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Abstract. The aim of this paper is to explore
the evolution of different micro-scale quantities
during the cyclic loading using the discrete
element method (DEM) for a granulate system
such as sand. The numerical samples com-
prising of 9826 spheres were generated and
consolidated isotropically using the periodic
boundaries. These numerical samples were
subjected to the cyclic loading for different
maximum applied strains. The simulated
stress-strain behavior was validated with the
experiment and found an excellent agreement
between them during loading and unloading.
The evolutions of different micro-scale quan-
tities were investigated in detail considering
the variation of the maximum applied strain
and the density of sample. It is noted that
the evolution of the coordination number and
the slip coordination number is a function of
the maximum applied strain and the density of
sample during the cyclic loading. The change
of the slip coordination number is larger at the
end of unloading than that at end of loading
during the cyclic loading regardless of the values
of the maximum applied strain and the density
of sample. The ratio of strong contacts to
all the contacts increases abruptly when the
load is reversed, which is opposite to what is
observed for the coordination number and the
slip coordination number. The deviatoric fabric
computed by the fabric tensor considering the
strong contacts mimics the deviatoric stress ir-
respective of the values of the maximum applied

strain and the density of sample during the
cyclic loading. Moreover, a linear correlation
between the macro and micro quantities exists
regardless of the variation of the maximum
applied strains or the variation of the density of
the sample during the cyclic loading. The slopes
of the lines of these correlations are almost
same.
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1. Introduction

The granulate system such as sand is comprised
of distinct particles and its behavior is very com-
plex at micro-scale. The behavior of such gran-
ular materials at micro-scale has not yet been
explained sufficiently. Laboratory based physi-
cal experiments such as the direct shear test and
the triaxial test of granular materials suffer from
poor reproducibility of the test samples and the
restricted control of initial and boundary con-
ditions. The boundary stress and strain can
only be measured by using the traditional labo-
ratory equipment and thus, the inherent physi-
cal processes remain unexplored. Indeed, several
researchers inferred the micro-mechanics of the
granulate systems such as sand [1]-[3]. However,
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due to the lack of the comprehensive measure-
ments of the micro-scale parameters and the re-
lated micro-mechanics, the quantitative conclu-
sion related to the micro-scale mechanics is not
completely accomplished.

DEM, on the other hand, contemplates the
fundamental physical processes evolve during
the shear in a granulate system and demon-
strates to be a very useful and effective tool
in modelling the discrete nature of a granu-
late system. The literature review reveals that
DEM has been extensively used to explore the
micro-mechanics of a granulate system such as
sand. In most of the cases of the earlier stud-
ies, DEM is mainly used to simulate and ex-
plore the monotonic behavior of granular mate-
rials in two-dimension (2D) and three-dimension
(3D) [4]-[14] and in a very few cases, it is used
to explore the same for the cyclic loading [15]-
[21]. For example, Ng and Dobry [15] simulated
the behavior of granular materials for monotonic
drained and undrained cyclic loading (constant
volume) considering the disks and spheres by us-
ing the DEM and indicated that the simulated
cyclic loading closely resembled the hysteresis
loop formation and pore water pressure build
up. Sitharam [16] simulated the drained and
undrained cyclic loading considering the disks.
Recently, Sazzad and Suzuki [17] investigated
the influence of inherent anisotropic conditions
on the micro-scale behavior of granular materials
during the cyclic loading using the oval shaped
particles for 2D DEM models and concluded
that the change in fabric anisotropy is dominant
for the first few loading-unloading cycles. Con-
sidering the variation of the confining pressure
in a 2D dry granular sample, Sazzad [18] stud-
ied the effect of cyclic loading on the micro-scale
behavior of granular materials using the DEM.
Kuhn et al. [19] investigated the cyclic liquefac-
tion behavior using the DEM by considering the
octahedral particles which were comprised of the
clusters of spheres. To predict the severity of a
particular loading sequence, they proposed four
scalar measures. The study depicted that the
stress-based scalar measure exhibited the supe-
rior efficacy in predicting the initial liquefaction
and pore pressure rise. Nevertheless, the studies
mentioned above, simulated the macromechani-

cal behavior qualitatively using the DEM for the
cyclic loading.

The qualitative comparison of the simulated
results obtained from the DEM studies with the
laboratory experiment is valid as long as the be-
havior of granular materials at the micro level is
of the major interest of the study. However, to
validate the reliability of these micro-mechanical
behaviors observed during the numerical sim-
ulation and to have more confidence in the
micro-mechanical responses using the DEM, it
is important that the simulated results by the
DEM are compared with the experimental re-
sults quantitatively and then, the evolution of
different micro-mechanical parameters including
the fabric is explored. In spite of the fact,
the quantitative comparison of the DEM results
with the experimental result during the cyclic
loading is rare in the literature. Among the
earlier studies, only O’Sullivan et al. [20] re-
ported a physical cyclic test using the dry Grade
chrome steel balls under the vacuum confine-
ment of 80 kPa and compared the experimen-
tal results with the DEM. Considering the lim-
ited number of such studies, it can be stated
that more micro-scale behaviors should be ex-
plored to enhance our understanding during the
cyclic loading. Thus, the primary objective of
this study is to compare the simulated stress-
strain response during loading and unloading by
using the DEM under strain controlled condition
with the experimental stress-strain response re-
ported in O’Sullivan et al. [20] quantitatively.
The major objective of the present study is to
explore the evolution of different micro-scale pa-
rameters such as the coordination numbers and
the deviatoric fabric during the cyclic loading for
different maximum applied strains and densities
of samples. The fabric was enumerated with the
help of different fabric tensors defined based on
the contact normal vectors. In this study, sin-
gle micro-scale parameter based on the contact
characteristic of the granular system is consid-
ered in contrast to considering many micro-scale
parameters usually used in most other studies
in the literature to establish a relationship be-
tween the macro and micro-scale quantities. The
study reveals that a linear relationship between
the macro and micro-scale quantities is possible
considering a single micro-parameter during the
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cyclic loading irrespective of the values of max-
imum applied strain and the density of sample.

2. Discrete element
method

The discrete element method (DEM) is one of
the family of numerical methods that is widely
used for exploring the micro-scale behavior of
granular materials. It is a versatile method for
computing the motion of particulate media in
different branches of science and engineering.
DEM was originally proposed by Cundall and
Strack [8] for modeling the discrete nature of
granular materials. Each particle in DEM rep-
resents a separate grain which can translate and
rotate independently through the interparticle
contacts. A single particle can make many con-
tacts and the contacts between particles can
even break. Newton’s second law of motion is
used to compute the translational accelerations
and rotational acceleration of a 3D particle that
can be computed as follows:

mẍi =
∑

Fi i = 1− 3 (1)

Iθ̈ =
∑

M (2)

where Fi stands for force components, M stands
for moment, m stands for mass, I stands for the
moment of inertia, ẍi stands for the translation
acceleration components and θ̈ stands for the ro-
tational acceleration of the particle. The accel-
erations are numerically integrated over a small
time step to update particle velocities and posi-
tions. The associated equations are as follows:

xi(t+∆t) = xi(t) + ẋi(t)∆t (3)

ẋi(t+∆t) = ẋi(t) + ẍi(t)∆t (4)

where ẋi is the components of the velocity, xi

is the components of the position of the parti-
cle and ∆t is the time step. The choice of the
time step is of critical importance in DEM. The
value of time step is chosen to be very small to
ensure the overlaps to be very small. Otherwise,
it may result unrealistic value of force. Suitable
time step is approximated from Rayleigh sur-
face wave propagation speed. Usually a fraction

of this time step is taken to ensure the realistic
force transmission rates and attain the numeri-
cal stability.

3. About the computer
program OVAL

In this study, computer program OVAL [11] is
used. It is a computer program written in FOR-
TRAN language. The running of OVAL is avail-
able in both the Windows and Linux platform.
It is used for modelling the discrete behavior of
an assembly of particles using the DEM. OVAL
has been recognized so far by many contribu-
tions in the literature and thus, its efficacy has
been established [10, 11, 17, 18] [21]-[23]. In this
study, Hertz-Mindlin contact model is used. The
normal force of a Hertz-type contact is calcu-
lated as follows [24]:

Fn =
Ēa3

Re
(5)

Ē =
8G

3(1− ν)
(6)

a =

√
d×Re

2
(7)

Re =
2R1R2

R1 +R2
(8)

Here, Ē represents the elastic constant, a repre-
sents the contact radius, d represents the overlap
between the contacting particles, Re represents
the effective radius of curvature, R1 and R2 rep-
resent the radii of curvatures of two particles at
contact.

4. Brief description of the
physical cyclic test

In this study, the physical cyclic shear test re-
ported by O’Sullivan et al. [20] on dry grade
chrome steel balls under a vacuum confinement
of 80 kPa was simulated. In the physical test,
steel balls were considered to be an analogue of
soil. The nonuniform sample in their study had
three types of spheres having the radii of 2 mm,
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2.5 mm and 3 mm, respectively. The mixing
ratio of these spheres in the nonuniform sample
was 1:1:1. The sample diameter was 101 mm and
the height was 203 mm. The void ratio of the
sample was 0.603. To prepare the sample, the
latex membrane was sealed against the inside of
a cylindrical mold using a vacuum. The char-
acteristics of the spheres used in the cyclic test
as reported in O’Sullivan et al. [20] have been
summarized in Tab. 1. The particle to particle
friction coefficient and the boundary to particle
friction coefficient were computed by O’Sullivan
et al. [25] and Cui [26]. For details of the physi-
cal test, readers are referred to O’Sullivan et al.
[20].

Tab. 1: Characteristics of dry Grade chrome steel balls
used in the cyclic test [20].

Properties Values
Density of spheres (kg/m3) 7.8 × 103

Shear modulus (Pa) 7.9 × 103

Poisson’s ratio 0.28
Interparticle friction coefficient 0.096
Boundary friction coefficient 0.228

5. Preparation of
numerical samples

5.1. Sample generation

Initially, a loose sample was generated in a par-
allelepiped as shown in Fig. 1 (height to width
ratio of two) by using 9826 spheres randomly
in such a way that a sphere cannot touch its
neighbors. The radii of spheres were 2 mm,
2.5 mm and 3 mm similar to the physical test.
The spheres were considered as particles because
the physical test reported by O’Sullivan et al.
[20] also considered dry grade chrome steel balls
as analogue to soil. The mixing ratio of these
spheres is 1:1:1 which is similar to O’Sullivan et
al. [20]. It should be noted that the shape of
the numerical sample is different from that of
the physical test. It is expected that this differ-
ence has negligible impact on the overall results.

Fig. 1: Graphical illustration of the simulated model
with reference axes.

5.2. Preparation of isotropically
compressed sample

Once the sample was generation, it was consoli-
dated in different stages to attain the target con-
fining pressure of 80 kPa similar to the physical
test. During the isotropic consolidation, the pe-
riodic boundary condition was applied similar
to that used in many other DEM based studies
[10, 11, 21, 27, 28]. A particle that sits astride
a periodic boundary has a numerical image at
the opposite boundary. If the centers of the
particles move outside any boundary, they are
instantly reintroduced at a corresponding posi-
tion along the other boundary. The consolida-
tion of the initially generated sparse sample was
carried out in different stages using the strain
controlled condition until the confining pressure
became 80 kPa. When the confining pressure
became 80 kPa, the isotropic compression was
completed and the void ratio of the numerical
sample became 0.626, which was very close to
that reported in O’Sullivan et al. [20]. It should
be noted that the void ratio of the isotropically
consolidated numerical sample is a bit higher
than that of the real sample. Such difference
of the void ratio is believed to have negligible
influence on the simulated results.

To prepare the isotropically compressed sam-
ples having different densities (i.e. void ratio)
of sample, the interparticle friction coefficient
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was intentionally turned off for the preparation
of relatively dense sample and was 0.50 for the
preparation of relatively loose sample. The sam-
ple was consolidated in different stages until the
confining pressure became 80 kPa. The void ra-
tio of the relatively dense sample became 0.58
and that of the relatively loose sample became
0.78 after the end of the isotropic consolidation.

5.3. Numerical simulation

Simulation of cyclic shear test was conducted us-
ing the isotropically compressed numerical sam-
ples for different maximum applied strains rang-
ing from 0.1% to 2% and densities of sample
by using the DEM. During the loading, the
sample height was decreased downward with a
very small strain increment of 2.0 × 10−5% per
time step along the x1- direction by keeping the
stresses in x2- direction and x3- direction con-
stant (80 kPa). However, during the unloading,
the process was reversed. The sample height
was increased upward with the same strain in-
crement along the x1- direction by keeping the
stresses in x2- direction and x3- direction con-
stant (80 kPa). The cyclic loading condition of
the simulated model is depicted in Fig. 1 for
clarity.

To achieve the quasi-static condition and to
minimize the effect of numerical damping, a very
small strain increment was assigned. To ex-
amine the quasi-static condition of the sample
during the simulation of cyclic loading, a non-
dimensional index Iuf is used as follows [18, 21]:

Iuf =

√√√√√√√√
Np∑
1
F 2
ubf/Np

Nc∑
1
F 2/Nc

× 100 (%) (9)

Here Fubf , F , Nc, and Np indicate the unbal-
anced force, contact force, number of contacts
between particles and number of particles in-
volved in the simulation, respectively. Index Iuf
is directly linked to the accuracy of the simula-
tion. Lower the value of Iuf , higher the accuracy
of the simulation. An average value of Iuf be-
low 2.0% is observed during the simulation of
the cyclic loading. The material properties and

DEM parameters used for the simulation of the
cyclic loading are presented in Tab. 2.

Tab. 2: Material Properties and DEM parameters used
in the present study.

Properties Values
Density of spheres (kg/m3) 7.8 × 103

Shear modulus (Pa) 7.9 × 103

Poisson’s ratio 0.28
Interparticle friction coefficient 0.096

Increment of time step (s) 1.0 × 10−6

Damping coefficients 0.10

5.4. Evolution of the simulated
stress-strain responses

The stress-strain behavior simulated by using
the DEM is compared with that of the physi-
cal cyclic test as reported in O’Sullivan et al.
[20] and presented in Fig. 2. The stress ratio
is defined here as Rσ = (σ1 − σ3)/σ3. Here, σ1

indicates the stress in x1- direction and σ3 indi-
cates the stress in x3- direction. Please note that
half of the hysteresis loop of the simulated cyclic
test is depicted in Fig. 2 to compare exactly with
the experimental data. It is noted that the simu-
lated stress-strain behavior by the DEM during
loading and unloading has excellent agreement
with the physical test reported in O’Sullivan et
al. [20] under the strain controlled condition ex-
cept the initial stiffening behavior. This may
due to the difference in boundary conditions be-
tween the simulation and the experiment. This
quantitative validation of the simulated stress-
strain behavior with that of the experiment dur-
ing loading and unloading depicts the versatile
nature of the present study by DEM. It indicates
that DEM can successfully reproduce the behav-
ior of granular materials quantitatively. This
quantitative validation of the numerical simula-
tion by the DEM with the experiment during
loading and unloading gives confidence about
the authentication of the micro-scale responses
reported in the following sections. After the
quantitative validation of the simulated stress-
strain behavior with the experiment, the effects
of the variation of the maximum applied strain
and the density of sample are studied. Figure 3
shows the effect of the variation of the maximum
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Fig. 2: Comparison of the simulated stress-strain be-
havior with that the experiment.

Fig. 3: Stress-strain response during the cyclic loading
due to the variation of maximum applied strain.

applied strain on the stress-strain responses dur-
ing the cyclic loading while Fig. 4 shows the
effect of the variation of the density of sample
on the stress-strain responses during the cyclic
loading. The area covered by the hysteresis loop
of the cyclic loading increases with the increase
of the maximum applied strain (Fig. 3). Inter-
esting to note that the sample having the void
ratio of 0.78 becomes stiffer even at the second
time loading (Fig. 4). Usually, this not expected
for a relatively loose sample. However, this be-
comes possible because the interparticle friction
coefficient is very small (0.096) during the cyclic
shear which helps the loose sample to become
denser sharply during the cyclic loading.

Fig. 4: Stress-strain response during the cyclic loading
due to the variation of sample density for the
1% maximum applied strain.

5.5. Evolution of micro-scale
behavior

In this section, the evolution of different micro-
scale quantities such as the coordination num-
ber, slip coordination number, fabric and the
relation between the fabrics and the stress ratio
is discussed. The evolution of the coordination
number with axial strain is depicted in Fig. 5.
For clear representation, the coordination num-
ber for first loading and unloading (half of the
hysteresis loop of cyclic loading) is depicted in
Fig. 5-(a) while the same for few hysteresis loops
of cyclic loading are depicted in Fig. 5-(b) for
different maximum applied strains. The coordi-
nation number is usually defined as Z = 2Nc/Np

[27, 28]. Two drops of coordination number are
noticed in Fig. 5-(a). The first drop of coordi-
nation number is noticed when the isotropically
compressed sample is subjected to loading and
the second drop is noticed when the same sam-
ple is subjected to unloading. When the max-
imum applied strain is 0.10%, these drops are
not as sharp as it is noticed in the case when
the maximum strain is 1.0% and 2.0%, respec-
tively. When the maximum strain is 0.10%, the
contacts which are isotropically distributed start
lining in parallel with the major principal stress
direction and few contacts are lost in the mi-
nor principal stress directions. Consequently,
the reduction of the coordination number is not
so sharp during loading. When the load is re-
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Fig. 5: Evolution of the coordination number with axial strain for different values of maximum applied strain: (a)
for first loading and unloading and (b) for few cyclic loops.

versed, the principal stress direction is also in-
verted which causes the disintegration of few
more contacts resulting in a second drop of co-
ordination number. For the case when the max-
imum strain is as large as 2.0%, the sample gets
enough time to redistribute the isotropically dis-
tributed contacts prior to shear and the contacts
start lining in parallel with the direction of ma-
jor principal stress by losing huge contacts in
the directions of minor principal stress. When
the loading continues, the number of contacts
and the coordination number starts increasing
again to support the accumulated force chains
almost parallel to the direction of major princi-
pal stress. Similar mechanism takes place during
unloading.

In the case of cyclic loading, another drop
of coordination number is observed when the
reloading begins as noted in Fig. 5-(b). This
drop is also related to the redistribution of the
contact fabric due to the change of the major
principal stress direction. The behavior is simi-
lar regardless of the values of the maximum ap-
plied strain. The evolution of the coordination
number with axial strain for different densities
of samples is depicted in Fig. 6. As discussed
earlier, relatively loose sample exhibits a huge
drop of coordination number compared to the

Fig. 6: Evolution of the coordination number with axial
strain during the cyclic loading due to the vari-
ation of the sample density for 1% maximum
applied strain.

relatively dense sample as soon as the shear be-
gins.

The evolution of slip coordination number
with axial strain during the cyclic loading for
different values of maximum applied strain is de-
picted in Fig. 7. The slip coordination number
is defined as Zsl = 2Nsl/Np [27, 28], where Nsl

indicates the total slip contacts among particles
in the sample at a given state. Slip coordination
number keeps increasing, on an average, till the
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Fig. 7: Evolution of slip coordination number with ax-
ial strain during the cyclic loading for different
values of the maximum applied strain.

end of loading and experiences a huge drop when
the load is reversed. The drop is due to the stress
reversal to adjust the change in principal stress
direction. The slip coordination number keeps
increasing again as the unloading continues.

It should be noted that the evolution pattern
of slip coordination number is similar regardless
of the values of maximum applied strain. Note
also that the drop of slip coordination number is
larger at the end of unloading than that at end
of loading. The evolution of slip coordination
number with axial strain during the cyclic load-
ing due to the variation of sample density for
1% maximum applied strain is showed in Fig. 8.
The evolution pattern of slip coordination num-
ber is similar regardless of the variation of the
sample density. As noted earlier, the drop of
slip coordination number is larger at the end of
unloading than that at end of loading.

The evolution of deviatoric fabric H11 − H33

with axial strain (ε1) considering all contacts
during the cyclic loading for different applied
strains is depicted in Fig. 9. The fabric is
usually characterized by contact normal vectors
[20, 21]. The fabric considering all contacts can
be quantified in term of the contact normal vec-
tors as follows [17, 18]:

Hij =
1

Nc

Nc∑
α=1

nα
i n

α
j i, j = 1− 3 (10)

Fig. 8: Evolution of the slip coordination number with
axial strain during the cyclic loading due to the
variation of sample density for 1% maximum ap-
plied strain.

where nα
i indicates the i−th component of the

unit contact normal vector at the α−th contact.
A comparison of Fig. 9 with Fig. 3 shows that
the evolution pattern of deviatoric fabric with
axial strain follows almost the same tendency
of stress-strain curve during the cyclic loading,
even though the shape is different. The develop-
ment of deviatoric fabric H11 − H33 with axial
strain (ε1) considering all contacts during the
cyclic loading for the variation of sample den-
sity for 1% maximum applied strain is shown in
Fig. 10. A comparison of Fig. 10 with Fig. 4
shows that the evolution pattern of deviatoric
fabric with axial strain considering the variation
of the sample density follows almost the same
tendency of stress-strain curve during the cyclic
loading, even though the shape is different.

For representing the role of strong contacts
and weak contacts in the evolution of fabric,
the fabric considering all contacts can be di-
vided into two different fabrics: (i) strong con-
tact fabric considering the contact normal vec-
tors at strong contacts only and (ii) weak con-
tact fabric considering the contact normal vec-
tors at weak contacts only [22]. In this study, a
contact is defined as a strong contact if the con-
tact force (F ) between the contacting particles
is greater than the average contact force (Fα).
Similarly, a contact is defined as a weak contact
if the contact force (F ) between the contacting
particles is smaller than or equal to the average
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Fig. 9: Evolution of deviatoric fabric considering all
contacts with axial strain during the cyclic load-
ing for different values of maximum applied
strain.

contact force (Fα). The average contact force is
described as follows:

Fα =

√√√√√ Nc∑
k=1

|F k|2

Nc
(11)

where F k indicates the contact force at the k−th
contact.

In this study, the ratio of strong contacts to all
the contacts is represented by R and its evolu-
tion with axial strain is discussed to understand
the role of strong contacts with respect to all the
contacts. The evolution of R with axial strain
during the cyclic loading is depicted in Fig. 11
for different values of maximum applied strain.
Half of the hysteresis loop of the cycle loading is
depicted in Fig. 11-(a) for clear view while few
hysteresis loops of cyclic loading are depicted in
Fig. 11-(b). The ratio of strong contacts to the
total contacts decreases gradually except when
εmax
1 is 0.10%. The value of R keeps decreas-

ing as one can notice in Fig. 11 which is op-
posite to what is observed in the evolution of
the coordination number. Although R reduces,
the stress ratio at the same state of stress does
not reduces, because these contacts carry heavy
stress at these states. The value of R jumps up
again immediate after the load reversal due to
the sudden change of the principal stress direc-
tion. Later, R keeps reducing, on an average,
during the unloading similar to the loading.

Fig. 10: Evolution of deviatoric fabric considering all
contacts with axial strain during the cyclic
loading due to the variation of sample density
for 1% maximum applied strain.

As strong contacts have considerable role in
the evolution of micro-structures, the fabric ten-
sor considering the strong contacts is defined
similar to Eq. 8 as follows [17, 18]:

Hs
ij =

1

Nc

Ns∑
s=1

ns
in

s
j i, j = 1− 3 (12)

where ns
i represents the i−th component of the

unit contact normal vector at the s−th strong
contact and Ns represents the total number of
strong contacts.

The evolution of the deviatoric fabric Hs
11 −

Hs
33 for different applied strains with axial strain

(ε1) during the cyclic loading is depicted in Fig.
12. The qualitative pattern of the evolution of
fabric considering strong contacts is very close to
the stress-strain curve during the cyclic loading
compared to the evolution of fabric considering
all contacts. The evolution of the deviatoric fab-
ric Hs

11 − Hs
33 for different densities of samples

with axial strain (ε1) during the cyclic loading is
depicted in Fig. 13. It is noted that the qualita-
tive pattern of the evolution of fabric considering
strong contacts for different densities of samples
is very close to the stress-strain curve during the
cyclic loading compared to the evolution of fab-
ric considering all contacts.

Because the evolution of Hs
11 −Hs

33 with ax-
ial strain is similar to that of stress ratio with
axial strain, it is envisioned to compare these re-
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Fig. 11: Evolution of with axial strain for different values of maximum applied strain (a) during loading and
unloading (b) during cyclic loading.

Fig. 12: Evolution of deviatoric fabric considering con-
tact normal vectors at strong contacts with ax-
ial strain during the cyclic loading for different
values of maximum applied strain.

sults quantitatively. For this purpose, the devia-
toric fabric for strong contacts during the cyclic
loading is divided by Hs

33 similar to stress ra-
tio and depicted in Fig. 14. It is obvious from
Fig. 14 that fabric ratio [(Hs

11−Hs
33)/H

s
33] com-

puted by a fabric tensor of contact normal vec-
tors at strong contacts can imitate the stress-
strain behavior of granular material during the
cyclic loading. This establishes an excellent con-

Fig. 13: Evolution of deviatoric fabric considering con-
tact normal vectors at strong contacts with ax-
ial strain during the cyclic loading due to the
variation of sample density for 1% maximum
applied strain.

nection between the macro quantity (stress ra-
tio) and the micro quantity (fabric ratio) consid-
ering strong contacts. However, some mismatch
between the simulated and experiment data is
observed (Fig. 14). This may be due to the dif-
ference in the boundary conditions in the simu-
lation and experiment. This study considers the
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Fig. 14: Comparison of the simulated stress ratio or
fabric ratio with the evolution stress ratio dur-
ing the experimental cyclic test.

periodic boundary whereas the experiments by
O’Sullivan et al. [20] used the flexible boundary.

As an excellent relation between the stress ra-
tio and the fabric ratio considering the strong
contacts during the cyclic loading is observed,
a relationship between them can be developed.
In the earlier studies, the relationship between
the macro quantity such as the stress ratio and
micro quantities regarding the contact normal
vectors, normal stress and tangential stress was
observed. In some studies, the relationship be-
tween the stress ratio and the anisotropies ini-
tiated from the contact normal vector, normal
contact force and tangential contact force is es-
tablished [29, 30]. By contrast, in this study, an
attempt is made to correlate the stress ratio with
the fabric ratio computed from the contact nor-
mal vectors of strong contacts during the cyclic
loading [17, 18]. Only single micro-scale param-
eter related to the contact normal vectors is used
in this approach. Consequently, this approach is
simpler compared to the most other approaches
in the literature. Figure 15 represents the cor-
relation between the fabric ratio for strong con-
tacts and stress ratio during the cyclic loading
due to the variation of maximum applied strain
and density of sample.

A linear correlation between the macro and
micro quantity exists regardless of the values of

Fig. 15: The relationship between the micro-quantity
(fabric ratio) and macro-quantity (stress ratio)
during the cyclic loading (a) for different val-
ues of maximum applied strain (b) for different
sample densities.

the maximum applied strain and density of sam-
ple during the cyclic loading. The correlation
between the micro-quantity (fabric ratio) and
macro-quantity (stress ratio) can be expressed
as follows for the variation of the maximum ap-
plied strain (Eq. (13)) and for the variation of
the density of the sample (Eq. (14)):

(
Hs

11 −Hs
33

Hs
33

)
= 1.32

(
σ11 − σ33

σ33

)
(13)

(
Hs

11 −Hs
33

Hs
33

)
= 1.34

(
σ11 − σ33

σ33

)
(14)
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6. Conclusion

The simulated stress-strain response during the
cyclic loading using the DEM is compared quan-
titatively with that of the experiment. In addi-
tion, the micro-mechanical responses during the
cyclic loading are explored for different applied
strains and densities of sample. The evolution
of fabric during the cyclic loading is described
and quantified using the fabric tensors consider-
ing all contacts and strong contacts. The major
findings of this study are summarized as follows:

(i) The simulated drained cyclic behavior dis-
plays the similar stress-strain behavior as re-
ported in the experiment except the initial stiff-
ness of the stress-strain curve during the loading.

(ii) The evolution pattern of coordination
number as well as slip coordination number is
a function of the maximum applied strain and
the density of sample during the cyclic loading.

(iii) The drop of slip coordination number is
larger at the end of unloading than that at end
of loading during the cyclic loading regardless of
the values of maximum applied strain and the
density of sample.

(iv) The ratio of strong contacts to all con-
tacts increases abruptly as soon as the load is
reversed which is opposite to what is observed
for the coordination number and the slip coor-
dination number.

(v) The deviatoric fabric considering the
strong contacts mimics the deviatoric stress re-
gardless of the values of maximum applied strain
and the density of sample during the cyclic load-
ing.

(vi) A linear correlation between the macro
and micro quantity exists regardless of the val-
ues of maximum applied strain and the density
of sample during the cyclic loading. The slopes
of the lines of these correlation are almost same.
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