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Abstract. This survey-cum-expository re-
view article is motivated essentially by the
widespread usages of the operators of fractional
calculus (that is, fractional-order integrals and
fractional-order derivatives) in the modeling and
analysis of a remarkably large variety of applied
scienti�c and real-world problems in mathemat-
ical, physical, biological, engineering and sta-
tistical sciences, and in other scienti�c disci-
plines. Here, in this article, we present a brief
introductory overview of the theory and applica-
tions of the fractional-calculus operators which
are based upon the general Fox-Wright function
and its such specialized forms as (for example)
the widely- and extensively-investigated and po-
tentially useful Mittag-Le�er type functions.
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1. Introduction and

motivation

The idea of fractional calculus (that is, calcu-
lus of integrals and derivatives of any arbitrary
real or complex order) has apparently and essen-
tially stemmed from a question raised in the year
1695 by Marquis de l'Hôpital (1661�1704) to
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Gottfried Wilhelm Leibniz (1646�1716), which
sought the meaning of Leibniz's (currently pop-
ular) notation

dny
dxn

for the derivative of order n ∈ N0 := {0, 1, 2, · · · }
when n = 1

2 (What if n = 1
2?). In his re-

ply, dated 30 September 1695, Leibniz wrote to
l'Hôpital as follows:

�· · · This is an apparent paradox
from which, one day, useful conse-
quences will be drawn. · · · "

In recent years, the subject of fractional cal-
culus, as a calculus of integrals and derivatives
of any real or complex order, has gained con-
siderable popularity and importance, which is
due mainly to its demonstrated applications in
the modeling and analysis of applied problems
and real-world situations occurring in numerous
seemingly diverse and widespread �elds of sci-
ence and engineering. It does indeed also pro-
vide several potentially useful tools and tech-
niques for solving di�erential and integral equa-
tions, and various other problems involving spe-
cial functions of mathematical physics as well
as their extensions and generalizations in one
and more variables. In a wide variety of appli-
cations of fractional calculus, one requires frac-
tional derivatives of di�erent (and, occasionally,
ad hoc) kinds (see, for example, [42] to [47],
[68], [74], [94], [95], [115], [126], [143], [147] and
[148]). Traditionally, fractional-order di�eren-
tiation and integration are de�ned by the right-
sided Riemann-Liouville fractional integral oper-
ator RLIµa+ and the left-sided Riemann-Liouville
fractional integral operator RLIµa−, and the cor-
responding Riemann-Liouville fractional deriva-
tive operators RLDµ

a+ and RLDµ
a−, as follows

(see, for example, [30, Chapter 13], [54, pp. 69�
70] and [93]):

(RLIµa+f) (x) =
1

Γ(µ)

∫ x

a

(x− t)µ−1f(t)dt (1)(
x > a; < (µ) > 0

)
,

(
RLIµa−f

)
(x) =

1

Γ(µ)

∫ a

x

(t− x)
µ−1

f(t)dt (2)(
x < a; <(µ) > 0

)

and(
RLDµ

a±f
)

(x) =

(
± d
dx

)n (
In−µa± f

)
(x) (3)(

< (µ) = 0; n = [<(µ)] + 1
)
,

where the function f is locally integrable, < (µ)
denotes the real part of the complex number
µ ∈ C and [< (µ)] means the greatest integer
in < (µ), and Γ(z) denotes the classical (Euler's)
Gamma function de�ned by

Γ(z) :=



∫ ∞
0

e−t tz−1 dt,
(
<(z) > 0

)
Γ(z + n)
n−1∏
j=0

(z + j)

,
(
z ∈ C \ Z−0 ; n ∈ N

)
,

(4)

which happens to be one of the most funda-
mental and the most useful special functions
of mathematical analysis, N and Z−0 being the
sets of positive and non-positive integers, respec-
tively.

An interesting family of generalized Riemann-
Liouville fractional derivatives of order µ (0 <
µ < 1) and type ν (0 5 ν 5 1) were introduced
recently as follows (see [42], [43] and [44]; see
also [46], [47] and [94]).

De�nition 1. The right-sided Hilfer fractional
derivative HDµ,ν

a+ and the left-sided Hilfer frac-
tional derivative HDα,β

a− of order µ (0 < µ < 1)
and type ν (0 5 β 5 1) with respect to x are
de�ned by(

HDµ,ν
a± f

)
(x)

=

(
± HI

ν(1−µ)
a±

d
dx

(
HI

(1−ν)(1−µ)
a± f

))
(x) , (5)

where it is tacitly assumed that the second
member of (5) exists. The generalization (5)
yields the classical Riemann-Liouville fractional
derivative operator when ν = 0. Moreover, for
ν = 1, it leads to the fractional derivative oper-
ator introduced by Liouville [64, p. 10], which
is quite frequently attributed to Caputo [23],
but which should more appropriately be referred
to as the Liouville-Caputo fractional derivative,
giving due credits to Joseph Liouville (1809�
1882) who considered such fractional derivatives
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many decades earlier in 1832 (see [64]). Many
authors (see, for example, [68] and [147]) called
the general operators in (5) the Hilfer fractional
derivative operators. Several applications of the
Hilfer fractional derivative operatorDα,β

a± can in-
deed be found in [44] (see also [103] and [104]).

In this survey-cum-expository review article,
our main objective is to present a brief intro-
ductory overview of the theory and applications
of the fractional-calculus operators which are
based upon the general Fox-Wright function and
its such specialized forms as the widely- and
extensively-investigated and potentially useful
Mittag-Le�er type functions.

2. The Fox-Wright

function and related

Mittag-Le�er type

functions

In this section, we begin by introducing the gen-
eral Fox-Wright function pΨq (p, q ∈ N0) or
pΨ
∗
q (p, q ∈ N0), which happens to be the Fox-

Wright generalization of the relatively more fa-
miliar hypergeometric function pFq (p, q ∈ N0),
with p numerator parameters a1, · · · , ap and q
denominator parameters b1, · · · , bq such that

aj ∈ C (j = 1, · · · , p) and bj ∈ C \ Z−0
(j = 1, · · · , q).

All of these specialized higher transcendental
functions are, in fact, widely and extensively in-
vestigated because mainly of their potential for
applications in the mathematical, physical, en-
gineering and statistical sciences.

De�nition 2. The general Fox-Wright function
pΨq (p, q ∈ N0) or pΨ

∗
q (p, q ∈ N0) is de�ned

by (see, for details, [29, p. 183] and [128, p. 21];
see also [54, p. 56], [51, p. 65] and [125, p. 19])

pΨ
∗
q

 (a1, A1) , · · · , (ap, Ap) ;

(b1, B1) , · · · , (bq, Bq) ;
z


:=

∞∑
n=0

(a1)A1n
· · · (ap)Apn

(b1)B1n
· · · (bq)Bqn

zn

n!

=
Γ (b1) · · ·Γ (bq)

Γ (a1) · · ·Γ (ap)

· pΨq

 (a1, A1) , · · · , (ap, Ap) ;

(b1, B1) , · · · , (bq, Bq) ;
z

 ,
(6)

where

<(Aj) > 0 (j = 1, · · · , p) ;

<(Bj) > 0 (j = 1, · · · , q) ;

1 + <
( q∑
j=1

Bj −
p∑
j=1

Aj

)
= 0,

and in what follows, (λ)ν denotes the general
Pochhammer symbol or the shifted factorial,
since

(1)n = n! (n ∈ N0 := N∪{0}; N := {1, 2, 3, · · · }),

which is de�ned
(
for λ, ν ∈ C and in terms of

the above-de�ned familiar Gamma function in
the equation (4)

)
by

(λ)ν :=
Γ (λ+ ν)

Γ (λ)
=


1 (ν = 0;λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1)
(ν = n ∈ N;λ ∈ C) ,

(7)

it being assumed conventionally that (0)0 := 1
and understood tacitly the the Γ-quotient exists.
Here we suppose, in general, that

aj , Aj ∈ C (j = 1, · · · , p)

and

bj , Bj ∈ C (j = 1, · · · , q)

and that the equality in the convergence condi-
tion holds true only for suitably bounded values
of |z| given by

|z| < ∇ :=

 p∏
j=1

A
−Aj

j

 ·
 q∏
j=1

B
Bj

j

 .

Clearly, the above-mentioned generalized hy-
pergeoemtric function pFq (p, q ∈ N0), with p
numerator parameters a1, · · · , ap and q denom-
inator parameters b1, · · · , bq, is a widely- and
extensively-investigated and potentially useful
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special case of the general Fox-Wright function
pΨq (p, q ∈ N0) when

Aj = 1 (j = 1, · · · , p)

and

Bj = 1 (j = 1, · · · , q),

given by

pFq

 a1, · · · , ap;

b1, · · · , bq;
z

 :=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

= pΨ
∗
q

 (a1, 1) , · · · , (ap, 1) ;

(b1, 1) , · · · , (bq, 1) ;
z


=

Γ (b1) · · ·Γ (bq)

Γ (a1) · · ·Γ (ap)

· pΨq

 (a1, 1) , · · · , (ap, 1) ;

(b1, 1) , · · · , (bq, 1) ;
z

 . (8)

We turn now to the familiar Mittag-Le�er
function Eα(z) and its two-parameter version
Eα,β(z), which are de�ned, respectively, by (see
[71], [150] and [150])

Eα(z) :=

∞∑
k=0

zk

Γ(αk + 1)
(9)

(
z, α ∈ C; <(α) > 0

)
and

Eα,β (z) :=

∞∑
k=0

zk

Γ(αk + β)
(10)

(
z, α, β ∈ C; <(α) > 0

)
.

The one-parameter function Eα(z) was �rst
considered by Magnus Gustaf (Gösta) Mittag-
Le�er (1846�1927) in 1903 and its two-
parameter version Eα,β(z) was introduced by
Anders Wiman (1865�1959) in 1905 (see also
[100]).

The Mittag-Le�er functions Eα (z) and
Eα,β (z) are natural extensions of the exponen-
tial, hyperbolic and trigonometric functions. In-
deed, it is easily veri�ed that

E1 (z) = ez, E2

(
z2
)

= cosh z, E2

(
−z2

)
= cos z,

E1,2(z) =
ez − 1

z
and E2,2(z2) =

sinh z

z
.

For a reasonably detailed account of the various
properties, generalizations and applications of
the Mittag-Le�er functions Eα (z) and Eα,β (z),
the reader may refer to the recent works by (for
example) Goren�o et al. [36], Haubold et al.
[40] and Kilbas et al. ([52], [53] and [54, Chapter
1]). The Mittag-Le�er function Eα (z) given by
(9) and some of its various generalizations have
only recently been calculated numerically in the
whole complex plane (see, for example, [48] and
[96]).

In a remarkably large number of recent inves-
tigations, the interest in the families of Mittag-
Le�er type functions has grown considerably
due mainly to their potential for applications
in some reaction-di�usion and other applied sci-
ences and engineering problems. Moreover, their
various extensions and generalizations appear in
the solutions of fractional-order di�erential and
integral equations (see, for example, [103]; see
also [32] and [122]). The following family of the
multi-index Mittag-Le�er functions:

Eγ,κ,ε
[
(αj , βj)

m
j=1; z

]
was considered and used as a kernel of some
fractional-calculus operators by Srivastava et al.
(see [113] and [114]; see also the references cited
in each of these papers):

Eγ,κ,δ,ε(αj ,βj)m
[z] = Eγ,κ,δ,ε

[
(αj , βj)

m
j=1; z

]
:=

∞∑
n=0

(γ)κn (δ)εn
m∏
j=1

Γ(αjn+ βj)

zn

n!
(11)

(
αj , βj , γ, κ, δ, ε ∈ C; <(αj) > 0(j = 1, · · · ,m);

<
(

m∑
j=1

αj

)
> <(κ+ ε)− 1

)
,

where the general Pochhammer symbol (λ)ν is
de�ned above by (7).

In terms of the general Fox-Wright function
pΨq (p, q ∈ N0) or pΨ

∗
q (p, q ∈ N0), which

is given by (6), it is easy to observe from the
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de�nition (11) that

Eγ,κ,δ,ε(αj ,βj)m
[z] = Eγ,κ,δ,ε

[
(αj , βj)

m
j=1; z

]
=

1

Γ(β1) · · ·Γ(βm)

· 2Ψ∗m

 (γ, κ) , (δ, ε) ;

(β1, α1) , · · · , (βm, αm) ;
z


=

1

Γ(γ)Γ(δ)
2Ψm

 (γ, κ) , (δ, ε) ;

(β1, α1) , · · · , (βm, αm) ;
z


(12)

under the parameter and argument constraints
which would correspond appropriately to those
that are already listed with the de�nitions (6)
and (11).

We list below some of the special cases of the
multi-index Mittag-Le�er function:

Eγ,κ,ε
[
(αj , βj)

m
j=1; z

]
,

which include (for example) the following exten-
sions and generalizations of the Mittag-Le�er
functions Eα(z) and Eα,β(z):

(i) In light of the relation between the Gamma
function and the Pochhammer symbol in (7), the
case when m = 2, δ = ε = 1, κ = q, α1 = α,
β1 = β, and α2 = p, and β2 = δ, the de�nition
(11) would correspond to the following relation-
ship:

Eγ,δ,qα,β,p(z) :=

∞∑
n=0

(γ)qn
Γ(αn+ β)

zn

(δ)pn

=
1

Γ(β)
2Ψ∗2

 (γ, q) , (1, 1) ;

(β, α) , (δ, p) ;
z


=

Γ(δ)

Γ(γ)
2Ψ2

 (γ, q) , (1, 1) ;

(β, α) , (δ, p) ;
z


with the Mittag-Le�er type function Eγ,δ,qα,β,p(z),
which was considered by Salim and Faraj [92].

(ii) A special case of the multi-index Mittag-
Le�er function de�ned by (11) when m = 2
can be shown to correspond to the Mittag-Le�er

function Eγ,κα,β(z):

Eγ,κα,β(z) :=

∞∑
n=0

(γ)κn
Γ(αn+ β)

zn

n!

=
1

Γ(β)
1Ψ∗1

 (γ, κ) ;

(β, α) ;
z


=

1

Γ(γ)
1Ψ1

 (γ, κ) ;

(β, α) ;
z

 ,
which was introduced by Srivastava and To-
movski [147] (see also [148]).

(iii) For m = 2 and κ = 1, the multi-index
Mittag-Le�er function de�ned by (11) would
correspond readily to the Mittag-Le�er type
function Eγα,β(z):

Eγα,β(z) :=

∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!

=
1

Γ(β)
1Ψ∗1

 (γ, 1) ;

(β, α) ;
z


=

1

Γ(γ)
1Ψ1

 (γ, 1) ;

(β, α) ;
z

 , (13)

which was studied by Prabhakar [84].

For a large number of other Mittag-Le�er
type functions, which are essentially contained
in (or analogous to) the general Fox-Wight func-
tion Ψ∗(z) or Ψ(z) de�ned by (11), the inter-
ested reader should be referred to the recent
works [103], [113] and [114] (see also [142]).

Various special higher transcendental func-
tions of the Mittag-Le�er and the Fox-Wright
types are known to play an important rôle in
the theory of fractional and operational calculus
and their applications in the basic processes of
evolution, relaxation, di�usion, oscillation, and
wave propagation. Just as we have remarked
above, the Mittag-Le�er type functions have
only recently been calculated numerically in the
whole complex plane (see, for example, [48] and
[96]; see also [1] and [78]). Furthermore, several
general families of Mittag-Le�er type functions

c© 2021 Journal of Advanced Engineering and Computation (JAEC) 139



VOLUME: 5 | ISSUE: 3 | 2021 | September

were investigated and applied recently by Srivas-
tava and Tomovski [147]).

In a series of monumental works (see, for ex-
ample, [152], [153] and [154]), Sir Edward Mait-
land Wright (1906�2005), with whom I had the
privilege to meet and discuss researches emerg-
ing from his publications on hypergeometric and
related functions during my visit to the Univer-
sity of Aberdeen in the year 1976, introduced
and systematically studied the asymptotic ex-
pansion of the following Taylor-Maclaurin series
(see [152, p. 424]):

Eα,β(φ; z) :=

∞∑
n=0

φ(n)

Γ(αn+ β)
zn (14)(

α, β ∈ C; <(α) > 0
)
,

where φ(t) is a function satisfying suitable con-
ditions. Wright's above-cited papers were mo-
tivated essentially by the earlier developments
reported for simpler cases by Magnus Gustaf
(Gösta) Mittag-Le�er (1846�1927) in 1905,
Anders Wiman (1865�1959) in 1905, Ernest
William Barnes (1874�1953) in 1906, Godfrey
Harold Hardy (1877�1947) in 1905, George
Neville Watson (1886�1965) in 1913, Charles
Fox (1897�1977) in 1928, and other authors.
In particular, the aforementioned work [19] by
Bishop Ernest William Barnes (1874�1953) of
the Church of England in Birmingham consid-
ered the asymptotic expansions of functions in
the class de�ned below:

E
(κ)
α,β(s; z) :=

∞∑
n=0

zn

(n+ κ)s Γ(αn+ β)
(15)(

α, β ∈ C; <(α) > 0
)

for suitably-restricted parameters κ and s. It is
easy to deduce, from the de�nition (15), the fol-
lowing relationships with the Mittag-Le�er type
function E(κ)

α,β(s; z) of Barnes [19]:

Eα(z) = lim
s→0

{
E

(κ)
α,1(s; z)

}
(16)

and

Eα,β(z) = lim
s→0

{
E

(κ)
α,β(s; z)

}
. (17)

More interestingly, we also have the following
relationship:

lim
α→0

{
E

(κ)
α,β(s; z)

}
=

1

Γ(β)
Φ(z, s, κ)

with the classical Lerch transcendent (or the
Hurwitz-Lerch zeta function) Φ(z, s, κ) de�ned
by (see, for example, [29, p. 27, Eq. 1.11 (1)];
see also [118, p. 121, et seq.])

Φ(z, s, κ) :=

∞∑
n=0

zn

(n+ κ)s
(18)

(
κ ∈ C \ Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when
|z| = 1) .

The Hurwitz-Lerch zeta function Φ(z, s, κ) de-
�ned by (18) contains, as its special cases, not
only the Riemann zeta function ζ(s) and the
Hurwitz (or generalized) zeta function ζ(s, κ):

ζ(s) :=

∞∑
n=1

1

ns
= Φ(1, s, 1), (19)

ζ(s, κ) :=

∞∑
n=0

1

(n+ κ)s
= Φ(1, s, κ) (20)

and the Lerch zeta function `s(ξ) de�ned by (see,
for details, [29, Chapter I] and [118, Chapter 2])

`s(ξ) :=

∞∑
n=1

e2nπiξ

ns
= e2πiξ Φ

(
e2πiξ, s, 1

)
(21)

(
i =
√
−1; ξ ∈ R; <(s) > 1

)
,

but also such other important functions of An-
alytic Number Theory as the Polylogarithmic
function (or de Jonquière's function) Lis(z):

Lis(z) :=

∞∑
n=1

zn

ns
= z Φ(z, s, 1) (22)

(
s ∈ C when |z| < 1; <(s) > 1 when |z| = 1

)
and the Lipschitz-Lerch zeta function (see [118,
p. 122, Eq. 2.5 (11)]):

φ(ξ, κ, s) :=

∞∑
n=0

e2nπiξ

(n+ κ)s

= Φ
(
e2πiξ, s, κ

)
=: L (ξ, s, κ) (23)

140 c© 2021 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 5 | ISSUE: 3 | 2021 | September

(
κ ∈ C \ Z−0 ; <(s) > 0 when ξ ∈ R \ Z;

<(s) > 1 when ξ ∈ Z
)
,

which was �rst studied by Rudolf Lipschitz
(1832�1903) and Matyá² Lerch (1860�1922)
in connection with Dirichlet's famous theorem
on primes in arithmetic progressions (see, for
details, [105] and [106]).

Asymptotic expansions of such functions as
those in the class of the Mittag-Le�er type func-
tion E

(κ)
α,β(s; z) de�ned by (15), and the classi-

cal Mittag-Le�er functions Eα(z) and Eα,β(z)
de�ned by (9), were discussed by Barnes [19],
as we have indicated above. Moreover, as al-
ready pointed out categorically and repeatedly
in many subsequent publications including (for
example) the one by Srivastava et al. [144,
p. 503, Eq. (6.3)] for the following �general-
ized" M -series introduced recently by Sharma
and Jain [97] by

α,β

pMq(a1, · · · , ap; b1, · · · , bq; z)

=

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

Γ(αk + β)

=
1

Γ(β)

· p+1Ψ∗q+1

 (a1, 1) , · · · , (ap, 1) , (1, 1);

(b1, 1) , · · · , (bq, 1) , (β, α);
z


=

Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

· p+1Ψq+1

 (a1, 1) , · · · , (ap, 1) , (1, 1);

(b1, 1) , · · · , (bq, 1) , (β, α);
z


(24)

the last relationship in (24) exhibits the fact
that the so-called generalized M -series is, in
fact, an obvious (rather trivial) variant of the
Fox-Wright function pΨ

∗
q de�ned by (6).

A natural uni�cation and generalization of the
Fox-Wright function pΨ

∗
q de�ned by (6) as well

as the Hurwitz-Lerch zeta function Φ(z, s, κ) de-
�ned by (18) was indeed accomplished by intro-
ducing essentially arbitrary numbers of numer-
ator and denominator parameters in the de�ni-

tion (18). For this purpose, in addition to the
symbol ∇∗ de�ned by

∇∗ :=

 p∏
j=1

ρ
−ρj
j

 ·
 q∏
j=1

σ
σj

j

 , (25)

the following notations will be employed:

∆ :=

q∑
j=1

σj −
p∑
j=1

ρj (26)

and

Ξ := s+

q∑
j=1

µj −
p∑
j=1

λj +
p− q

2
. (27)

Then the extended Hurwitz-Lerch zeta function

Φ
(ρ1,··· ,ρp;σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, κ)

is de�ned by [144, p. 503, Equation (6.2)] (see
also [101] and [119])

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, κ)

:=

∞∑
n=0

p∏
j=1

(λj)nρj

n! ·
q∏
j=1

(µj)nσj

zn

(n+ κ)s
(28)

(
p, q ∈ N0; λj ∈ C (j = 1, · · · , p); κ, µj ∈

C \ Z−0 (j = 1, · · · , q); ρj , σk ∈ R+ (j =
1, · · · , p; k = 1, · · · , q); ∆ > −1 when s, z ∈ C;

∆ = −1 and s ∈ C when |z| < ∇∗;

∆ = −1 and <(Ξ) >
1

2
when |z| = ∇∗

)
.

For an interesting and potentially useful fam-
ily of λ-generalized Hurwitz-Lerch zeta func-
tions, which further extend the multi-parameter
Hurwitz-Lerch zeta function

Φ
(ρ1,··· ,ρp;σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, κ)

de�ned by (28), was introduced and investi-
gated systematically in a recent paper by Sri-
vastava [102], who also discussed their poten-
tial application in Number Theory by appropri-
ately constructing a presumably new continuous
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analogue of Lippert's Hurwitz measure and also
considered some other statistical applications
of these families of the λ-generalized Hurwitz-
Lerch zeta functions in probability distribution
theory (see also the references to several related
earlier works cited by Srivastava [102]).

Remark 1. If we set

s = 0, p 7→ p+ 1

(ρ1 = · · · = ρp = 1; λp+1 = ρp+1 = 1)

and

q 7→ q + 1

(σ1 = · · · = σq = 1; µq+1 = β; σq+1 = α) ,

then (28) reduces immediately to the M -series
in (24).

Remark 2. If, in Wright's de�nition (14) of
1940 in [152], we set α = β = 1 and

φ(n) =

p∏
j=1

Γ(aj +Ajn)

q∏
j=1

Γ(bj +Bjn)

(n ∈ N0) (29)

or, alternatively, if we let α→ 0, β = 1 and

φ(n) =

p∏
j=1

Γ(aj +Ajn)

n! ·
q∏
j=1

Γ(bj +Bjn)

(n ∈ N0) (30)

or, more simply, if we put

φ(n) =

Γ(αn+ β)
p∏
j=1

Γ(aj +Ajn)

n! ·
q∏
j=1

Γ(bj +Bjn)

(n ∈ N0),

(31)

then (14) would immediately yield the familiar
Fox-Wright hypergeometric function pΨq(z) de-
�ned by (6).

Finally, in this section, we introduce the fol-
lowing interesting uni�cation of the de�nitions
in (14) and (28) for suitably-restricted function
ϕ(τ):

Eα,β(ϕ; z, s, κ) :=

∞∑
n=0

ϕ(n)

(n+ κ)s Γ(αn+ β)
zn

(32)(
α, β ∈ C; <(α) > 0

)
,

where the parameters α, β, s and κ are appro-
priately constrained as above.

Remark 3. Clearly, if we replace the sequence
{ϕ(n)}∞n=0 in the de�nition (32) by the sequence
{φ(n)}∞n=0, we have

Eα,β(φ; z) = lim
s→0
{Eα,β(ϕ; z, s, κ)}

∣∣
ϕ≡φ. (33)

Moreover, if in the de�nition (32), we set α =
β = 1 and

ϕ(n) =

p∏
j=1

(λj)nρj

q∏
j=1

(µj)nσj

(n ∈ N0), (34)

then the de�nition (32) will immediately yield
the de�nition (28) of the extended Hurwitz-
Lerch zeta function

Φ
(ρ1,··· ,ρp;σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, κ).

Alternatively, in the special case of (32) when
α→ 0, β = 1 and

ϕ(n) =

p∏
j=1

(λj)nρj

n! ·
q∏
j=1

(µj)nσj

(n ∈ N0) (35)

or, more simply, when we set

ϕ(n) =

Γ(αn+ β)
p∏
j=1

(λj)nρj

n! ·
q∏
j=1

(µj)nσj

(n ∈ N0), (36)

we are led to the extended Hurwitz-Lerch zeta
function

Φ
(ρ1,··· ,ρp;σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, κ)

de�ned by (28).

3. Fractional-Calculus

Operators with

Eα,β(ϕ; z, s, κ) as the
Kernel

We begin this section by remarking that, not
only the Fox-Wright hypergeometric function
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pΨq(z) de�ned by (6), but also much more
general functions such as (for example) Meijer's
G-function and Fox's H-function, have already
been used as kernels of many di�erent families
of fractional-calculus operators (see, for details,
[125]. [126] and [142]; see also the references
cited in each of these earlier works). As a matter
of fact, Srivastava et al. [126] not only used
the Riemann-Liouville type fractional integrals
with the Fox H-function and the Fox-Wright
hypergeometric function pΨq(z) as kernels, but
also applied their results to the substantially
more general H-function (see, for example, [22]
and [130]).

Wright's function Eα,β(ϕ; z) in (14), which
was introduced in [152] in 1940, has appeared
recently in [86] in connection with fractional cal-
culus, but without giving due credits to Wright
[152]. Here, in this section, we begin by the
following general family of operators of frac-
tional integrals and fractional derivatives of the
Riemann-Liouville kind, which involve the func-
tion Eα,β(ϕ; z, s, κ) in their kernel.

De�nition 3. The general right-sided frac-
tional integral operator Iµa+(ϕ; s, κ) and the
general left-sided fractional integral operator
Iµa−(ϕ; z, s, κ, ν), and the corresponding frac-
tional derivative operators Dµa+(ϕ; z, s, κ, ν) and
Dµa−(ϕ; z, s, κ, ν), each of the Riemann-Liouville
type, are de�ned by(
Iµa+(ϕ; z, s, κ, ν)f

)
(x)

=

∫ x

a

(x− t)µ−1

Γ(µ)
Eα,β

(
ϕ; z(x− t)ν , s, κ

)
f(t)dt

(37)(
x > a; < (µ) > 0

)
,(

Iµa−(ϕ; z, s, κ, ν)f
)

(x)

=

∫ a

x

(t− x)
µ−1

Γ(µ)
Eα,β

(
ϕ; z(t− x)ν , s, κ

)
f(t)dt

(38)(
x < a; < (µ) > 0

)
and(

Dµa±(ϕ; z, s, κ, ν)f
)

(x)

=

(
± d
dx

)n (
In−µa± (ϕ; z, s, κ, ν)f

)
(x) (39)

(
< (µ) = 0; n = [< (µ)] + 1

)
,

where the function f is in the space L(a, b) of
Lebesgue integrable functions on a �nite closed
interval [a, b] (b > a) of the real line R given by

L(a, b) =

{
f : ‖f‖1 =

∫ b

a

|f (x)|dx <∞

}
,

(40)

it being tacitly assumed that, in situations such
as those occurring in conjunction with the us-
ages of the de�nitions in (37), (38) and (39), the
point a in all such function spaces as (for ex-
ample) the function space L(a, b) coincides pre-
cisely with the lower terminal a in the integrals
involved in the de�nitions (37), (38) and (39).

Remark 4. It is easily seen from the de�nition
(32) that

dn

dxn
{
xµ−1 Eα,β

(
ϕ; zxν , s, κ

)}
= xµ−n−1

·
∞∑
k=0

ϕ(k)

(k + κ)s Γ(αk + β)

Γ(νk + µ)

Γ
(
νk + µ− n

) (zxν)k
(41)(

n ∈ N0; <(µ) > 0; <(ν) > 0; <(α) > 0
)
,

which, in the special case when µ = β and ν = α,
yields

dn

dxn
{
xβ−1 Eα,β

(
ϕ; zxα, s, κ

)}
= xβ−n−1 Eα,β−n

(
ϕ; zxα, s, κ

)
(42)(

n ∈ N0; <(α) > 0; <(β) > 0
)
,

provided that each member of the equations (41)
and (42) exists.

Remark 5. Upon setting

I
{
tµ−1 Eα,β

(
ϕ; ztν , s, κ

)}
(x)

=

∫ x

0

tµ−1 Eα,β
(
ϕ; ztν , s, κ

)
dt, (43)

if we make use of term-by-term integration in
conjunction with the de�nition (32), we �nd that

I
{
tµ−1 Eα,β

(
ϕ; ztν , s, κ

)}
(x)

= xµ
∞∑
k=0

ϕ(k)

(k + κ)s Γ(αk + β)

· Γ(νk + µ)

Γ
(
νk + µ+ 1

) (zxν)k (44)
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(
<(µ) > 0; <(ν) > 0; <(α) > 0

)
.

provided that the integral exists. By iterating
this process of integration n−1 times for n ∈ N,
we are led eventually to the following integral
formula:

In
{
tµ−1 Eα,β

(
ϕ; ztν , s, κ

)}
(x)

= xµ+n−1
∞∑
k=0

ϕ(k)

(k + κ)s Γ(αk + β)

· Γ(νk + µ+ n− 1)

Γ
(
νk + µ+ n

) (
zxν
)k

(45)

(
n ∈ N; <(µ) > 0; <(ν) > 0; <(α) > 0

)
.

In particular, when µ = β and ν = α, we �nd
from (45) that

In
{
tβ−1 Eα,β

(
ϕ; ztα, s, κ

)}
(x)

= xβ+n−1 Eα,β+n
(
ϕ; zxα, s, κ

)
(46)(

n ∈ N; <(α) > 0; <(β) > 0
)
,

provided that each member of the equations (45)
and (46) exists.

Remark 6. In terms of the operator L of the
Laplace transform given by

L{f(τ) : s} :=

∫ ∞
0

e−sτ f(τ) dτ =: F (s) (47)(
<(s) > 0

)
,

where the function f(τ) is so constrained that
the integral exists, it is easily seen for the func-
tion Eα,β

(
ϕ; z, s, κ

)
, de�ned above by (32), that

L
{
τµ−1 Eα,β

(
ϕ; zτν , s, κ

)
: s
}

=
1

sµ

∞∑
k=0

ϕ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

( z
sν

)k
(48)

(
<(s) > 0; <(µ) > 0; <(ν) > 0; <(α) > 0

)
,

provided that each member of (48) exists. Ob-
viously, when µ = β and ν = α, the Laplace
transform formula (48) simpli�es to the follow-
ing form:

L
{
τβ−1 Eα,β

(
ϕ; zτα, s, κ

)
: s
}

=
1

sµ

∞∑
k=0

ϕ(k)

(k + κ)s

( z
sα

)k
(49)

(
<(s) > 0; <(α) > 0; <(β) > 0

)
.

Remark 7. By appropriately applying the
Laplace transform formula (48) in conjunc-
tion with the de�nition (39), it is not di�-
cult to deduce the Laplace transform formula
for the generalized fractional derivative of the
Riemann-Liouville form given by (39). The gen-
eralized fractional derivative of the Liouville-
Caputo form involving the general function
Eα,β

(
ϕ; z, s, κ

)
, given by (32), can indeed be de-

�ned and handled analogously. For the sake of
brevity, we choose to leave the details involved
in these derivations as an exercise for the inter-
ested users of such types of generalized fractional
derivatives.

By applying the limit formula (33) or, al-
ternatively, if we make use of the de�nitions
in (14) and (47), we �nd for Wright's function
Eα,β

(
φ; z
)
that

L
{
τµ−1 Eα,β

(
ϕ; zτν

)
: s
}

=
1

sµ

∞∑
k=0

φ(k) Γ(νk + µ)

Γ(αk + β)

( z
sν

)k
(50)

(
<(s) > 0; <(µ) > 0; <(ν) > 0; <(α) > 0

)
,

which, in the special case when ν = α and µ = β,
yields

L
{
τβ−1 Eα,β

(
ϕ; zτα

)
: s
}

=
1

sβ

∞∑
k=0

φ(k)
( z
sβ

)k
(51)

(
<(s) > 0; <(α) > 0; <(β) > 0

)
.

Furthermore, if we choose the general se-
quence {ϕ(n)}∞n=0 as follows:

ϕ(n) =
(γ)n
n!

(n+ κ)s (n ∈ N0),

then this last Laplace transform formula (49)
reduces to a known result in the form given by
(see [84]):

L
{
τβ−1 Eγα,β

(
zτα

)
: s
}

=
1

sβ

∞∑
k=0

(γ)k
k!

( z
sα

)k
=

sγα−β

(sβ − z)γ
(52)

(
<(s) > 0; <(α) > 0; <(β) > 0;

)
,
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where the Mittag-Le�er type function Eγα,β(z)
is de�ned by the equation (13). More generally,
if the sequence {ϕ(n)}∞n=0 is given by (35), then
the Laplace transformation formula (52) would
yield the following result:

L
{
τµ−1 Φ

(ρ1,··· ,ρp;σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(
zτν , s, κ

)
: s
}

=
Γ(µ)

sµ
Φ

(ν,ρ1,··· ,ρp;σ1,··· ,σq)
µ,λ1,··· ,λp;µ1,··· ,µq

( z
sν
, s, κ

)
(53)

(
<(s) > 0; <(µ) > 0; <(ν) > 0; <(α) > 0

)
for the extended Hurwitz-Lerch zeta function

Φ
(ρ1,··· ,ρp;σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, κ)

de�ned by (28).

In solving various applied problems, which are
modeled as initial-value problems for fractional
di�erential equations involving special cases of
the fractional-calculus operators given by De�-
nition 3, use is made of the Laplace transform
method based upon such Laplace transform for-
mulas as those listed in Remark 6.

4. Fractional-order

modeling and analysis

of initial-value problems

In this section, we present several examples
which would illustrate the fractional-order mod-
eling and analysis of a variety of initial-value
problems involving ordinary and partial di�eren-
tial equations. For simplicity and convenience,
we consider the case a = 0 of the de�nitions
given by the equations (1), (2) and (3) as fol-
lows:

(
RLIµ0+f

)
(x) =

∫ x

0

(x− t)µ−1

Γ(µ)
f(t)dt (54)(

x > 0; < (µ) > 0
)
,(

RLIµ0−f
)

(x) =

∫ a

x

(t− x)
µ−1

Γ(µ)
f(t) dt (55)(

x < 0; <(µ) > 0
)

and(
RLDµ

0±f
)

(x) =

(
± d
dx

)n (
In−µ0± f

)
(x) (56)(

< (µ) = 0; n = [<(µ)] + 1
)
,

where, as before, the function f is locally inte-
grable, < (µ) denotes the real part of the com-
plex number µ ∈ C and [< (µ)] means the great-
est integer in < (µ). Thus, for the Riemann-
Liouville fractional derivative operator Dµ0+ of
order µ in the de�nition (56), it is easily seen
that

L
{(

RLD
µ

0+f
)

(t) : s
}

= sµ F (s)−
n−1∑
k=0

sk
(
RLD

µ−k−1
0+ f

)
(t)

∣∣∣∣∣
t=0

(57)(
n− 1 5 <(µ) < n; n ∈ N

)
,

where L is the operator of the Laplace transform
given by (47). However, for the ordinary deriva-
tive f (n)(t) order n ∈ N0), it is known that

L
{
f (n)(t) : s

}
= sn F (s)−

n−1∑
k=0

sk f (n−k−1) (t)

∣∣∣∣∣
t=0

(n ∈ N0)

(58)

or, equivalently, that

L
{
f (n)(t) : s

}
= sn F (s)−

n−1∑
k=0

sn−k−1 f (k) (0+) (n ∈ N0),

(59)

where, as well as in all of such situations in this
paper, an empty sum is to be interpreted as 0.

Clearly, from the Laplace transform formu-
las (57) and (58), it is observed that the ini-
tial values such as those that occur in (57) are
usually not interpretable physically in a given
initial-value problem. Besides, unfortunately,
the Riemann-Liouville fractional derivative of a
constant is not zero. These and other situa-
tions and disadvantages are overcome at least
partially by means of the Liouville-Caputo frac-
tional derivative which, as we indicated in the
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introductory Section 1, was considered in an ear-
lier work dated 1832 by Joseph Liouville (1809�
1882) [64, p. 10] and which has arisen in several
important recent works, dated 1969 onwards, by
Michele Caputo (see, for details, [82, p. 78 et
seq.]; see also [54, p. 90 et seq.]).

In many recent works, especially in the the-
ory of viscoelasticity and in hereditary solid me-
chanics, the following de�nition dated 1832 of
Liouville [64] and dated 1969 of Caputo [23] is
adopted for the fractional derivative of order
µ > 0 of a causal function f (t), that is,

f (t) = 0 (t < 0),

given by

dµ

dxµ
{f(x)} =

(
LCDµ

0+f
)

(x)

:=


f (n)(x) (µ = n ∈ N0)

1

Γ(n− µ)

∫ x

0

f (n) (t)

(x− t)µ−n+1 dt(
n− 1 < <(µ) < n; n ∈ N

)
,

(60)

where

n =

 [<(µ)] + 1 (µ 6= N0)

µ (µ ∈ N0),
(61)

f (n)(t) denotes, as before, the usual (ordinary)
derivative of f(t) of order n and Γ is the familiar
(Euler's) Gamma function.

One can apply the above-introduced notion
in order to model and analyze some basic situa-
tions in applied mathematical and physical sci-
ences, which are treated by simple, linear, ordi-
nary or partial, di�erential equations, since [see
the equation (57) and the de�nition in (60)]

L
{(

LCDµ
0+f

)
(x) : s

}
= sµF (s)−

n−1∑
k=0

sµ−k−1f (k) (0+) (62)

(n− 1 < α 5 n; n ∈ N0) ,

which, just as the Laplace transform formu-
las (58) or (59), is obviously and practically
more suited for initial-value problems than the
Laplace transform formula (57) (see, for details,

the recent article Goren�o et al. [36], and also
the monographs by Podlubny [82] and Kilbas et
al. [54]).

The following relationship between the
Riemann-Liouville fractional derivative RLDµ

0+

and the Liouville-Caputo fractional derivative
LCDµ

0+ of order µ is known (see, for example,
[54, p. 91, Eq. (2.4.1)] with a = 0):(
LCDµ

0+f
)

(x)

=

(
RLDµ

0+

{
f(t)−

n−1∑
k=0

f (k)(0)

k!
tk

})
(x),

(63)

where n is given by (61). Equivalently, since

(
RLDµ

0+

{
tλ−1

})
(x) =

Γ(λ)

Γ(λ− µ)
xλ−µ−1 (64)(

<(λ) > 0; <(µ) = 0
)
,

the relationship (63) can be written as follows:

(
LCDµ

0+f
)

(x) =
(
RLDµ

0+f
)

(x)

−
n−1∑
k=0

f (k)(0)

Γ(k − µ+ 1)
xk−µ, (65)

where n is given, as in (63), by (61).

We give below three examples of how
fractional-order derivatives are potentially use-
ful in the modeling and analysis of applied prob-
lems.

Example 1. The following �rst- and second-
order linear ordinary di�erential equations:

dy
dt

+ cy = 0 (c > 0),

d2y
dt2

+ cy = 0 (c > 0)

are usually referred to as the relaxation equation
and the oscillation equation, respectively. Also,
in the theory of partial di�erential equations, the
following partial di�erential equations:

∂2u

∂x2
= k

∂u

∂t
(k > 0)

∂2u

∂x2
= k

∂2u

∂t2
(k > 0)
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are known as the di�usion (or heat) equation and
the wave equation, respectively.

Let us recall that the basic processes of re-
laxation, di�usion, oscillations and wave prop-
agation have been revisited by several authors
by introducing fractional-order derivatives in the
governing (ordinary or partial) di�erential equa-
tions. This leads to superslow or intermediate
processes that, in mathematical physics, we may
refer to as fractional phenomena. The analy-
sis of each of these phenomena, when carried
out by means of fractional calculus and Laplace
transforms, involves such special functions in
one variable as those of the Mittag-Le�er and
Fox-Wright types. These useful special functions
are investigated systematically as relevant cases
of the general class of functions which are pop-
ularly known as Fox's H-function after Charles
Fox (1897�1977) who initiated a detailed study
of these functions as symmetrical Fourier ker-
nels (see, for details, [125] and [128]). As a mat-
ter of fact, as we shall see in Section 5 of this
article, mathematical modeling and analysis of
real-world and other applied problems are being
accomplished widely and extensively by making
use of fractional-order derivatives instead of pos-
itive integer-order derivatives.

We now summarize below some recent inves-
tigations by Goren�o et al. [36] who did indeed
make references to numerous earlier closely-
related works on this subject.

I. The Fractional (Relaxation-Oscillation)
Ordinary Di�erential Equation

dαu
dtα

+ cα u (t;α) = 0 (66)

(c > 0; 0 < α 5 2)

Case I.1: Fractional Relaxation (0 < α 5 1)

Initial Condition: u (0+;α) = u0

Case I.2: Fractional Oscillation (1 < α 5 2)

Initial Conditions:

{
u (0+;α) = u0

u̇ (0+;α) = v0

with v0 ≡ 0 for continuous dependence of the
solution on the parameter α also in the tran-

sition from α = 1− to α = 1+, u̇ being the
time-derivative of u.

Explicit Solution (in both cases):

u (t;α) = u0 Eα
(
− (ct)

α )
= u0

∞∑
n=0

(−1)n

Γ(αn+ 1)
(ct)αn

=



u0

(
1− (ct)α

Γ(1 + α)

)
≈ u0 exp

(
− (ct)α

Γ(1 + α)

)
(t→ 0+)

u0
(ct)αΓ(1− α)

(t→∞),

where Eα (z) denotes the familiar Mittag-Le�er
function de�ned, as in (9), by (see, for example,
[129, p. 42, Equation II.5 (23)])

Eα (z) :=

∞∑
n=0

zn

Γ (αn+ 1)

=
1

2πi

∫ (0+)

−∞

wα−1 ew

wα − z
dw

(α > 0; z ∈ C) .

II. The Fractional (Di�usion-Wave) Par-
tial Di�erential Equation

∂2βu

∂t2β
= k

∂2u

∂x2
(67)

(k > 0; −∞ < x <∞; 0 < β 5 1) ,

where u = u (x, t;β) is assumed to be a causal
function of time (t > 0) with

u (∓∞, t;β) = 0.

Case II.1: Fractional Di�usion
(
0 < β 5 1

2

)
Initial Condition: u (x, 0+;β) = f (x)

Case II.2: Fractional Wave
(
1
2 < β 5 1

)
Initial Conditions:

{
u (x, 0+;β) = f (x)

u̇ (x, 0+;β) = g (x)

with g (x) ≡ 0 for continuous dependence of the
solution on the parameter β also in the transi-
tion from β = 1

2− to β = 1
2+.
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Explicit Solution (in both cases):

u (x, t;β) =

∫ ∞
−∞
Gc (ξ, t;β) f (x− ξ) dξ, (68)

where the Green function Gc (x, t;β) is given by

|x| Gc (x, t;β) =
z

2

∞∑
n=0

(−z)n

n! Γ (1− β − βn)
(69)(

z =
|x|√
ktβ

; 0 < β < 1

)
,

which can readily be expressed in terms of
Wright's generalized Bessel function or the
Bessel-Wright function Jµν (z) de�ned by (see,
for example, [129, p. 42, Equation II.5 (22)])

Jµν (z) :=

∞∑
n=0

(−z)n

n! Γ (µn+ ν + 1)

= 0Ψ2

 ;

(1, 1), (ν + 1, µ);
− z

 . (70)

Example 2. Fractional-order kinetic equations
of di�erent forms have been widely used, in
recent years, in the modeling and analysis of
several important problems of physics and as-
trophysics. In fact, during the past decade
or so, fractional-order kinetic equations seem
to have gained popularity due mainly to the
discovery of their relation with the theory of
CTRW (Continuous-Time Random Walks) in
[46]. These equations are investigated with
the objective to determine and interpret cer-
tain physical phenomena which govern such pro-
cesses as di�usion in porous media, reaction and
relaxation in complex systems, anomalous di�u-
sion, and so on (see also [43], [59] and [107]).

For an arbitrary reaction, which is character-
ized by a time-dependent quantity N = N(t), it
is possible to calculate the rate of change dN

dt to
be a balance between the destruction rate d and
the production rate p of N , that is,

dN
dt

= −d + p.

By means of feedback or other interaction mech-
anism, the destruction and the production de-
pend on the quantity N itself, that is,

d = d(N) and p = p(N).

Since the destruction or the production at a time
t depends not only on N(t), but also on the past
history N(η) (η < t) of the variable N , such de-
pendence is, in general, complicated. This may
be formally represented by the following equa-
tion (see [39]):

dN
dt

= −d (Nt) + p (Nt) , (71)

where Nt denotes the function de�ned by

Nt (t∗) = N (t− t∗) (t∗ > 0).

Haubold and Mathai [39] studied a special case
of the equation (71) in the following form:

dNj
dt

= −cj Nj (t) , (72)

that is,

dNj(t)

Nj(t)
= −cj dt, (73)

with the initial condition that

Nj (t)
∣∣
t=0

= N0,

is the number density of species j at time t = 0
and the constant cj > 0. This is known as a
standard kinetic equation. The solution of the
equation (72) is easily seen to be given by

Nj (t) = N0 e−cjt, (74)

which, upon integration, yields the following al-
ternative form of the equation (72):

N (t)−N0 = c · 0D
−1
t {N (t)} , (75)

where 0D
−1
t is the standard integral operator

and c is a constant of integration.

The fractional-order generalization of the
equation (75) is given as in the following form
(see [39]):

N (t)−N0 = cν
(
RLIν0+N

)
(t) (76)

in terms of the familiar right-sided Riemann-
Liouville fractional integral operator of order ν
de�ned, as in (54), by (see, for example, [54] and
[70]; see also [26]) de�ned by(

RLIν0+f
)

(t) =
1

Γ (ν)

∫ t

0

(t− u)
ν−1

f (u) du

(77)(
t > 0; < (ν) > 0

)
.
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For a considerably large number of extensions
and further generalizations of the fractional-
order kinetic equation (76), the interested reader
should refer to [59] and [107] as well as the other
relevant references which are cited in each of
these publications.

Here, in this example, we propose to investi-
gate solution of a family of fractional-order ki-
netic equations which are associated with the
general function Eα,β(ϕ; z, s, κ) de�ned by (32),
which we have introduced in this article. The
results presented here are general enough and
capable of being specialized appropriately to in-
clude solutions of the corresponding (known or
new) fractional-order kinetic equations associ-
ated with simpler functions.

Theorem 1. Let c, µ, ν, ρ, σ ∈ R+. Suppose
also that the general function Eα,β(ϕ; z, s, κ), de-
�ned by (32), exists. Then the solution of the
following generalized fractional kinetic equation:

N (t)−N0 t
µ−1 Eα,β

(
ϕ; ztν , s, κ

)
= −cρ

(
RLIσ0+N

)
(t) (78)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−cρtσ)
r

·
∞∑
k=0

ϕ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β) Γ(νk + σr + µ)
(ztν)

k

(79)

(t > 0),

provided that the right-hand side of the solution
asserted by (79) exists.

Proof. First of all, by the Laplace Convolution
Theorem, it is observed from the de�nition (77)
that

L
{(

RLIσ0+N
)

(t) : s
}

=

∫ ∞
0

e−sτ
(

1

Γ(σ)

∫ t

0

(t− τ)σ−1N(τ) dτ
)
dt

= L
{
τσ−1

Γ(σ)
: s

}
· L {N(τ) : s}

=
N (s)

sσ
(
<(s) > 0; <(σ) > 0

)
, (80)

where

N (s) := L{N(t) : s} =

∫ ∞
0

e−st N(t) dt. (81)

Thus, in view of the Laplace transform formula
(48), we �nd upon taking the Laplace transform
of each member of the generalized fractional ki-
netic equation (78) that

N (s)− N0

sµ

∞∑
k=0

ϕ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

( z
sν

)k
= − c

ρ

sσ
N (s)(

<(s) > 0; <(µ) > 0; <(ν) > 0; <(σ) >

0; <(α) > 0
)
, so that(

1 +
cρ

sσ

)
N (s)

= N0

∞∑
k=0

ϕ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

zk

sνk+µ
,

that is, that

N (s) = N0

(
1 +

cρ

sσ

)−1
·
∞∑
k=0

ϕ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

zk

sνk+µ

= N0

∞∑
r=0

(−1)r
(
cρ

sσ

)r
·
∞∑
k=0

ϕ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

zk

sνk+µ

= N0

∞∑
r=0

(−cρ)r

·
∞∑
k=0

ϕ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

zk

sσr+νk+µ
(82)

(
<(s) > 0; <(µ) > 0; <(ν) > 0; <(σ) >

0; <(α) > 0
)
, where we have used the follow-

ing geometric series:(
1 +

cρ

sσ

)−1
=

∞∑
r=0

(−1)r
(
cρ

sσ

)r
,

(∣∣∣∣ cρsσ
∣∣∣∣ < 1

)
.

We now invert the Laplace transform occur-
ring in (82) by using the following well-known
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identity:

L
{
tλ : s

}
=

Γ(λ+ 1)

sλ+1

⇐⇒ L−1
(

1

sλ+1

)
=

tλ

Γ(λ+ 1)
(83)(

<(λ) > −1; <(s) > 0
)
.

We are thus led to the solution (79) asserted by
Theorem 1. This evidently completes the proof
of Theorem 1.

Remark 8. The distinct advantage of using the
general function Eα,β(ϕ; z, s, κ), de�ned by (32),
in the non-homogeneous term of the fractional-
order kinetic equation (78) lies in its general-
ity so that solutions of other kinetic equations
involving relatively simpler non-homogeneous
terms can be derived by appropriately special-
izing the solution (79) asserted by Theorem 1.

Theorem 2. Let c, µ, ν, ρ, σ ∈ R+. Suppose
also that the general function Eα,β(φ; z), de�ned
by (14), exists. Then the solution of the follow-
ing generalized fractional kinetic equation:

N (t)−N0 t
µ−1 Eα,β

(
φ; ztν

)
= −cρ

(
RLIσ0+N

)
(t) (84)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−cρtσ)
r

·
∞∑
k=0

φ(k) Γ(νk + µ)

Γ(αk + β) Γ(νk + σr + µ)
(ztν)

k (85)

(t > 0),

provided that the right-hand side of the solution
asserted by (85) exists.

Proof. Our demonstration of Theorem 2 would
run parallel that of Theorem 1. Use is made, in
this case, of the de�nition (14) and the Laplace
transform formula (50). The details are being
omitted here.

Theorem 3. For c, µ, ν, ρ, σ ∈ R+, let the ex-
tended Hurwitz-Lerch zeta function:

Φ
(ρ1,··· ,ρp;σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(
z, s, κ

)
,

de�ned by (28), exist. Then the solution of the
following generalized fractional kinetic equation:

N (t)−N0 t
µ−1 Φ

(ρ1,··· ,ρp;σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(
ztν , s, κ

)
= −cρ

(
RLIσ0+N

)
(t) (86)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−cρtσ)
r Γ(µ)

Γ(σr + µ)

· Φ(ν,ρ1,··· ,ρp;ν,σ1,··· ,σq)
µ,λ1,··· ,λp;σr+µ,µ1,··· ,µq

(
ztν , s, κ

)
(87)

(t > 0),

provided that the right-hand side of the solution
asserted by (87) exists.

Proof. Theorem 3 can be proven, along the lines
analogous to those of our demonstration of The-
orem 1 and Theorem 3, by applying the de�-
nition (28) and the Laplace transform formula
(53). We choose to skip the details invoved.

Example 3. In this third example, we choose to
recall an earlier investigation of an initial-value
problem in which Hilfer (see [43]) considered
the following eigenvalue equation for the general
(Hilfer's) two-parameter fractional derivative op-
erator HDα,β

0+ of order α (0 < α < 1) and type
β (0 5 β 5 1) de�ned by the equation (5):(

HDα,β
0+ f

)
(x) = λf (x) (x > 0) (88)

under the initial condition given, in terms of the
corresponding two-parameter fractional integral
operator HIα,β0+ , by(

HI
(1−β)(1−α)
0+ f

)
(0+) = c0, (89)

where it is tacitly assumed that(
HI

(1−β)(1−α)
0+ f

)
(0+)

:= lim
x→0+

{(
HI

(1−β)(1−α)
0+ f

)
(x)
}
,

c0 being a given constant and with the pa-
rameter λ being the eigenvalue. The condition
x > 0 in Eq. (88) was not mentioned explic-
itly by Hilfer [43, p. 115, Eq. (118)]. How-
ever, since the Riemann-Liouville, the Liouville-
Caputo and the Hilfer operators of fractional cal-
culus are all de�ned by de�nite integrals over the
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obviously non-empty interval (0, x), such a con-
dition as x > 0 is tacitly assumed to be satis�ed
in all developments involving each of these op-
erators of fractional calculus.

In terms of the two-parameter Mittag-Le�er
function de�ned by (9), Hilfer's over two decades
old solution of (88) under the initial condition
(89) is given by (see [43, p. 115, Eq. (124)]):

f (x) = c0 x
(1−β)(α−1) Eα,α+β(1−α) (λxα) .

(90)

Now, upon setting β = 0 and c0 = 1 in Hilfer's
solution (89) (with, of course, x > 0), we are led
to corrected version of the claimed solution (see
[148, p. 802, Eq. (3.1)]) of the following initial-
value problem:(

RLDα
0+f

)
(x) = λf (x) (x > 0), (91)

together with the initial condition:

(
RLI1−α0+ f

)
(0+) = 1, (92)

where, just as in Eq. (89),(
RLI1−α0+ f

)
(0+) := lim

x→0+

{(
RLI1−α0+ f

)
(x)
}

in the form given by

f (x) = xα−1 Eα,α (λxα) , (93)

in terms of the two-parameter Mittag-Le�er
function de�ned by (9).

Remark 9. In each of the above examples, we
have made use of the classical Laplace transform
in solving the considered fractional-order ordi-
nary and partial di�erential equations. Other
known or classical integral transforms can pos-
sibly also be suitably applied in some of these
cases. Nevertheless, it may be immensely and
potentially helpful to investigate the possibility
of developing some kind of an integral or other
transformation which would enable us to �nd
solutions of fractional-order di�erential equa-
tions by �rst reducing them to the corresponding
integer-order di�erential equations.

5. Developments in Recent

Years

In recent years, a remarkably wide variety
of real-world problems and issues in many
areas have been modeled and analysed by
making use of some very powerful tools, one
of which involves applications of operators of
fractional calculus. In fact, such important
de�nitions have been introduced for fractional-
order derivatives, including, for example, the
Riemann-Liouville, the Grünwald-Letnikov, the
Liouville-Caputo, the Caputo-Fabrizio and the
Atangana-Baleanu fractional-order derivatives
(see, for example, [13], [24], [26], [54], [82] and
[155]).

By using the fundamental relations of the
Riemann-Liouville fractional integral, the
Riemann-Liouville fractional derivative was
constructed, which involves the convolution
of a given function and a power-law kernel
(see, for details, [54] and [82]). The Liouville-
Caputo (LC) fractional derivative involves the
convolution of the local derivative of a given
function with a power-law function [25]. Caputo
and Fabrizio [24] and Atangana and Baleanu
[13] proposed some interesting fractional-order
derivatives based upon the exponential decay
law which is a generalized power-law function
(see [5], [8], [10], [11], [12] and [15]). The
Caputo-Fabrizio (CFC) fractional-order deriva-
tive as well as the Atangana-Baleanu (ABC)
fractional-order derivative allow us to describe
complex physical problems that follow, at the
same time, the power law and the exponential
decay law (see, for details, [5], [8], [10], [11], [12]
and [15]).

In a noteworthy earlier investigation, Sri-
vastava and Saad [137] investigated the model
of the gas dynamics equation (GDE) by
extending it to some new models involving
the time-fractional gas dynamics equation
(TFGDE) with the Liouville-Caputo (LC),
Caputo-Fabrizio (CFC) and Atangana-Baleanu
(ABC) time-fractional derivatives. They em-
ployed the Homotopy Analysis Transform
Method (HATM) in order to calculate the
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approximate solutions of TFGDE by using
LC, CFC and ABC in the Liouville-Caputo
sense and studied the convergence analysis of
HATM by �nding the interval of convergence
through the h-curves. Srivastava and Saad
[137] also showed the e�ectiveness and accuracy
of this method (HATM) by comparing the
approximate solutions based upon the LC, CFC
and ABC time-fractional derivatives.

Consider the following homogeneous time-
fractional gas dynamics equation (TFGDE):

∂αψ

∂τα
+ ψ

∂ψ

∂ς
− ψ(1− ψ) = 0, (94)

where (ς, τ) ∈ (0,∞)× (0, τ0) and 0 < α 5 1.

Srivastava and Saad [137] used the HATM
(see, for example, [58] and [90]) in order to solve
the LC, CFC and ABC analogues of the TFGDE
(94). They obtained these analogous equations

by replacing the time-fractional derivative
∂αψ

∂τα
in the TFGDE (94) by

LC
0D

α

τ ψ,
CFC

0D
α
τ ψ and ABC

0D
α
τ ψ,

successively, where the order α of the time-
fractional derivatives is constrained by

n− 1 < α 5 n (n ∈ N).

The corresponding LC, CFC and ABC time-
fractional analogues of the TFGDE (94) are
given by

LC
0D

α
τ ψ + ψ

∂ψ

∂ς
− ψ(1− ψ) = 0 (95)

(0 < α 5 1; ς ∈ R; τ > 0),

CFC
0D

α
τ ψ + ψ

∂ψ

∂ς
− ψ(1− ψ) = 0 (96)

(0 < α 5 1; ς ∈ R; τ > 0)

and

ABC
0D

α
τ ψ + ψ

∂ψ

∂ς
− ψ(1− ψ) = 0 (97)

(0 < α 5 1; ς ∈ R; τ > 0),

respectively. Here

LC
0D

α
τ and CFC

0D
α
τ

denote the time-fractional derivatives of order α
for a suitably de�ned function f(τ), which are
de�ned, respectively, by

LC
0D

α
τ

(
f(τ)

)
= Jm−αDm

(
f(τ)

)
=

1

Γ(m− α)

∫ τ

0

(τ − t)m−α−1 f(m)(t) dt

(m− 1 < α 5 m; m ∈ N; f ∈ Cmµ ; µ = −1)

and

CFC
0D

α
τ

(
f(τ)

)
=
M(α)

1− α

∫ τ

0

exp

(
−α(τ − t)

1− α

)
D
(
f(t)
)
dt

where M(α) is a normalization function such
that M(0) = M(1) = 1 and ABC

0D
α
τ

(
f(τ)

)
is

known as the ABC time-fractional derivative of
order α in the Liouville-Caputo sense given, for
a suitably de�ned function f(τ), by

ABC
0D

α
τ

(
f(τ)

)
=
M(α)

1− α

∫ τ

0

Eα

(
−α(τ − t)

1− α

)
D
(
f(t)
)
dt,

where

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)

is the Mittag-Le�er function and M(α) is a
normalization function with the same proper-
ties as in the Liouville-Caputo (LC) and the
Caputo-Fabrizio (CFC) cases. For the details
of this and other closely-related investigations,
the interested reader should see the work by
Srivastava and Saad [137]).

In the current onslaught of the Corona virus,
which is referred to as COVID-19 (see, for
details, [2], [76], [83] and [99]). As in the case
of the Corona virus, the Ebola virus can be
transmitted to others by contact with infected
body �uids, through broken skin, or through
the mucous membranes of the eyes, nose and
mouth, but the Ebola virus can also be trans-
mitted through sexual contact with a person
who has the virus or has recovered from it (see,
for details, [20]; see also the recently-published
works [75], [81], [108], [121], [123], [124], [127],
and [145] for the fractional-order modeling of
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other diseases and other biological situations).

Fractional calculus is a generalization of
the classical (or ordinary) calculus and many
researchers have paid attention to this science
as and when they encounter a number of issues
in the real world. Most of these issues do not
have exact analytical solution. This situation
naturally interests many researchers to look for
and apply numerical and approximate methods
to obtain solutions by using such methods.
There are many useful methods, such as the
homotopy analysis (see [29], [30] [89] and [63]),
He's variational iteration method (see [41]
and [43]), Adomian's decomposition method
(see [45], [44] and [46]), the Fourier spectral
methods [47], �nite di�erence schemes (see
[48]), collocation methods (see [52], [53] and
[88]), and so on. In order to �nd more about
the fractal calculus, we refer the readers to the
investigations in [54] and [82]. More recently, a
new concept was introduced for the fractional-
order operator because this operator has two
orders, the �rst representing the fractional
order and the second representing the fractal
dimension. Some recent developments in the
area of numerical techniques can be found in
(for example) [91], [140] and [141].

Our attention in this section is now drawn
toward the idea of the fractal-fractional deriva-
tive of the composite order (ρ, k) on the
fractal-fractional Ebola virus (FFEV). With
this object in view (see [9]), we replace the
derivative of integer order with respect to ζ by
the fractal-fractional derivatives based on the
power law (FFP), the exponential-law (FFE)
and the Mittag-Le�er law (FFM) kernels which
correspond to the Liouville-Caputo (LC) (see
[84]), Caputo-Fabrizio (CF) (see [93]) and the
Atangana-Baleanu (AB) (see [94]) fractional
derivatives, respectively. Here, just as we have
already mentioned in Section 4 above, we use
the term Liouvile-Caputo fractional derivative
in order to give due credit also to Liouville who,
in fact, considered such fractional derivatives
many decades earlier in 1832. This topic
has attracted many researchers and has been
applied to researches stemming from various
real-world situations (see, for example, [14].

[34], [62] and [149]).

During the past several years, many re-
searchers' focus has been directed towards
modeling and analysis of various problems
in biomathematical sciences. This branch of
science represents many distinguished data on
biological phenomena such as the Ebola and
other related viruses, the nervous system and
its impulse transmission, the bacterial cell and
its spread, et cetera (see [41] and [138]). This
has led to the modeling of many real-world
problems. As a result of problems that arise
from the real world on the basis of statistical
analysis and biological experiments, mathemat-
ical models of these problems are proposed and
most of them were studied. These proposed
models enable scientists and researchers to
study and verify the behavior of these models
separately in a biological laboratory experiment
(see [7], [21], [57] and [85]). After modeling the
biological phenomenon mathematically, that
is, as a function of time and the parameters
involved, the numerical solutions can be found
and these solutions can then be represented
in tables and �gures. Also, if the laboratory
results are available, comparison between
theoretical and laboratory results can be made.
The parameters a�ecting this system can also
be controlled appropriately. Also, one of the
advantages of mathematical modeling is the pos-
sibility of re-studying the problems many times
and at any time value without re-experimenting.

We begin by introducing the epidemiological
model of the Ebola virus as follows:

Dζβ1(ζ) = −αβ1(ζ)β2(ζ) + β β3(ζ)− γ N,
(98)

Dζβ2(ζ) = αβ1(ζ)β2(ζ)− εβ2(ζ)− δβ2(ζ),
(99)

Dζβ3(β) = δβ2(ζ)− ββ3(ζ) (100)

and

Dζβ4(ζ) = εβ2(ζ) + γN, (101)

where, as usual, Dζ = d

dζ and ζ = 0.
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In the following table, we de�ne the indepen-
dent variables and the parameters of the Ebola
virus.

Symbol de�nition

β1(ζ) The susceptible population

β2(ζ) The infected population

β3(ζ) The recovery population

β4(ζ) The population died in the region

N The total population in the region

α The rate of infection with the disease

β The rate of susceptibility

γ The rate of natural death

ε The rate of death from the disease

δ The rate of recovery from the disease

The new model is obtained upon replacing the
ordinary derivativeDζ in the above epidemiolog-
ical model in (98) to (101) by the corresponding
fractal-fractional derivative involving the power
law kernel as in the earlier work (see [9]).

FFP

0D
ρ,k
ζ β1(ζ) = −αβ1(ζ)β2(ζ) + β β3(ζ)− γ N,

(102)

FFP

0D
ρ,k
ζ β2(ζ) = αβ1(ζ)β2(ζ)− εβ2(ζ)− δβ2(ζ),

(103)

FFP

0D
ρ,k
ζ β3(ζ) = δβ2(ζ)− ββ3(ζ) (104)

and

FFP

0D
ρ,k
ζ β4(ζ) = εβ2(ζ) + γN

(
ρ, k ∈ (0, 1]

)
,

(105)

where the functions βi(ζ) (i = 1, 2, 3, 4) are
continuous in the interval (a, b) and fractal dif-
ferentiable on (a, b) with order k. The fractal-
fractional derivative of βi(ζ) of order ρ in the
Liouville-Caputo (LC) sense with the power law
are given by (see [9])

FFP

0D
ρ,k
ζ βi(ζ)

=
1

Γ(1− ρ)

d
dζk

∫ ζ

0

(ζ − τ)−ρβi(τ)dτ (106)

(0 < ρ, k 5 1; i = 1, 2, 3, 4)

and

dβi(ζ)

dζk
= lim
τ→ζ

{
βi(τ)− βi(ζ)

τk − ζk

}
. (107)

Just as we pointed out above (and also in
Section 4), we have used the term �Liouvile-
Caputo sense" in order to give due credit also
to Liouville who considered such fractional
derivatives many decades earlier in 1832.

For the relevant details of the numerical
solutions for the above model of the fractal-
fractional Ebola virus, the reader is referred
to the work of Srivastava and Saad [139].
The detailed analysis of this model and the
numerical solutions, which are presented in
[139] and in other works cited in [139] are
potentially bene�cial to biological researchers
with a view to linking these �ndings to the
biological laboratory results.

Finally, in this section, we turn to the fact
that many experiments and theories have shown
that a large number of abnormal phenomena
that occurs in the engineering and applied sci-
ences can be well-described by using discrete
fractional calculus. In particular, fractional dif-
ference equations have been found to provide
powerful tools in the modeling and analysis of
various phenomena in many di�erent �elds of
science and engineering such as those in, for ex-
ample, physics, �uid mechanics and heat con-
duction. Considerable attention has been given
in the existing literature to the subject of frac-
tional di�erence equations on the �nite time
scales (see, for example, [35]). In the current
literature on this subject, there are a few papers
which investigate the existence and uniqueness
of fractional di�erence equations in the sense of
the Riemann-Liouville (RL) fractional calculus.

We choose to recall here the work of Lu et al.
[65] investigated the existence and uniqueness of
the following uncertain fractional forward di�er-
ence equation (UFFDE) given by(

RL
ψ−1∆ψ℘

)
(z) = H1

(
z + ψ, ℘(z + ψ)

)
+H2

(
z + ψ, ℘(z + ψ)

)
εz+ψ (108)

and
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(
RL
ψ−1∆−(1−ψ)℘

)
(z)
∣∣∣
z=0

=: a0, (109)

where RL
ψ−1∆ψ denotes fractional Riemann-

Liouville type forward di�erence with 0 < ψ 5
1, and H1 and H2 are two real-valued functions
de�ned on [1,∞]×R, z ∈ N0∩[0, T ], a0 ∈ R is a
crisp number, and εψ, εψ+1, · · · , εT+ψ are (T +
1) IID uncertain variables with symmetrical un-
certainty distribution L(`1, `2). The above work
was generalized by Mohammed [72] and, subse-
quently, by Srivastava and Mohammed [133]. In
addition, Mohammed et al. [73] obtained the ex-
istence and uniqueness of the nabla case (back-
ward) of the equations (108) and (109). Moti-
vated by these developments, Srivastava et al.
[134] considered a general family of uncertain
fractional di�erence equations of the Liouville-
Caputo type (UFLCDE). They derived an un-
certain fractional sum equation, which is equiv-
alent to the UFLCDE by using the basic proper-
ties of the Liouville-Caputo type uncertain frac-
tional di�erence equations. After introducing a
successive Picard iteration method for �nding a
solution to the UFLCDE, Srivastava et al. [134]
applied the theory of Banach contraction under
the Lipschitz constant condition and successfully
investigated the structure of the algebras of ex-
istence and uniqueness of the UFLCDE. They
also presented three examples to show the e�ec-
tiveness of the proposed investigation (see, for
details, Srivastava et al. [134]).

6. Concluding Remarks

and Observations

The main object of this survey-cum-expository
review article is focussed toward the widespread
applications and usages of many of the
currently-investigated operators of fractional
calculus (that is, fractional-order integrals and
fractional-order derivatives) in the modeling
and analysis of a remarkably wide variety of
applied scienti�c and real-world problems in
mathematical, physical, biological, engineering
and statistical sciences as well as in other
scienti�c disciplines. Here, in this review
article, we have presented a brief introductory

overview of the theory and applications of the
fractional-calculus operators which are based
upon the general Fox-Wright function, which
we have presented together with the related
historical background, and its such specialized
forms as the Mittag-Le�er type functions.

In the bibliography of this presentation, we
have chosen to include a considerably large num-
ber of recently-published books, monographs
and edited volumes (as well as journal articles)
dealing with the extensively-investigated subject
of fractional calculus and its widespread applica-
tions. Indeed, judging by the on-going contribu-
tions to the theory and applications of Fractional
Calculus and Its Applications, which are contin-
uing to appear in some of the leading journals
of mathematical, physical, statistical and engi-
neering sciences, the importance of the subject-
matter dealt with in this survey-cum-expository
review article cannot be over-emphasized. More-
over, for the potential use of those of the readers
who are interested in pursuing investigations on
the subject of fractional calculus, we give here
references to some of the other applications of
the operators of fractional calculus in the math-
ematical sciences, which are not mentioned in
the preceding sections.

(i) Theory of Generating Functions of Orthog-
onal Polynomials and Special Functions
(see, for details, [132]);

(ii) Geometric Function Theory of Complex
Analysis (especially the Theory of Analytic,
Univalent, and Multivalent Functions) (see,
for details, [135] and [136]);

(iii) Integral Equations (see, for details, [37],
[116] and [117]);

(iv) Integral Transforms (see, for details, [55]
and [69]);

(v) Generalized Functions (see, for details,
[69]);

(vi) Theory of Potentials (see, for details, [87]).

There is a fastly-growing trend now-a-days to
investigate and apply the fractional-order quan-
tum or basic (or q-) calculus not only in the
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aforementioned Geometric Function Theory of
Complex Analysis (see, for detailed histori-
cal and introductory overview, the recently-
published survey-cum-expository review article
[109]), but indeed also in medeling and analy-
sis of applied problems as well as in extending
the well-established theory and applications of
various rather classical mathematical inequali-
ties. Unfortunately, however, some of mostly
amateurish-type reseachers on these and other
related topics continue to produce obvious and
inconsequential variations of the known q-results
in terms of the so-called (p, q)-calculus by forcing
a redundant or super�uous parameter p into the
classical q-calculus and thereby falsely claiming
�generalization" (see [109, p. 340] and [110, pp.
1511�1512]).

With a view to motivating further researches
dealing with various widespread applications of
fractional-order modelling and analysis, we �nd
it to be worthwhile to cite several recently-
published works (see, for example, [50], [111],
[112], [131] and [146]; see also the references to
the related earlier developments which are cited
in each of these works).

We choose to conclude this presentation
by reiterating the fact that the extensively-
investigated and celebrated special function
named after the famous Swedish mathemati-
cian, Magnus Gustaf (Gösta) Mittag-Le�ter (16
March 1846�07 July 1927), as well as its various
extensions and generalizations including (among
others) those that are considered here, have
found remarkable applications in the solutions
of a signi�cantly wide variety of problems in
the physical, biological, chemical, earth and en-
gineering sciences (see, for example, [43] and
[54]). However, in a presentation of this modest
size, it is naturally hard to justify and elaborate
upon the tremendous potential for applications
of all those Mittag-Le�er type functions in one
and more variables which have appeared in the
existing literature on the subject. In our pre-
sentation here, we have focussed mainly on the
problems and prospects involving some of the
Mittag-Le�er type functions in the areas of vari-
ous families of fractional di�erential and integro-
di�erential equations.

Acknowledgements

It gives me great pleasure in expressing my
appreciation and sincere thanks to Professor
Nguyen Thoi Trung (Deputy Editor-in-Chief of
the Journal of Advanced Engineering and Com-
putation and Director of the Institute for Com-
putational Science at Ton Duc Thang Univer-
sity) for his kind invitation for this survey-cum-
expository review article.

References

[1] Abramowitz, M., Stegun I. A., (Editors).
(1965). Handbook of Mathematical Func-
tions with Formulas, Graphs, and Math-
ematical Tables, Tenth Printing, National
Bureau of Standards, Applied Mathematics
Series, 55, National Bureau of Standards,
Washington, D.C., (1972); Reprinted by
Dover Publications, New York, (1965) (see
also [78]).

[2] Abdo, M. S., Shah, K., Wahash, H. A., &
Panchal, S. K. (2020). On a comprehensive
model of the novel coronavirus (COVID-
19) under Mittag-Le�er derivative. Chaos,
Solitons & Fractals, 135, 109867.

[3] Ahmad, B., Henderson, J., & Luca, R.
(2021). Boundary Value Problems for Frac-
tional Di�erential Equations and Systems,
Trends in Abstract and Applied Analysis,
9, World Scienti�c Publishing Company,
Singapore, New Jersey, London and Hong
Kong.

[4] Ahmadova, A., Huseynov, I. T., Fernan-
dez, A., & Mahmudov, N. I. (2021). Trivari-
ate Mittag-Le�er functions used to solve
multi-order systems of fractional di�eren-
tial equations. Communications in Nonlin-
ear Science and Numerical Simulation, 97,
105735.

[5] Alsaedi, A., Baleanu, D., Etemad, S., &
Rezapour, S. (2016). On coupled systems
of time-fractional di�erential problems by
using a new fractional derivative. Journal
of Function Spaces, 2016, 4626940.

156 c© 2021 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 5 | ISSUE: 3 | 2021 | September

[6] Anastassiou, G. A. (2021). Generalized
Fractional Calculus: New Advancements
and Applications, Studies in Systems, De-
cision and Control, 305, Springer, Cham.

[7] Area, I., Batar�, H., Losada, J., Nieto, J. J.,
Shammakh, W., & Torres, Á. (2015). On a
fractional order Ebola epidemic model. Ad-
vances in Di�erence Equations, 2015 (1), 1�
12.

[8] Atangana, A. (2016). On the new fractional
derivative and application to nonlinear
Fisher's reaction�di�usion equation. Ap-
plied Mathematics and Computation, 273,
948�956.

[9] Atangana, A. (2017). Fractal-fractional dif-
ferentiation and integration: Connecting
fractal calculus and fractional calculus to
predict complex system. Chaos, solitons &
fractals, 102, 396�406.

[10] Atangana, A., & Alkahtani, B. S. T.
(2015). Extension of the resistance, induc-
tance, capacitance electrical circuit to frac-
tional derivative without singular kernel.
Advances in Mechanical Engineering, 7 (6),
1687814015591937.

[11] Atangana, A., & Alkahtani, B. S. T. (2015).
Analysis of the Keller�Segel model with a
fractional derivative without singular ker-
nel. Entropy, 17 (6), 4439�4453.

[12] Atangana, A., & Alkahtani, B. S. T.
(2016). New model of groundwater �ow-
ing within a con�ne aquifer: Application of
Caputo-Fabrizio derivative. Arabian Jour-
nal of Geosciences, 9 (1), 1�6.

[13] Atangana, A., & Baleanu, D. (2016). New
fractional derivatives with nonlocal and
non-singular kernel: Theory and applica-
tion to heat transfer model, Thermal Sci-
ence, 20, 763�769.

[14] Atangana, A., & Khan, M. A. (2020). Mod-
eling and analysis of competition model of
bank data with fractal-fractional Caputo-
Fabrizio operator. Alexandria Engineering
Journal, 59 (4), 1985�1998.

[15] Atangana, A., & Nieto, J. J. (2015). Nu-
merical solution for the model of RLC
circuit via the fractional derivative with-
out singular kernel. Advances in Mechanical
Engineering, 7 (10), 1687814015613758.

[16] Badík A., Fe£kan, M. (2021). Applying frac-
tional calculus to analyze �nal consumption
and gross investment in�uence on GDP,
Journal of Applied Mathematics, Statistics
and Informatics, 17 (1), 65�72.

[17] Baleanu, D., Diethelm, K., Scalas, E., &
Trujillo, J. J. (2012). Fractional Calcu-
lus: Models and Numerical Methods (Vol.
3). World Scienti�c Publishing Company,
Singapore, New Jersey, London and Hong
Kong.

[18] Baleanu, D., & Mustafa, O. G. (2015).
Asymptotic Integration and Stability: For
Ordinary, Functional and Discrete Di�er-
ential Equations of Fractional Order (Vol.
4). World Scienti�c Publishing Company,
Singapore, New Jersey, London and Hong
Kong.

[19] Barnes, E. W. (1906). V. The asymptotic
expansion of integral functions de�ned by
Taylor's series. Philosophical Transactions
of the Royal Society of London. Series A,
Containing Papers of a Mathematical or
Physical Character, 206 (402-412), 249�297.

[20] Baseler, L., Chertow, D. S., Johnson, K.
M., Feldmann, H., & Morens, D. M. (2017).
The pathogenesis of Ebola virus disease.
Annual Review of Pathology: Mechanisms
of Disease, 12, 387�418.

[21] Bonyah, E., Badu, K., & Asiedu-Addo, S.
K. (2016). Optimal control application to
an Ebola model. Asian Paci�c Journal of
Tropical Biomedicine, 6 (4), 283�289.

[22] Buschman, R. G., & Srivastava, H. M.
(1990). The H function associated with a
certain class of Feynman integrals. Journal
of Physics A: Mathematical and General,
23 (20), 4707�4710.

[23] Caputo, M. (1969). Elasticita de dissi-
pazione, Zanichelli, Bologna, Italy, (Links).
SIAM Journal on Numerical Analysis.

c© 2021 Journal of Advanced Engineering and Computation (JAEC) 157



VOLUME: 5 | ISSUE: 3 | 2021 | September

[24] Caputo, M., & Fabrizio, M. (2015). A new
de�nition of fractional derivative without
singular kernel. Progress in Fractional Dif-
ferentiation and Applications, 1 (2), 1�13.

[25] Caputo, M., & Mainardi, F. (1971). A new
dissipation model based on memory mecha-
nism. Pure and Applied Geophysics, 91 (1),
134�147.

[26] Cattani, C., Srivastava, H. M., Yang, X.-
J. (Editors). (2015). Fractional Dynamics.
Emerging Science Publishers (De Gruyter
Open), Berlin and Warsaw.

[27] Chen, S.-B., Jahanshahi, H., Abba, O.
A., Solís-Pérez, J. E., Bekiros, S., Gómez-
Aguilar, J. F., Yousefpour, A., & Chu, Y.-
M. (2020). The e�ect of market con�dence
on a �nancial system from the perspective
of fractional calculus: Numerical investiga-
tion and circuit realization, Chaos, Solitons
& Fractals, 140, 110223.

[28] Diethelm, K. (2010). The analysis of
fractional di�erential equations: An
application-oriented exposition using
di�erential operators of Caputo type.
Springer Science & Business Media,
Berlin, Heidelberg and New York.

[29] Erdélyi, A., Magnus, W., Oberhettinger,
F., & Tricomi, F. G. (1954). Tables of Inte-
gral Transforms, Vol. I, McGraw-Hill Book
Company, New York, Toronto and London.

[30] Erdélyi, A., Magnus, W., Oberhettinger,
F., & Tricomi, F. G. (1954). Tables of Inte-
gral Transforms, Vol. II, McGraw-Hill Book
Company, New York, Toronto and London.

[31] Fahad, H. M., & Fernandez, A. (2021).
Operational calculus for Caputo fractional
calculus with respect to functions and
the associated fractional di�erential equa-
tions. Applied Mathematics and Computa-
tion, 409, 126400.

[32] Fernandez, A., Baleanu, D., & Srivastava,
H. M. (2019). Series representations for
fractional-calculus operators involving gen-
eralised Mittag-Le�er functions. Commu-
nications in Nonlinear Science and Numer-
ical Simulation, 67, 517�527; see also Cor-
rigendum, Communications in Nonlinear

Science and Numerical Simulation, 82, 1�
1, (2020).

[33] Garrappa, R., Giusti, A., & Mainardi, F.
(2021). Variable-order fractional calculus:
A change of perspective. Communications
in Nonlinear Science and Numerical Simu-
lation, 102, 105904.

[34] Gómez-Aguilar, J. F., & Atangana, A.
(2021). New chaotic attractors: Application
of fractal-fractional di�erentiation and inte-
gration. Mathematical Methods in the Ap-
plied Sciences, 44 (4), 3036�3065.

[35] Goodrich, C., & Peterson, A. C. (2015).
Discrete Fractional Calculus (Vol. 1350).
Springer, Berlin, Heidelberg and New York.

[36] Goren�o, R., Mainardi, F., & Srivastava,
H. M. (2020). Special functions in frac-
tional relaxation-oscillation and fractional
di�usion-wave phenomena. In Proceedings
of the Eighth International Colloquium on
Di�erential Equations, Plovdiv, Bulgaria,
18�23 August, 1997 (pp. 195�202). De
Gruyter, Berlin, Basel and Boston.

[37] Goren�o, R., & Vessella, S. (1991). Abel
Integral Equations. (Vol. 1461, pp. viii+-
215). Springer, Berlin, Heidelberg and New
York.

[38] Guariglia, E. (2021). Fractional calculus,
zeta functions and Shannon entropy. Open
Mathematics, 19 (1), 87�100.

[39] Haubold, H. J., & Mathai, A. M.
(2000). The fractional kinetic equation and
thermonuclear functions. Astrophysics and
Space Science, 273 (1), 53�63.

[40] Haubold, H. J., Mathai, A. M., & Saxena,
R. K. (2011). Mittag-Le�er functions and
their applications. Journal of Applied Math-
ematics, 2011, 298628.

[41] He, J.-H. (1999). Variational iteration
method�a kind of non-linear analytical
technique: Some examples. International
Journal of Non-Linear Mechanics, 34 (4),
699�708.

158 c© 2021 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 5 | ISSUE: 3 | 2021 | September

[42] Hilfer, R. (Editor). (2000). Applications
of Fractional Calculus in Physics. World
Scienti�c Publishing Company, Singapore,
New Jersey, London and Hong Kong.

[43] Hilfer, R. (2000). Fractional time evolu-
tion. Applications of Fractional Calculus in
Physics. World Scienti�c Publishing Com-
pany, Singapore, New Jersey, London and
Hong Kong, 87�130.

[44] Hilfer, R. (2002). Experimental evidence
for fractional time evolution in glass form-
ing materials. Chemical Physics, 284 (1-2),
399�408.

[45] Hilfer, R. (2008). Threefold introduction
to fractional derivatives. In: Anomalous
transport: Foundations and applications
(Klages, R., Radons, G., & Sokolov, I. M.
(Editors), Wiley-VCH Verlag, Weinheim,
17�73.

[46] Hilfer, R., & Anton, L. (1995). Fractional
master equations and fractal time random
walks. Physical Review E, 51 (2), R848.

[47] Hilfer, R., Luchko, Y., & Tomovski, �.
(2009). Operational method for the so-
lution of fractional di�erential equations
with generalized Riemann-Liouville frac-
tional derivatives. Fractional Calculus and
Applied Analysis, 12 (3), 299318.

[48] Hilfer, R., & Seybold, H. J. (2006).
Computation of the generalized Mittag-
Le�er function and its inverse in the com-
plex plane. Integral Transforms and Special
Functions, 17 (9), 637�652.

[49] Ho, M.-W., James, L. F., & Lau, J.
W. (2021). Gibbs partitions, Riemann-
Liouville fractional operators, Mittag-
Le�er functions, and fragmentations de-
rived from stable subordinators. Journal of
Applied Probability, 58 (2), 314�334.

[50] Izadi, M., & Srivastava, H. M. (2021). A
novel matrix technique for multi-order pan-
tograph di�erential equations of fractional
order. Proceedings of the Royal Society of
London, Series A, Mathematical, Physical
and Engineering Sciences, 477, 2021031.

[51] Kilbas, A. A., & Saigo, M. (2004). H-
Transforms: Theory and Applications, An-
alytical Methods and Special Functions:
An International Series of Monographs in
Mathematics, Vol. 9, Chapman and Hall (A
CRC Press Company), Boca Raton, London
and New York.

[52] Kilbas, A. A., Saigo, M., & Saxena, R. K.
(2004). Generalized Mittag-Le�er function
and generalized fractional calculus opera-
tors. Integral Transforms and Special Func-
tions, 15 (1), 31�49.

[53] Kilbas, A. A., Saigo, M., & Sax-
ena, R. K. (2002). Solution of Volterra
integro-di�erential equations with general-
ized Mittag-Le�er function in the kernels.
Journal of Integral Equations and Applica-
tions, 14, 377�396.

[54] Kilbas, A. A., Srivastava, H. M., & Tru-
jillo, J. J. (2006). Theory and Applications
of Fractional Di�erential Equations, North-
Holland Mathematical Studies, Vol. 204,
Elsevier (North-Holland) Science Publish-
ers, Amsterdam, London and New York.

[55] Kiryakova, V. S. (1993). Generalized Frac-
tional Calculus and Applications, Pitman
Research Notes in Mathematics, Vol. 301,
Longman Scienti�c and Technical, Harlow
(Essex).

[56] Klafter, J., Lim, S.-C., Metzler, R. (2011).
Fractional Calculus: Recent Advances,
World Scienti�c Publishing Company, Sin-
gapore, New Jersey, London and Hong
Kong.

[57] Koca, I. (2018). Modelling the spread of
Ebola virus with Atangana-Baleanu frac-
tional operators. The European Physical
Journal Plus, 133 (3), 1�11.

[58] Kumar, D., Singh, J., & Baleanu, D. (2017).
A new analysis for fractional model of reg-
ularized long-wave equation arising in ion
acoustic plasma waves.Mathematical Meth-
ods in the Applied Sciences, 40 (15), 5642�
5653.

c© 2021 Journal of Advanced Engineering and Computation (JAEC) 159



VOLUME: 5 | ISSUE: 3 | 2021 | September

[59] Kumar, D., Choi, J., & Srivastava, H. M.
(2018). Solution of a general family of frac-
tional kinetic equations associated with the
generalized Mittag-Le�er function. Nonlin-
ear Functional Analysis and Applications,
23 (3), 455�471.

[60] Kumar, S., Pandey, R. K., Srivastava, H.
M., & Singh, G. N. (2021). A conver-
gent collocation approach for generalized
fractional integro-di�erential equations us-
ing Jacobi poly-fractonomials. Mathemat-
ics, 9 (9), 979.

[61] Li, C., Wu, Y., & Ye, R. (Eds.). (2013).
Recent Advances in Applied Nonlinear Dy-
namics with Numerical Analysis: Frac-
tional Dynamics, Network Dynamics, Clas-
sical Dynamics and Fractal Dynamics with
Their Numerical Simulations. Series on In-
terdisciplinary Mathematical Sciences, Vol.
15, World Scienti�c Publishing Company,
Singapore, New Jersey, London and Hong
Kong.

[62] Li, Z., Liu, Z., & Khan, M. A. (2020).
Fractional investigation of bank data with
fractal-fractional Caputo derivative. Chaos,
Solitons & Fractals, 131, 109528.

[63] Liao, S. (2004). On the homotopy analy-
sis method for nonlinear problems. Applied
Mathematics and Computation, 147 (2),
499�513.

[64] Liouville, J. (1832). Mémoire sur quelques
quéstions de géometrie et de mécanique,
et sur un nouveau genre de calcul pour
résoudre ces quéstions. J. École Polytech,
13(21), 1�69.

[65] Lu, Q., Zhu, Y., & Lu, Z. (2019). Uncertain
fractional forward di�erence equations for
Riemann�Liouville type. Advances in Dif-
ference Equations, 2019 (1), 1�11.

[66] Mainardi, F. (2010). Fractional Calculus
and Waves in Linear Viscoelasticity: An In-
troduction to Mathematical Models. World
Scienti�c Publishing Company, Singapore,
New Jersey, London and Hong Kong.

[67] Mainardi, F. (2020). Why the Mittag-
Le�er function can be considered the

Queen function of the Fractional Calculus?.
Entropy, 22 (12), 1359.

[68] Mainardi, F., & Goren�o, R. (2008). Time-
fractional derivatives in relaxation pro-
cesses: a tutorial survey. Fractional Calcu-
lus and Applied Analysis, 10, 269�308.

[69] McBride, A. C. (1979). Fractional Calcu-
lus and Integral Transforms of General-
ized Functions (No. 31). Pitman Publishing,
London.

[70] Miller, K. S., & Ross, B. (1993). An In-
troduction to the Fractional Calculus and
Fractional Di�erential Equations. John Wi-
ley and Sons, New York, Chichester, Bris-
bane, Toronto and Singapore.

[71] Mittag-Le�er, G. M. (1903). Sur la nou-
velle fonction Eα(x), Comptes Rendus de
l'Académie des Sciences de Paris, 137, 554�
558.

[72] Mohammed, P. O. (2019). A generalized un-
certain fractional forward di�erence equa-
tions of Riemann�Liouville type. Journal
Mathematics Research, 11 (4), 43�50.

[73] Mohammed, P. O., Abdeljawad, T.,
Jarad, F., & Chu, Y.-M. (2020). Exis-
tence and uniqueness of uncertain frac-
tional backward di�erence equations of Rie-
mann�Liouville type. Mathematical Prob-
lems in Engineering, 2020, 6598682.

[74] Mokhtary, P., Ghoreishi, F., & Srivastava,
H. M. (2016). The Müntz-Legendre Tau
method for fractional di�erential equations.
Applied Mathematical Modelling, 40 (2),
671�684.

[75] Momani, S., Kumar, R., Srivastava, H. M.,
Kumar, S., & Hadid, S. (2021). A chaos
study of fractional SIR epidemic model of
childhood diseases. Results in Physics, 27,
104422.

[76] Ndairou, F., Area, I., Nieto, J. J., & Tor-
res, D. F. (2020). Mathematical modeling
of COVID-19 transmission dynamics with
a case study of Wuhan. Chaos, Solitons &
Fractals, 135, 109846.

160 c© 2021 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 5 | ISSUE: 3 | 2021 | September

[77] Oldham, K. B., & Spanier, J. (1974). The
Fractional Calculus: Theory and Appli-
cations of Di�erentiation and Integration
to Arbitrary Order. Academic Press, New
York and London.

[78] Olver, F. W., Lozier, D. W., Boisvert,
R. F., & Clark, C. W. (Editors). (2010).
NIST Handbook of Mathematical Func-
tions (Hardback and CD-ROM). Cambridge
University Press, Cambridge, London and
New York. (see also [1]).

[79] Ortigueira, M. D. (2011). Fractional Calcu-
lus for Scientists and Engineers (Vol. 84).
Springer, Berlin, Heidelberg and New York.

[80] Petrá², I. (2011). Fractional-Order Nonlin-
ear Systems: Modeling, Analysis and Sim-
ulation. Springer, Berlin, Heidelberg and
New York.

[81] Pinto, C. M. A., Carvalho, A. R. M.,
Baleanu, D., & Srivastava, H. M. (2019).
E�cacy of the post-exposure prophylaxis
and of the HIV latent reservoir in HIV in-
fection. Mathematics, 7 (6), 515.

[82] Podlubny, I. (1998). Fractional Di�erential
Equations: An Introduction to Fractional
Derivatives, Fractional Di�erential Equa-
tions, to Methods of Their Solution and
Some of Their Applications (Vol. 198). Aca-
demic Press, New York, London, Sydney,
Tokyo and Toronto.

[83] Postnikov, E. B. (2020). Estimation
of COVID-19 dynamics �on a back-of-
envelope": Does the simplest SIR model
provide quantitative parameters and pre-
dictions?. Chaos, Solitons & Fractals, 135,
109841.

[84] Prabhakar, T. R. (1971). A singular integral
equation with a generalized Mittag Le�er
function in the kernel. Yokohama Mathe-
matical Journal, 19, 7�15.

[85] Rachah, A., & Torres, D. F. (2017). Pre-
dicting and controlling the Ebola infection.
Mathematical Methods in the Applied Sci-
ences, 40 (17), 6155�6164.

[86] Raina, R. K. (2005). On generalized
Wright's hypergeometric functions and
fractional calculus operators. East Asian
Mathematical Journal, 21 (2), 191�203.

[87] Rubin, B. (1996). Fractional Integrals and
Potentials, Pitman Monographs and Sur-
veys in Pure and Applied Mathematics,
Longman Scienti�c and Technical, Harlow
(Essex).

[88] Saad, K. M. (2020). New fractional deriva-
tive with non-singular kernel for deriv-
ing Legendre spectral collocation method.
Alexandria Engineering Journal, 59 (4),
1909�1917.

[89] Saad, K. M., Al-Shareef, E. H., Alomari,
A. K., Baleanu, D., & Gómez-Aguilar, J.
F. (2020). On exact solutions for time-
fractional Korteweg-de Vries and Korteweg-
de Vries-Burger's equations using homo-
topy analysis transform method. Chinese
Journal of Physics, 63, 149�162.

[90] Saad, K. M., & Al-Shomrani, A. A. (2016).
An application of homotopy analysis trans-
form method for Riccati di�erential equa-
tion of fractional order. Journal of Frac-
tional Calculus and Applications, 7 (1), 61�
72.

[91] Saad, K. M., Gómez-Aguilar, J. F., & Al-
madiy, A. A. (2020). A fractional numerical
study on a chronic hepatitis C virus infec-
tion model with immune response. Chaos,
Solitons & Fractals, 139, 110062.

[92] Salim, T. O., & Faraj, A. W. (2012). A gen-
eralization of Mittag-Le�er function and
integral operator associated with fractional
calculus. Journal of Fractional Calculus and
Applications, 3 (5), 1�13.

[93] Samko, S. G., Kilbas, A. A., Marichev, O.
I. (1993). Fractional Integrals and Deriva-
tives: Theory and Applications, Gordon
and Breach Science Publishers, Yverdon
(Switzerland).

[94] Sandev, T., & Tomovski, �. (2010). The
general time fractional wave equation for
a vibrating string. Journal of Physics

c© 2021 Journal of Advanced Engineering and Computation (JAEC) 161



VOLUME: 5 | ISSUE: 3 | 2021 | September

A: Mathematical and Theoretical, 43 (5),
055204.

[95] Saxena, R. K., & Kalla, S. L. (2005). So-
lution of Volterra-type integro-di�erential
equations with a generalized Lauricella con-
�uent hypergeometric function in the ker-
nels. International Journal of Mathematics
and Mathematical Sciences, 2005 (8), 1155�
1170.

[96] Seybold, H. J., & Hilfer, R. (2005). Numeri-
cal results for the generalized Mittag-Le�er
function. Fractional Calculus and Applied
Analysis, 8 (2), 127�139.

[97] Sharma, M., & Jain, R. (2009). A note on a
generalizedM -series as a special function of
fractional calculus. Fractional Calculus and
Applied Analysis, 12 (4), 449�452.

[98] Shishkina, E., & Sitnik, S. (2020). Trans-
mutations, Singular and Fractional Dif-
ferential Equations with Applications to
Mathematical Physics.Mathematics in Sci-
ence and Engineering, Academic Press
(Elsevier Science Publishers), New York,
London and Toronto.

[99] Singh, H., Srivastava, H. M., Hammouch,
Z., & Nisar, K. S. (2021). Numerical simula-
tion and stability analysis for the fractional-
order dynamics of COVID-19. Results in
Physics, 20, 103722.

[100] Srivastava, H. M. (1968). On an exten-
sion of the Mittag-Le�er function. Yoko-
hama Mathematical Journal, 16, 77�88.

[101] Srivastava, H. M. (2011). Some general-
izations and basic (or q-) extensions of the
Bernoulli, Euler and Genocchi polynomials.
Applied Mathematics & Information Sci-
ences, 5 (3), 390�444.

[102] Srivastava, H. M. (2014). A new family of
the λ-generalized Hurwitz-Lerch Zeta func-
tions with applications. Applied Mathemat-
ics & Information Sciences, 8 (4), 1485�
1500.

[103] Srivastava, H. M. (2016). Some families
of Mittag-Le�er type functions and asso-
ciated operators of fractional calculus (Sur-
vey). Turkish World Mathematical Society

Journal of Pure and Applied and Mathe-
matics, 7, 123�145.

[104] Srivastava, H. M. (2017). Remarks on
some fractional-order di�erential equations.
Integral Transforms and Special Functions,
28, 560�564.

[105] Srivastava, H. M. (2019). The Zeta and
related functions: Recent developments.
Journal of Advanced Engineering and Com-
putation, 3 (1), 329�354.

[106] Srivastava, H. M. (2019). Some general
families of the Hurwitz-Lerch Zeta func-
tions and their applications: Recent de-
velopments and directions for further re-
searches. Proceedings of the Institute of
Mathematics and Mechanics of the Na-
tional Academy of Sciences of Azerbaijan,
45, 234�269.

[107] Srivastava, H. M. (2020). Fractional-order
derivatives and integrals: Introductory
overview and recent developments. Kyung-
pook Mathematical Journal, 60 (1), 73�116.

[108] Srivastava, H. M. (2020). Diabetes and
its resulting complications: Mathemati-
cal modeling via fractional calculus. Public
Health Open Access, 4 (3), 1�5.

[109] Srivastava, H. M. (2020). Operators of ba-
sic (or q-) calculus and fractional q-calculus
and their applications in geometric function
theory of complex analysis. Iranian Journal
of Science and Technology, Transactions A:
Science, 44 (1), 327�344.

[110] Srivastava, H. M. (2021). Some parametric
and argument variations of the operators of
fractional calculus and related special func-
tions and integral transformations. Journal
of Nonlinear and Convex Analysis, 22 (8),
1501�1520.

[111] Srivastava, H. M., Ahmad, H., Ahmad, I.,
Thounthong, P., & Khan, M. N. (2021). Nu-
merical simulation of 3-D fractional-order
convection-di�usion PDE by a local mesh-
less method. Thermal Science, 25 (1A),
347�358.

162 c© 2021 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 5 | ISSUE: 3 | 2021 | September

[112] Srivastava, H. M., Alomari, A.-K. N.,
Saad, K. M., & Hamanah, W. M.
(2021). Some dynamical models involv-
ing fractional-order derivatives with the
Mittag-Le�er type kernels and their appli-
cations based upon the Legendre spectral
collocation method. Fractal and Fractional,
5 (3), 131.

[113] Srivastava, H. M., Bansal, M. K., & Har-
jule, P. (2018). A study of fractional in-
tegral operators involving a certain gener-
alized multi-index Mittag-Le�er function.
Mathematical Methods in the Applied Sci-
ences, 41 (16), 6108�6121.

[114] Srivastava, H. M., Bansal, M. K., Harjule,
P. (2020). A class of fractional integral op-
erators involving a certain general multi-
index Mittag-Le�er function, Ukrainian
Mathematical Journal, (In Press).

[115] Srivastava, H. M., Bedre, S. V., Khairnar,
S. M., & Desale, B. S. (2014). Krasnosel'skii
type hybrid �xed point theorems and their
applications to fractional integral equa-
tions. Abstract and Applied Analysis, 2014,
710746; see also Corrigendum, Abstract and
Applied analysis, 2015 (2015), 467569.

[116] Srivastava, H. M., & Buschman, R.
G. (1977). Convolution Integral Equations
with Special Function Kernels. Halsted
Press, John Wiley and Sons, New York.

[117] Srivastava, H. M., & Buschman, R. G.
(1992). Theory and Applications of Con-
volution Integral Equations, Kluwer Se-
ries on Mathematics and Its Applications,
Vol. 79, Kluwer Academic Publishers, Dor-
drecht, Boston and London.

[118] Srivastava, H. M.,& Choi, J. (2001). Se-
ries Associated with the Zeta and Related
Functions, Vol. 530, Kluwer Academic Pub-
lishers, Dordrecht, Boston and London.

[119] Srivastava, H. M., & Choi, J. (2012). Zeta
and q-Zeta Functions and Associated Series
and Integrals. Elsevier Science Publishers,
Amsterdam, London and New York.

[120] Srivastava, H. M., Deniz, S., & Saad,
K. M. (2021). An e�cient semi-analytical

method for solving the generalized regular-
ized long wave equations with a new frac-
tional derivative operator. Journal of King
Saud University-Science, 33 (2), 101345.

[121] Srivastava, H. M., Dubey, R. S., & Jain,
M. (2019). A study of the fractional-order
mathematical model of diabetes and its re-
sulting complications. Mathematical Meth-
ods in the Applied Sciences, 42 (13), 4570�
4583.

[122] Srivastava, H. M., Fernandez, A.,
& Baleanu, D. (2019). Some new
fractional-calculus connections between
Mittag�Le�er functions. Mathematics,
7 (6), 485.

[123] Ghanbari, B., Günerhan, H., & Srivas-
tava, H. M. (2020). An application of
the Atangana-Baleanu fractional derivative
in mathematical biology: A three-species
predator-prey model. Chaos, Solitons &
Fractals, 138, 109910.

[124] Srivastava, H. M., & Günerhan, H. (2019).
Analytical and approximate solutions of
fractional-order susceptible-infected-
recovered epidemic model of childhood
disease. Mathematical Methods in the
Applied Sciences, 42 (3), 935�941.

[125] Srivastava, H. M., Gupta, K. C., & Goyal,
S. P. (1982). The H-Functions of One and
Two Variables with Applications. South
Asian Publishers, New Delhi and Madras.

[126] Srivastava, H. M., Harjule, P., & Jain,
R. (2015). A general fractional di�erential
equation associated with an integral op-
erator with the H-function in the kernel.
Russian Journal of Mathematical Physics,
22 (1), 112�126.

[127] Srivastava, H. M., Jan, R., Jan, A.,
Deebani, W., & Shutaywi, M. (2021).
Fractional-calculus analysis of the trans-
mission dynamics of the dengue infec-
tion. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 31 (5), 053130.

[128] Srivastava, H. M., & Karlsson, P. W.
(1985). Multiple Gaussian Hypergeomet-
ric Series. Halsted Press (Ellis Horwood

c© 2021 Journal of Advanced Engineering and Computation (JAEC) 163



VOLUME: 5 | ISSUE: 3 | 2021 | September

Limited, Chichester), John Wiley and
Sons, New York, Chichester, Brisbane and
Toronto.

[129] Srivastava, H. M., & Kashyap, B. R.
K. (1982). Special Functions in Queuing
Theory and Related Stochastic Processes.
Academic Press, New York, London and
Toronto.

[130] Srivastava, H. M., Lin, S.-D., & Wang, P.-
Y. (2006). Some fractional-calculus results
for the H-function associated with a class
of Feynman integrals. Russian Journal of
Mathematical Physics, 13 (1), 94�100.

[131] Srivastava, H. M., Mandal, H., & Bira,
B. (2021). Lie symmetry and exact solu-
tion of the time-fractional Hirota-Satsuma
Korteweg-de Vries system. Russian Journal
of Mathematical Physics, 28 (3), 284�292.

[132] Srivastava, H. M., Manocha, H. L.
(1984). A Treatise on Generating Func-
tions. Halsted Press (Ellis Horwood Lim-
ited, Chichester), John Wiley and Sons,
New York, Chichester, Brisbane and
Toronto.

[133] Srivastava, H. M., & Mohammed, P. O.
(2020). A correlation between solutions
of uncertain fractional forward di�erence
equations and their paths. Frontiers in
Physics, 8.

[134] Srivastava, H. M., Mohammed, P. O.,
Ryoo, C. S., & Hamed, Y. S. (2021). Exis-
tence and uniqueness of a class of uncertain
Liouville-Caputo fractional di�erence equa-
tions. Journal of King Saud University-
Science, 33 (6), 101497.

[135] Srivastava, H. M., & Owa, S. (Editors).
(1989). Univalent Functions, Fractional
Calculus, and Their Applications. Halsted
Press (Ellis Horwood Limited, Chichester),
John Wiley and Sons, New York, Chich-
ester, Brisbane and Toronto.

[136] Srivastava, H. M., & Owa, S. (1992).
Current Topics in Analytic Function The-
ory. World Scienti�c Publishing Company,
Singapore, New Jersey, London and Hong
Kong.

[137] Srivastava, H. M., & Saad, K. M. (2018).
Some new models of the time-fractional gas
dynamics equation. Advanced Mathematical
Models & Applications, 3 (1), 5�17.

[138] Srivastava, H. M., & Saad, K. M. (2020).
New approximate solution of the time-
fractional Nagumo equation involving frac-
tional integrals without singular kernel. Ap-
plied Mathematics & Information Sciences,
14 (1), 1�8.

[139] Srivastava, H. M., & Saad, K. M.
(2020). Numerical simulation of the fractal-
fractional Ebola virus. Fractal and Frac-
tional, 4 (4), 49.

[140] Srivastava, H. M., Saad, K. M., Gómez-
Aguilar, J. F., & Almadiy, A. A. (2020).
Some new mathematical models of the
fractional-order system of human immune
against IAV infection. Mathematical Bio-
sciences and Engineering, 17 (5), 4942�
4969.

[141] Srivastava, H. M., Saad, K. M., & Khader,
M. M. (2020). An e�cient spectral collo-
cation method for the dynamic simulation
of the fractional epidemiological model of
the Ebola virus. Chaos, Solitons & Frac-
tals, 140, 110174.

[142] Srivastava, H. M., & Saxena, R. K. (2006).
Operators of fractional integration and ap-
plications. Appl. Math. Comput, 118, 147�
156.

[143] Srivastava, H. M., & Saxena, R. K. (2005).
Some Volterra-type fractional integro-
di�erential equations with a multivariable
con�uent hypergeometric function as their
kernel. The Journal of Integral Equations
and Applications, 199�217.

[144] Srivastava, H. M., Saxena, R. K., Pogány,
T. K., & Saxena, R. (2011). Integral and
computational representations of the ex-
tended Hurwitz�Lerch zeta function. In-
tegral Transforms and Special Functions,
22 (7), 487�506.

[145] Srivastava, H. M., Shah, F. A., & Ir-
fan, M. (2020). Generalized wavelet quasi-
linearization method for solving population

164 c© 2021 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 5 | ISSUE: 3 | 2021 | September

growth model of fractional order. Mathe-
matical Methods in the Applied Sciences,
43 (15), 8753�8762.

[146] Srivastava, H. M., Shah, F. A., & Lone,
W. Z. (2021). Fractional nonuniform mul-
tiresolution analysis in L2(R). Mathemat-
ical Methods in the Applied Sciences, 44,
9351�9372.

[147] Srivastava, H. M., & Tomovski, �. (2009).
Fractional calculus with an integral opera-
tor containing a generalized Mittag-Le�er
function in the kernel. Applied Mathematics
and Computation, 211 (1), 198�210.

[148] Tomovski, �., Hilfer, R., & Srivastava,
H. M. (2010). Fractional and operational
calculus with generalized fractional deriva-
tive operators and Mittag-Le�er type
functions. Integral Transforms and Special
Functions, 21 (11), 797�814.

[149] Wang, W., & Khan, M. A. (2020). Anal-
ysis and numerical simulation of fractional
model of bank data with fractal�fractional
Atangana�Baleanu derivative. Journal of
Computational and Applied Mathematics,
369, 112646.

[150] Wiman, A. (1905). Über den Fundamen-
talsatz in der Theorie der Funcktionen
Eα(x). Acta Mathematica, 29, 191�201.

[151] Wiman, A. (1905). Über die Nullstellen
der Funktionen Eα(x). Acta Mathematica,
29, 217�234.

[152] Wright, E. M. (1940). The asymptotic
expansion of integral functions de�ned by
Taylor series. Philosophical Transactions
of the Royal Society of London. Series
A, Mathematical and Physical Sciences,
238 (795), 423�451.

[153] Wright, E. M. (1941). The asymptotic
expansion of integral functions de�ned by
Taylor series. II. Philosophical Transactions
of the Royal Society of London. Series A,
Mathematical and Physical Sciences, 239,
217�232.

[154] Wright, E. M. (1948). The asymptotic ex-
pansion of integral functions and of the co-
e�cients in their Taylor series. Transac-
tions of the American Mathematical Soci-
ety, 64 (3), 409�438.

[155] Yang, X.-J., Baleanu, D., & Srivastava, H.
M. (2015). Local Fractional Integral Trans-
forms and Their Applications. Academic
Press (Elsevier Science Publishers), Ams-
terdam, Heidelberg, London and New York.

[156] You, Z., Fe�ckan, M., & Wang, J. (2020).
Relative controllability of fractional delay
di�erential equations via delayed perturba-
tion of Mittag-Le�er functions. Journal of
Computational and Applied Mathematics,
378, 112939.

About Authors

Hari Mohan SRIVASTAVA (University of
Victoria, Canada)
Professor Hari Mohan Srivastava began his
university-level teaching career right after hav-
ing received his M.Sc. degree in 1959 at the age
of 19 years. He earned his Ph.D. degree in 1965
while he was a full-time member of the teaching
faculty at J. N. V. University of Jodhpur
(since 1963). Currently, Professor Srivastava
holds the position of Professor Emeritus in the
Department of Mathematics and Statistics at
the University of Victoria in Canada, having
joined the faculty there in 1969. Professor
Srivastava has held numerous visiting positions
at many universities and research institutes in
di�erent parts of the world. Having received
several D.Sc. (honoris causa) degrees as well as
honorary memberships and fellowships of many
scienti�c academies around the world, he is also
actively associated editorially with numerous
international scienti�c research journals as
(for example) an Editor, Honorary Editor,
Editor-in-Chief, Managing Editor, Advisory
Editor, and so on.

Professor Srivastava's research interests in-
clude several areas of pure and applied math-
ematical sciences such as (for example) Real
and Complex Analysis, Fractional Calculus and

c© 2021 Journal of Advanced Engineering and Computation (JAEC) 165



VOLUME: 5 | ISSUE: 3 | 2021 | September

Its Applications, Integral Equations and Inte-
gral Transforms, Higher Transcendental Func-
tions and Their Applications, q-Series and q-
Polynomials, Analytic Number Theory, Analytic
and Geometric Inequalities, Probability and
Statistics, Mathematical Modelling and Anal-
ysis, and Inventory Modelling and Optimiza-
tion. He has published 36 books, monographs
and edited volumes, 30 book (and encyclopedia)
chapters, 48 papers in international conference
proceedings, 36 forewords to books and journals
(including preface, editorial, et cetera), and

over 1,350 scienti�c research journal articles.
Professor Srivastava is a Clarivate Analytics
[Thomson-Reuters] (Web of Science) Highly
Cited Researcher.

Further details about Professor Srivastava's
professional achievements and scholarly accom-
plishments, and honors, awards and distinctions,
can be found at the following Web Site: URL:
http://www.math.uvic.ca/∼harimsri/

166 "This is an Open Access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium provided the original work is

properly cited (CC BY 4.0)."


	Introduction and motivation
	The Fox-Wright function and related Mittag-Leffler type functions
	Fractional-Calculus Operators with E,(;z,s,) as the Kernel
	Fractional-order modeling and analysis of initial-value problems
	Developments in Recent Years
	Concluding Remarks and Observations

