)|dt (30)

RITAEKF = ITAEKF/ITAECO (31)

RITAEPR = ITAEPR/ITAECO (32)
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Fig. 4: Speed at ωref = 60 rpm, Kσ = 0.52,Kr = 0.012,
load jump 2 Nm (upper) and 8 Nm.

Fig. 5: Speed at ωref = 60 rpm, Kσ = 1.52,Kr = 0.012,
load jump 2 Nm (upper) and 8 Nm.

where subscripts CO,KF, and PR represent con-
ventional drive structure, one with Kalman �l-
tering, and proposed one respectively. Speed
controller in CO and KF structures has KP =
1.5, TI = 0.05s. For PR structure, selection of
mP , MP , mI , MI is similar to that in [12]: mP

= 0.1, MP =2.9, mI = 27.12, MI = 320. Limits
He and H∆e are chosen experimentally as fol-
lows He = 0.16, H∆e = 0.0009. Simulations are
obtained with 4 values of load jump, noises of
stator resistance and stator current.

Fig. 6: Speed at ωref = 60 rpm, Kσ = 0.52,Kr = 0.042,
load jump 2 Nm (upper) and 8 Nm.

Fig. 7: Speed at ωref = 60 rpm, Kσ = 1.52,Kr = 0.042,
load jump 2 Nm (upper) and 8 Nm.

Figures 4-11 show motor speed responses ob-
tained with minimum or maximum simulated
values of Kσ, Kr, and load jump for both speed
regions. Overshoot and undershoot of speed re-
ponses for three drive structures are listed in
Tabs. 3-4. It is easy to see that overshoots for
KF structure are lowest ones in most cases, and
undershoots for PR structure are smallest ones
in all cases.
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Fig. 8: Speed at ωref = 6 rpm, Kσ = 0.52,Kr = 0.012,
load jump 2 Nm (upper) and 8 Nm.

Fig. 9: Speed at ωref = 6 rpm, Kσ = 0.52,Kr = 0.042,
load jump 2 Nm (upper) and 8 Nm.

Settling times tss1, tss2 are searched in dura-
tions 0.0s-0.5s, 0.5s-1.0s, and listed in Tabs. 5-6
respectively. Letter �X� in the tables describes
the fact that tss1 or tss2 can not be found. In
most cases, tss1 and tss2 are shortest for KF
structure and PR structure respectively. For
PR structrure, increment in di�erence (MI −
mI) tends to reduce speed error [12] or ITAE,
shorten settling times, make overshoots higher.
RITAEs at low speed and very low speed areas

Fig. 10: Speed at ωref = 6 rpm, Kσ = 1.52,Kr = 0.012,
load jump 2 Nm (upper) and 8 Nm.

Fig. 11: Speed at ωref = 6 rpm, Kσ = 1.52,Kr = 0.042,
load jump 2 Nm (upper) and 8 Nm.

are respectively listed in Tabs. 7-10 and Tabs.
11-14.

All RITAEs are less than one. RITAE at low
speed is greater than one at very low speed in
same condition of load jump, Kσ and Kr for
both KF and PR structures. For low speed, RI-
TAEs for PR structure are approximately 18%-
59% lower than those for KF structure, in cases
of very low speed, those for PR structure are
roughly 20%-67% smaller than those for KF
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Tab. 3: Overshoot and undershoot at 60 rpm.

Kσ Kr
Load
jump

Overshoot Undershoot
CO KF PR CO KF PR

0.52 0.012 2
0.94 0.94 1.51

1.08 1.10 0.85
0.52 0.012 8 4.24 4.29 3.30
1.52 0.012 2

2.76 0.95 1.50
2.37 1.39 1.04

1.52 0.012 8 4.29 4.57 3.38
0.52 0.042 2

0.93 0.94 1.50
1.12 1.14 0.87

0.52 0.042 8 4.34 4.37 3.34
1.52 0.042 2

2.67 0.90 1.47
2.30 1.68 1.20

1.52 0.042 8 5.16 5.35 3.85

Tab. 4: Overshoot and undershoot at 6 rpm.

Kσ Kr
Load
jump

Overshoot Undershoot
CO KF PR CO KF PR

0.52 0.012 2
0.80 0.67 1.25

1.06 1.07 0.72
0.52 0.012 8 4.25 4.25 3.42
1.52 0.012 2

1.62 0.80 1.38
2.79 1.13 0.71

1.52 0.012 8 4.28 4.29 3.45
0.52 0.042 2

0.80 0.66 1.23
1.08 1.09 0.72

0.52 0.042 8 4.30 4.31 3.46
1.52 0.042 2

1.60 0.80 1.47
2.93 1.35 0.73

1.52 0.042 8 4.78 4.90 3.84

Tab. 5: Settling times at 60 pm.

Kσ Kr
Load
jump

tss1[×10−3s] tss2[×10−3s]
CO KF PR CO KF PR

0.52 0.012 2
35 37 46

0 0 0
0.52 0.012 8 32 32 12
1.52 0.012 2

458 32 41
496 9 0

1.52 0.012 8 493 33 13
0.52 0.042 2

35 37 46
0 0 0

0.52 0.042 8 33 33 13
1.52 0.042 2

484 31 40
496 16 8

1.52 0.042 8 X X 14

structure. The main reason for this is that PR
structure gives signi�cantly smaller undershoot
than KF structure. Lowest values occur in con-
dition of Kr = 0.012, load jump = 2 Nm, and
highest ones happen in case of Kr = 0.042, load
jump = 8 Nm. Figures 12-14 respectively show
stator current components, stator �ux compo-
nents, and motor torque in condition of ωref =
60 rpm, Kσ = 1.52, Kr = 0.42, load jump = 8
Nm.

Tab. 6: Settling times at 6 rpm.

Kσ Kr
Load
jump

tss1[×10−3s] tss2[×10−3s]
CO KF PR CO KF PR

0.52 0.012 2
170 63 48

496 47 18
0.52 0.012 8 460 68 22
1.52 0.012 2

484 428 428
X X X

1.52 0.012 8 500 471 476
0.52 0.042 2

170 63 47
500 48 18

0.52 0.042 8 462 419 22
1.52 0.042 2

484 480 429
X X X

1.52 0.042 8 500 497 477

Tab. 7: RITAEs at Ωref= 60 rpm, load jump = 2 Nm.

Kr

Kσ

0.52 0.752 1.02 1.52

KF PR KF PR KF PR KF PR
0.012 0.73 0.56 0.55 0.42 0.43 0.34 0.33 0.27
0.022 0.76 0.55 0.59 0.42 0.49 0.34 0.40 0.27
0.032 0.78 0.54 0.64 0.41 0.55 0.34 0.48 0.27
0.042 0.81 0.53 0.68 0.41 0.61 0.34 0.54 0.27

Tab. 8: RITAEs at Ωref= 60 rpm, load jump = 4 Nm.

Kr

Kσ

0.52 0.752 1.02 1.52

KF PR KF PR KF PR KF PR
0.012 0.78 0.52 0.61 0.42 0.49 0.35 0.37 0.29
0.022 0.80 0.51 0.66 0.42 0.55 0.35 0.46 0.29
0.032 0.83 0.51 0.71 0.42 0.62 0.35 0.55 0.30
0.042 0.86 0.51 0.76 0.42 0.69 0.36 0.64 0.30

The KF gives lower ripples of stator current,
stator �ux, and motor torque than the CO [7].
Responses for the PR are almost identi�cal to
those for the KF (see Figs. 12-14 ), because
the PR inherits advantages of Kalman �ltering
from the KF. Moreover, performance of the PR
is further enhanced by wide operation condition
coverage of fuzzy logic, especially at the time af-
ter load activation (see the overshoot of torque
responses duration 0.5s-1.0s in Figs. 7 & 14).
The peak torque at the time 0.5086s shows the
�exibility of fuzzy logic. This brings lower un-
dershoot and smaller tss2 of speed responses in
most simulated cases.
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Tab. 9: RITAEs at Ωref= 60 rpm, load jump = 6 Nm.

Kr

Kσ

0.52 0.752 1.02 1.52

KF PR KF PR KF PR KF PR
0.012 0.81 0.48 0.63 0.39 0.52 0.33 0.40 0.27
0.022 0.84 0.47 0.69 0.39 0.59 0.33 0.49 0.27
0.032 0.86 0.47 0.74 0.38 0.66 0.33 0.59 0.28
0.042 0.88 0.46 0.78 0.38 0.72 0.33 0.66 0.29

Tab. 10: RITAEs at Ωref= 60 rpm, load jump = 8 Nm.

Kr

Kσ

0.52 0.752 1.02 1.52

KF PR KF PR KF PR KF PR
0.012 0.82 0.45 0.67 0.38 0.56 0.33 0.44 0.28
0.022 0.85 0.45 0.73 0.38 0.65 0.34 0.57 0.29
0.032 0.88 0.45 0.79 0.39 0.73 0.35 0.69 0.31
0.042 0.90 0.45 0.83 0.39 0.80 0.36 0.76 0.31

Tab. 11: RITAEs at Ωref= 6 rpm, load jump = 2 Nm.

Kr

Kσ

0.52 0.752 1.02 1.52

KF PR KF PR KF PR KF PR
0.012 0.50 0.26 0.37 0.23 0.29 0.21 0.25 0.20
0.022 0.51 0.25 0.37 0.23 0.30 0.21 0.25 0.20
0.032 0.51 0.25 0.38 0.23 0.31 0.20 0.26 0.19
0.042 0.52 0.25 0.39 0.23 0.31 0.20 0.27 0.19

Tab. 12: RITAEs at Ωref= 6 rpm, load jump = 4 Nm.

Kr

Kσ

0.52 0.752 1.02 1.52

KF PR KF PR KF PR KF PR
0.012 0.67 0.27 0.51 0.24 0.40 0.22 0.30 0.20
0.022 0.68 0.27 0.53 0.24 0.42 0.22 0.32 0.20
0.032 0.70 0.27 0.55 0.24 0.45 0.22 0.34 0.19
0.042 0.72 0.26 0.58 0.24 0.48 0.22 0.37 0.19

Tab. 13: RITAEs at Ωref= 6 rpm, load jump = 6 Nm.

Kr

Kσ

0.52 0.752 1.02 1.52

KF PR KF PR KF PR KF PR
0.012 0.74 0.28 0.57 0.25 0.45 0.23 0.36 0.21
0.022 0.76 0.28 0.60 0.25 0.49 0.23 0.40 0.22
0.032 0.78 0.28 0.63 0.25 0.53 0.24 0.44 0.22
0.042 0.80 0.28 0.66 0.25 0.58 0.24 0.49 0.23

Tab. 14: RITAEs at Ωref= 6 rpm, load jump = 8 Nm.

Kr

Kσ

0.52 0.752 1.02 1.52

KF PR KF PR KF PR KF PR
0.012 0.78 0.28 0.61 0.25 0.50 0.22 0.38 0.20
0.022 0.81 0.28 0.67 0.25 0.57 0.23 0.47 0.21
0.032 0.84 0.28 0.72 0.26 0.65 0.24 0.58 0.22
0.042 0.87 0.29 0.77 0.26 0.71 0.25 0.56 0.20

Fig. 12: Stator current components at ωref = 60 rpm,
Kσ = 1.52,Kr = 0.042, load jump = 8 Nm.

Fig. 13: Stator �ux components at ωref = 60 rpm,
Kσ = 1.52,Kr = 0.042, load jump = 8 Nm.
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Fig. 14: Torques at ωref = 60 rpm, Kσ = 1.52,Kr =
0.042, load jump = 8 Nm.

4. Conclusions

Simpli�ed structure using FLC and KF was pre-
sented in the paper. Simulations were imple-
mented at two low speed and very low-speed re-
gions in di�erent conditions of load jumps, noise
covariances of stator resistance and stator cur-
rents. The proposed control structure with sim-
pli�ed fuzzy logic controller and Kalman �lter-
ing brought lower values of ITAE performance
index than both the conventional and the KF
ones at both speed regions, wide ranges of load
jump and noises. This structure gave shorter
settling times and smaller undershoot in du-
ration of load activation than two other ones.
Type-2 fuzzy controllers or robust controllers
can be utilized to get better performance. The
proposed method can be applied in sensorless
control, fault-tolerant control of IM drive.
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