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Abstract. The nonlocal operator method
(NOM) is based on nonlocal theory and employs
nonlocal operators of integral form to replace
the local partial differential operators. NOM
naturally bridges models of different length
scales and enables also the natural solution
of problems with continuous to discontinuous
solutions as they occur in the case of material
failure. It also provides a natural framework
for complex multifield problems. It is based
on a variational principle or weighted residual
method and only requires the definition of
associated energy potential. As the NOM does
not require any shape functions as ’traditional
methods’ such as FEM, IGA or meshfree
methods, its implementation is significantly
simplified. It has been successfully applied
to the solution of several partial differential
equations (PDEs). This paper aims to provide a
comprehensive description of the NOM together
with a review of its major applications for the
solution of PDEs for challenging engineering
problems. Finally, we give some potential future
research direction in the area of methods based
on nonlocal operators.
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Nomenclature

Symbols Description
xi spatial coordinates in domain Ω
u displacement field
ξij relative position vector
w (ξij) the weight function
Si the support of particle xi

S ′
i the dual-support of particle xi

∇̃ ⊗ ui nonlocal gradient operator
of point xi

∇̃ × ui nonlocal curl operator
of point xi

∇̃ · ui nonlocal divergence operator
of point xi

Fhg
i operator energy functional

of point xi

Ki the shape tensor
∂Ω the boundary of domain Ω
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σ Cauchy stress tensor
ψe(ε(∇u), ϕ) strain energy density
b the body force density
f the external traction

force
∆Vi the volume associated

with point xi

∂1
αui scaled partial derivatives
∂αui partial derivatives
αn
r

multi-index notation
Bαi the nonlocal operator

coefficient matrix of
point xi

n∗ the outward-pointing
normal vector for
boundary ∂Ωf

H(x, T ) the local history field
of strain

Gc the critical energy release
rate

Abbreviations Description
PDEs Partial Differential

Equations
NOM Nonlocal Operator

Method
FEM Finite Element Method
XFEM Extended Finite-Element

Method
PG DEM Petrov-Galerkin Diffuse

Element Method
EFG Element-Free Galerkin
RKPM Reproducing Kernel

Particle Method
PUM Partition of Unity

Methods
IGA Isogeometric Analysis
GFDM Generalized Finite

Difference Method
SPH Smoothed Particle

Hydrodynamics
PD Peridynamics
TSE Taylor Series Expansion
PDDO Peridynamic differential

operator

1. Introduction

In engineering analysis, numerous central mod-
els can be quantitatively described by one
or more partial differential equations (PDEs),

known as the governing equations. PDEs de-
scribe complex phenomena such as motion, re-
action, diffusion, equilibrium, conservation, just
to name a few. Due to the complexity of most
problems, analytical solutions exist only for re-
stricted circumstances with simple geometries
and boundary conditions. Therefore, numer-
ical methods have been developed over many
decades. They include the finite element method
(FEM) [1]-[6], extended finite-element method
(XFEM) [7, 8], Reproducing Kernel Particle
Method (RKPM) [9]-[12], Petrov-Galerkin Dif-
fuse Element Method (PG DEM) [13, 14], Par-
tition of Unity Methods (PUM) [15]-[18], isoge-
ometric analysis (IGA) [19]-[25], the reproduc-
ing kernel collocation method [26]-[33], Element-
Free Galerkin (EFG) method [34]-[37], hp-
Meshless clouds (HPC) [38], Generalized Finite
Difference Method (GFDM) [39]-[43], Smoothed
Particle Hydrodynamics (SPH) [44]-[48], Peridy-
namics (PD) [49], to name a few.

One key task in numerical methods for solving
PDEs is to devise methodologies for numerically
representing, formulating, and computing the
various differential operators. In order to solve
the unknown field, the FEM and most mesh-
less methods, for example, employ shape func-
tions by introducing interpolations or approxi-
mations of the field variables via nodal values.
The shape function derivatives are then used to
represent and compute the differential operators
of the field variables. Or in other words, instead
of applying the differential operators directly to
the approximation, they are applied to the shape
functions. In many applications, the construc-
tion of the shape functions and their deriva-
tives can become challenging. Also problems
with moving boundaries impose strong require-
ments on the shape functions of the underlying
discretization. These issues can be dealt with
meshless methods or so-called extended FEMs
which employ enrichment functions and intro-
duce additional degrees of freedom into the dis-
cretization. However, the implementation in 3D
is challenging due to the description of the in-
terface/frack topology.

Another efficient way to deal with such prob-
lems is to ’smear’ out the discontinuity. So-
called nonlocal theories introduce an intrinsic
length scale and avoid treating problems with
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discontinuities. They have been used nonlocal
elasticity [50]-[54], nonlocal fluid dynamics [55]-
[57], nonlocal continuum field theories [58]-[61],
nonlocal electromagnetic theory [62]-[64], non-
local damage mechanics [65]-[68] and nonlocal
calculus [69, 70]. The nonlocal theory based
on an integral form provides an improved pre-
dictive capability to capture effects that clas-
sical differential equations fail to capture. In
comparison to the local theory, the nonlocal
theory not only has a greater numerical well-
posedness, but also resembles the real physi-
cal process better due to its inherent length
scale [59, 71, 65]. A popular approach based
on nonlocal theory is peridynamics (PD) [72]-
[78], which has received great interest because
of its comparatively simple numerical implemen-
tation for fracture. To account for long-range
forces, PD reformulates the elasticity theory in
integral form, overcoming the challenge of defin-
ing the local derivatives for fractures. In con-
trast to numerical models based on classical lo-
cal continuum mechanics, PD theories employ
integro-differential equations without displace-
ment derivatives, which naturally enable the oc-
currence of discontinuities in the displacement
field as it does not require spatial derivatives
of the displacement field. Furthermore, PD
can naturally deal with complicated fracture
processes such as crack branching and coales-
cence. PD models include bond-based peridy-
namics (BB-PD) models [79]-[83], state-based
peridynamic (SB-PD) models [84]-[89], dual-
horizon peridynamics (DH-PD) [90]-[93] and hy-
brid models coupling classical continuum me-
chanics with PD [94]-[100]. PD has been ap-
plied to numerous problems such as plate/shell
analysis [101]-[106], mixed peridynamic Petrov-
Galerkin method [100, 107], phase-field dam-
age models [108]-[111], wave dispersion analy-
sis [112]-[117] and higher-order approaches [118]-
[122], to name a few.

In recent years, several numerical approaches
based on peridynamic differential operator
(PDDO) [123]-[139] have been proposed, which
can be viewed as an interesting extension of PD.
PDDO employs the concept of PD interactions.
It is based on the Taylor Series Expansion (TSE)
of multi-variable scalar functions and the or-
thogonality property of PD functions. PDDO

provides any order of derivatives to be derived
directly from the orthogonality requirement of
the PD functions without any differentiation. It
does not use a kernel function or repeatability
criteria for different derivative orders and per-
mits the precise calculation of any arbitrary or-
der of partial derivatives of spatial and temporal
functions. Directly determining the PD func-
tions for the derivatives is done by making them
orthogonal to each term in the Taylor series ex-
pansion. When finding the PD functions in the
presence of a nonsymmetric family, both the
lower-order and higher-order derivatives affect
each other. PDDO is exempt from the symmet-
ric requirement which eliminates the need for
ghost points at the boundary.

Another approach, which can be considered
as an extension to PD, is the Nonlocal Operator
Method (NOM), which has been first proposed
in [140] for electromagnetic problems. The ap-
proach has been subsequently extended to me-
chanical problems in [141]-[150]. NOM is based
on ’conventional’ differential operators to define
the nonlocal operators. It adopts concepts such
as support and dual support with finite char-
acteristic length, and it utilizes a TSE to cal-
culate partial derivatives. NOM has been ap-
plied to numerous challenging problems in solid
mechanics and is a viable alternative to FEM
or meshless methods. In combination with the
weighted residual and variational methodology,
NOM constructs the operator energy functional
through common matrix operations. While
FEM and meshless methods require shape func-
tions to compute derivatives, NOM acquires
those through the differential operators ’natu-
rally’ without the use of shape functions. Or
in other words: Nonlocal operators can be re-
garded as an alternative to partial derivatives
of shape functions in FEM. The tangent stiff-
ness is obtained naturally by simply defining an
energy function, thus drastically simplifying the
implementation. Since NOM also makes use of
the concepts of support and dual-support, non-
local strong forms for a wide range of physi-
cal problems can be naturally derived. Up to
date, three versions of NOM have been pre-
sented: first-order / higher-order particle-based
NOM and higher-order ’numerical integration-
based’ NOM. When nodal integration is used,
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the particle-based version may be considered
as a special case of NOM with numerical inte-
gration. In this paper, the developments and
applications of NOM for solving PDEs are re-
viewed. The remainder of the paper is outlined
as follows: In Section 2, we briefly review the
NOM. Section 3 addresses applications of NOM
for solving PDEs. Finally, some future research
perspectives are presented in Section 4 before
the manuscript concludes in Section 5.

2. Nonlocal operator
method (NOM) and its
developments

2.1. Fundamentals of NOM:
Support, dual-support,
nonlocal operators and
operator energy functional

Consider the initial and present configurations
of a solid, as depicted in Fig. 1(a). Let xi be
spatial coordinates in the domain Ω; the spatial
vector ξij := xj − xi starts from xi to xj ; ui :=
u(xi, t) and uj := u(xj , t) are the field values
for xi and xj , respectively; uij := uj −ui is the
relative displacement field ξij and Support Si

of point xi is the domain where any spatial point
xj forms a spatial vector ξij(= xj −xi) from xi

to xj . The support serves as the basis for the
nonlocal operators. It should be noted there is
no restriction on the support shapes (such as
spherical, cube, and so on). Dual-support is
defined as a union of the points whose supports
include x, indicated by

S ′
i = {xj |xi ∈ Sj}. (1)

Point xj forms the dual-vector ξ′ij(= xi − xj =

−ξij) in S ′
i; ξ

′
ij is the spatial vector established

in Sj . Fig. 1(b) illustrates the concept of sup-
port and dual-support. NOM replaces the lo-
cal operator with nonlocal operators. By sub-
stituting the local differential operator with the
corresponding nonlocal operator, the functional
defined by the local differential operator can be
utilized to generate the residual or tangent stiff-
ness matrix. The nonlocal operators for a

xi

xj

�

u(xi)

o

ξij =xj-xi

Si

u(xj)

(a)

Sx

x1

x2

x3
x5

x6

x
x4

x7

(b)

Fig. 1: (a) The deformed body configuration. (b) Sup-
port and dual-support schematic diagram, Sx =
{x1,x2,x3,x5,x6,x7}, S′

x = {x3,x6,x7}.

vector field u and scalar field u for point xi in
support Si can be defined as follows

1 Nonlocal gradient operator

(a) Vector field ∇̃ ⊗ ui :=ˆ
Si

w(ξij)uij ⊗ ξijdVj ·
( ˆ

Si

w(ξij)ξij ⊗ ξijdVj

)−1

(b) Scalar field ∇̃ui :=ˆ
Si

w(ξij)uijξijdVj ·
( ˆ

Si

w(ξij)ξij ⊗ ξijdVj

)−1

(2)

2 Nonlocal curl operator

Vector field ∇̃ × ui :=ˆ
Si

w(ξij)
(( ˆ

Si

w(ξij)ξij ⊗ ξijdVj

)−1 · ξij

)
× uijdVj

(3)

3 Nonlocal divergence operator

Vector field ∇̃ · ui :=ˆ
Si

w(ξij)uij ·
(( ˆ

Si

w(ξij)ξij ⊗ ξijdVj

)−1 · ξij

)
dVj

(4)
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The operator energy functional for a vec-
tor field u and scalar field u for point xi in sup-
port Si can be defined as follows

(a) Vector field

Fhg
i =

phg

2mKi

ˆ
Si

w(ξij)(∇̃ui · ξij − uij)
T

(∇̃ui · ξij − uij)dVj
(b) Scalar field

Fhg
i =

phg

2mKi

ˆ
Si

w(ξij)(∇̃uiξij − uij)

(∇̃uiξij − uij)dVj
(5)

where w(ξij) is the weight function, phg

2mKi
is

a coefficient for the operator energy functional,
phg is the penalty coefficient, mKi

(= tr[Ki]) is
the normalization coefficient and Ki is a shape
tensor defined as

Ki =

ˆ
Si

w(ξij)ξij ⊗ ξijdVj (6)

2.2. First-order particle-based
NOM

The first-order NOM was proposed for the so-
lution of PDEs by Rabczuk, et al. [140, 141].
In the first-order particle-based NOM, a vector
field u at a point (0,0) is approximated by us-
ing a Taylor series expansion neglecting higher
order terms

u′ = u+∇u · ξ +O(ξ2) (7)

where ∇ := ( ∂
∂x ,

∂
∂y ,

∂
∂z )

T , ξ :=(x, y, z)T denotes
the initial bond vector, O(ξ2) represents higher
order terms, and for a linear field O(ξ2) = 0.
The nonlocal gradient operator ∇̃ui at point xi

is written as

∇̃ui =
∑
j∈Si

w (ξij) (uj − ui)⊗ ξij∆Vj

·
[∑

j
w (ξij) ξij ⊗ ξij∆Vj

]−1

(8)

The matrix form of the nonlocal gradient oper-
ator ∇̃u at point xi for a vector field can be

written as

∇̃ui =


∂ui

∂x
∂ui

∂y
∂ui

∂z
∂vi
∂x

∂vi

∂y
∂vi
∂z

∂wi

∂x
∂wi

∂y
∂wi

∂z


=

−∑j∈Si
ξxj

ξxj1
· · · ξxjn

−
∑

j∈Si
ξyj ξyj1 · · · ξyjn

−
∑

j∈Si
ξzj ξzj1 · · · ξzjn



ui vi wi

uj1 vj1 wj1

· · · · · · · · ·
ujn vjn wjn


(9)

The matrix form of the nonlocal gradient opera-
tor can be transformed to vector field ∇̃ui given
as

∇̃ui =
[
∂ui

∂x ,
∂ui

∂y ,
∂ui

∂z ,
∂vi

∂x ,
∂vi

∂y ,
∂vi
∂z ,

∂wi

∂x ,
∂wi

∂y ,
∂wi

∂z

]T
= BiUi, (10)

where Bi :=

−
∑

j∈Si
ξxj

0 0 ξxj1
0 0 · · · ξxjn

0 0

0 −
∑

j∈Si
ξyj

0 0 ξyj1
0 · · · 0 ξyjn

0

0 0 −
∑

j∈Si
ξzj 0 0 ξzj1 · · · 0 0 ξzjn

−
∑

j∈Si
ξxj

0 0 ξxj1
0 0 · · · ξxjn

0 0

0 −
∑

j∈Si
ξyj

0 0 ξyj1
0 · · · 0 ξyjn

0

0 0 −
∑

j∈Si
ξzj 0 0 ξzj1 · · · 0 0 ξzjn

−
∑

j∈Si
ξxj

0 0 ξxj1
0 0 · · · ξxjn

0 0

0 −
∑

j∈Si
ξyj 0 0 ξyj1 0 · · · 0 ξyjn 0

0 0 −
∑

j∈Si
ξzj 0 0 ξzj1 · · · 0 0 ξzjn


;

Ui :=
[
ui, vi, wi, uj1, vj1, wj1, · · · , ujn, vjn, wjn

]T
The nonlocal gradient operator ∇̃u at point xi

for a scalar field is written as

∇̃ui =

∂ui

∂x
∂ui

∂y
∂ui

∂z



=

−∑j∈Si
ξxj

ξxj1
· · · ξxjn

−
∑

j∈Si
ξyj ξyj1 · · · ξyjn

−
∑

j∈Si
ξzj ξzj1 · · · ξzjn



ui
uj1
· · ·
ujn


=: BiUi (11)

with

(ξxj , ξyj , ξzj ) =w (ξij) ξ
T
ijVj

·

∑
j∈Si

w (ξij) ξij ⊗ ξij∆Vj

−1

Nodal integration, which is commonly used in
the NOM, suffers from a zero-energy mode
[151, 152], which in turn results in numerical
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instability. To eliminate these instabilities, tra-
ditional PD and SPH introduce a penalty term
to the force state [153]. However, this approach
is only applicable for explicit dynamics. NOM
on the other hand employs the operator energy
functional to prevent numerical instabilities. In
first-order NOM, the operator energy functional
and its tangent stiffness matrix can be written
as [141, 149]

Fhg
i =

phg

2mKi

Ui
T



∑

j∈Si
Ij −Ij1 · · · −Ijn

−Ij1 Ij1 0 0
... 0

. . . 0
−Ijn 0 0 Ijn


−Bi

T

Ki 0 0
0 Ki 0
0 0 Ki

Bi

Ui (12)

where Ij = w(ξij)∆Vj(1, 1, 1)⊗ (1, 1, 1)T .

K hg
i =

phg

mKi



∑

j∈Si
Ij −Ij1 · · · −Ijn

−Ij1 Ij1 0 0
... 0

. . . 0
−Ijn 0 0 Ijn


−Bi

T

Ki 0 0
0 Ki 0
0 0 Ki

Bi

 (13)

The global tangent stiffness matrix in support
Si can be expressed as

Ki =
∑
j∈Si

(
Bi

T
(
D − phg

mKi

Ki 0 0
0 Ki 0
0 0 Ki

)Bi

+
phg

mKi


∑

j∈Si
Ij −Ij1 · · · −Ijn

−Ij1 Ij1 0 0
... 0

. . . 0
−Ijn 0 0 Ijn


)
∆Vj

(14)

2.3. Higher order particle-based
NOM

The first-order particle-based NOM [140, 141]
can solve lower order (up to fourth-order) PDEs,
but their accuracy degrades considerably as the
order of the PDE increases. Therefore, a higher-
order NOM has been proposed in [142], which is

applicable to the solution of higher-order PDEs
of any order, including coupled problems. The
higher-order NOM acquires all partial deriva-
tives of higher orders in a straightforward and
efficient manner without the need for shape
functions as stated before. Independent of the
numerical implementation, it can be utilized
to establish nonlocal governing equations based
on the energy functional. In the higher-order
particle-based NOM, a vector field u at a point
xj ∈ Si is approximated by using a vector form
of the Taylor series expansion that includes the
characteristic length scale li of support Si at
ui in dimensions with n as the highest order of
derivatives:

uj = ui

+
∑

(n1,...,nr)∈αn
r

ξn1
1 ...ξnr

r

l
n1+...+nr
i

(
l
n1+...+nr
i

n1!...nr!
ui,n1...nr

)
+O(ξn+1) (15)

where αn
r

is the list of flattened multi-indices, li
is a characteristic length of support Si at ui and
the factor can be written as

αn
r
= {(n1, ...,nr)|1 ≤

r∑
i=1

ni ≤ n,

ni ∈ N0, 1 ≤ i ≤ r} (16)
ξij = (xj1 − xi1, ...,xjd − xid) (17)

ui,n1...nr =
∂n1+...+nrui

∂xn1
i1 ...∂x

nr

id

(18)

|α| = max (n1 + ...+ nr) (19)

The list of the flattened polynomials plj , scaled
partial derivatives ∂lαui and partial derivatives
∂αui in higher NOM are written as

plj = (
ξr
l
, ...,

ξn1
1 ...ξnr

r

ln1+...+nr
, ...,

ξn1
ln

)T

∂lαui = (uli,0...1, ...,u
l

i,n1...nr , ...,u
l

i,n...0)
T

∂αui = (ui,0...1, ...,ui,n1...nr , ...,ui,n...0)
T . (20)

The nonlocal operator ∂̃αui at point xi is given
by

∂̃αui = L
−1
i

( ˆ
Si

w(ξij)p
l

j ⊗ (plj)
TdVj

)−1

·
ˆ
Si

w(ξij)p
l

juijdVj

= Kαip
l

wi∆ui (21)
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where

Li = diag
[
li, ...,

l
n1+...+nr
i

n1!...nr!
, ...,

l
n

i

n!

]
(22)

pl
wi =

(
w(ξij1)p

l

j1∆Vj1 , ...,w(ξijni
)pljni

∆Vjni

)
(23)

∆ui = (uij1 , ...,uijk , ...,uijn)
T (24)

The matrix form of the nonlocal operator ∂̃αui

is

∂̃αui = Kαip
l

wi∆ui

=
[
−(1, · · · , 1)nKαip

l

wi,Kαip
l

wi

]

ui

uj1

uj2

· · ·
ujn


=: BαiUi (25)

where Bαi is the nonlocal operator coefficient
matrix of point xi, (1, · · · , 1)np

Kαip
l

wi is the
column sum of Kαip

l

wi. The operator energy
functional can be expressed by

Fhg
αi =

phg

2mKi

∑
j∈Si

w(ξij)
(
uij − (plj)

T ∂̃lαui

)2
∆Vj

(26)

The quadratic operator energy functional can be
simplified into

Fhg
αi =

phg

2mKi

(K−1
αi p

l

wiBαiUi)
T
(Ij1 0 0

0
. . . 0

0 0 Ijn


− (pl

wi)
TKiLip

l

wi

)
K−1

αi p
l

wiBαiUi (27)

where Ij = w(ξij)∆Vj(1, 1, 1) ⊗ (1, 1, 1)T . The
tangent stiffness matrix caused by operator en-
ergy functional is written as

K hg
αi =

phg

mKi

(K−1
αi p

l

wiBαi)
T
(Ij1 0 0

0
. . . 0

0 0 Ijn


− (pl

wi)
TKαiLip

l

wi

)
K−1

αi p
l

wiBαi (28)

The global tangent stiffness matrix in support
Si can be expressed as

Kαi =
∑
j∈Si

(
Bαi

T · D ·Bαi

+
phg

mKi

(K−1
αi p

l

wiBαi)
T
(Ij1 0 0

0
. . . 0

0 0 Ijn


− (pl

wi)
TKαiLip

l

wi

)
K−1

αi p
l

wiBαi

)
∆Vj

(29)

2.4. Higher-order ’numerical
integration-based’ NOM

The particle-based first-order and higher-order
NOM have difficulties in precisely enforcing
boundary conditions of arbitrary order decreas-
ing the convergence rate. Furthermore, particle-
based approaches need stabilization, which can
be accomplished, for example, using the oper-
ator energy functional [140]-[142]. Neverthe-
less, the operator energy functional contains
a penalty factor. Ren et al. [143] proposed
a scheme with approximation property, which
specifies partial derivatives of various orders at
a point by the nodes in the support and em-
ploys a background mesh for numerical inte-
gration, which circumvents just mentioned re-
strictions. A modified variational principle is
used to impose the boundary conditions. When
nodal integration is utilized, the particle-based
NOM can be considered as a specific version
of ’NOM with approximation property’. The
numerical integration methodology considerably
increases the method’s stability. As a result,
the operator energy functional needed in the
particle-based NOM is avoided. However, the
NOM approximation scheme does not meet the
Kronecker-delta property, which makes the en-
forcement of Dirichlet boundary requirements
problematic. Dirichlet boundary conditions can
be enforced in a variety of ways in meshless
methods. The penalty method, the Lagrange
multiplier method and the modified variational
principle are among the most prevalent schemes.
To impose the boundary requirements, the mod-
ified variational principle is adopted here. Thus,
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the energy functional is divided into two compo-
nents that are connected to the domain and the
boundary:

F =

ˆ
Ω

fdΩ+
∑
i

ˆ
Γi

f̄idΓ (30)

where f is the energy functionals defined in the
domain, f̄i is the functionals defined on the
boundaries. In most cases, the boundary func-
tional is more complicated than that in the do-
main. The residual vector and tangent stiffness
matrix can be derived when combined with the
nonlocal operator matrix.

�

�

g1

k

g2

S1

S2

i j

Fig. 2: Schematic diagram of supports for integration
points in the domain and on the boundary [143].

Gauss quadrature based on a tetrahedra back-
ground mesh is employed. The linear tetrahe-
dron’s integration point is represented in terms
of local coordinates (ξ, η, ζ). The integration
point’s global coordinate can be determined as

(x, y, z) =
4∑

j=1

Nj(ξ, η, ζ) (xj , yj , zj) (31)

where (xj , yj , zj) are the element’s j-th nodal
coordinates and Nj is the shape function of the
four-node tetrahedron. The integration point’s
weight is

w = wc|J | = wc

∣∣∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

∣∣∣∣∣∣∣ (32)

where wc is the weighted coefficient.

It should be emphasized that the background
mesh is just necessary for integration, and NOM

does not require the FE shape function deriva-
tives. As a result, the shape functions of low-
order elements are adequate for solving higher-
order PDEs. The support domain of each in-
tegration point in the higher-order ’numerical
integration-based’ NOM is established by neigh-
boring nodes instead of the integration points.
The node-set acts as an approximation scheme
for each Gauss point. However, dual-support is
not necessary for integration points because they
do not support any other nodes.

3. Applications of NOM
for solving PDEs

3.1. Maxwell’s equations

Maxwell’s equations (Tab. 1) [154]-[158] are a
set of coupled partial differential equations that
lay the basis of classical electromagnetism, op-
tics and electromagnetism. They describe how
charges, currents and field changes create elec-
tric and magnetic fields.

Maxwell electromagnetic waveguide problems
have been solved by many computational meth-
ods such as FEM [159], the method of moments
[160], time domain finite difference method
[161], ray theory [162], meshless/meshfree meth-
ods [163, 164], asymptotic-expansion meth-
ods [165] and eigen expansion method [166].
Rabczuk et al. [140] first proposed a NOM based
on the variational principle for Maxwell electro-
magnetic waveguide problems as shown in Fig.
3 and Tab. 2.

The nonlocal formulation facilitates the as-
sembly of the tangent stiffness matrix, which is
critical for the waveguide problem’s eigenvalue
analysis. Case 2 has a frequency inaccuracy of
less than 4%. The numerical and theoretical re-
sults are in good agreement.

3.2. Nonhomogeneous
biharmonic equation

The biharmonic equation [167]-[170] is a fourth-
order PDE important for instance for plate/shell
theory [171]-[175]. It is particularly useful in
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Tab. 1: Maxwell’s equations in SI units form [158, 159].

Name Integral equations Differential equations
Gauss’s law

‚
∂Ω

E · dS = 1
ε0

˝
Ω
ρdV ∇ ·E = ρ

ε0
Gauss’s law for magnetism

‚
∂Ω

B · dS = 0 ∇ ·B = 0
Maxwell-Faraday equation
(Faraday’s law of induction)

¸
∂Σ

E · dℓ = − d
dt

˜
Σ
B · dS ∇×E = −∂B

∂t

Ampère’s circuital law
(with Maxwell’s addition)

¸
∂Σ

B · dℓ = µ0

(˜
Σ
J · dS+ ε0

d
dt

˜
Σ
E · dS

)
∇×B = µ0

(
J+ ε0

∂E
∂t

)

a

b

l
x

y

z

(a) Set up of rectangular waveguide
(22.86× 10.16× 40mm3)

(b) Case 1: 11× 6× 19 (c) Case 2: 21× 10× 36

(d) Case 1: TE10 (e) Case 1: TE20 (f) Case 1: TE01

(g) Case 2: TE10 (h) Case 2: TE20 (i) Case 2: TE01

Fig. 3: The setup of rectangular waveguide (a), the discretizations for two cases (b-c); the TE modes for case 1(d-f)
and case 2(g-i) [140].

modeling thin structures. It can be written as

∇4w = 0 (33)

where ∇4 is the fourth order ∇ operator and the
square of the Laplacian operator ∇2 (or ∆) is

the biharmonic or bilaplacian operator. It can
be expressed in n dimensions Cartesian coordi-

© 2022 Journal of Advanced Engineering and Computation (JAEC) 9
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Tab. 2: Comparison of fcmn between NOM results and
exact results [140].

Mode TE10(GHz) TE20 (GHz) TE01 (GHz)

Case 1 6.02(-8.29%) 12.33(-5.28%) 15.08(3.13%)
Case 2 6.30(-3.96%) 12.67(-2.67%) 14.91(1.88%)
Exact 6.56 13.02 14.63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−4

x [m]

w
 [m

]

 

 

Exact
10x10
20x20
40x40
60x60

Fig. 4: The NOM results to solve the nonhomogeneous
biharmonic equation [141].

nates as:

∇4w =

n∑
i=1

n∑
j=1

∂i∂i∂j∂jw

=

(
n∑

i=1

∂i∂i

) n∑
j=1

∂j∂j

w (34)

With the aid of nonlocal Hessian operator
∇̃2w and its variation ∇̃2δw, Ren et al. [141]
used the NOM to solve the nonhomogeneous
biharmonic equation for a simply supported
square plate subjected to uniform loading as
shown in Fig. 5, which shows the accuracy of
NOM.

3.3. Schrödinger equation

The Schrödinger equation [176]-[180] is a lin-
ear partial differential equation that regulates
a quantum-mechanical system’s wave function.
The Schrödinger equation for a one-dimensional

Fig. 5: Convergence of the lowest eigenvalue for a
one-dimensional harmonic oscillator: (a) First-
order NOM with an inhomogeneous discretiza-
tion [141]; (b) Higher-order NOM with a regular
node distribution [142]; (c) Higher-order NOM
with a irregular node distribution [142].

harmonic oscillator is given by[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
ϕ(x, t) = iℏ

∂

∂t
ϕ(x, t),

V (x) =
1

2
ω2x2 (35)

where ϕ(x, t) denotes a wave function. The pa-
rameter m indicates the particle’s mass, and
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V (x) denotes the potential that reflects the par-
ticle’s surroundings. By using NOM, Ren et al.
[141] tested the accuracy of the eigenvalue prob-
lem based on the first-order nonlocal operators;
the convergence plot of the error is shown in Fig.
5.

3.4. Poisson equation

Poisson’s equation [181]-[184] is an elliptic par-
tial differential equation with widespread use
in theoretical physics. The solution to Pois-
son’s equation, for instance, is the potential field
created by a particular electric charge or mass
density distribution; once the potential field is
known, the electrostatic or gravitational (force)
field may be calculated. Poisson’s equation is
given by

∆ρ∗ = f (36)

where f and ρ∗ represent real or complex-valued
functions on a manifold. Typically, f is provided
and ρ∗ is requested. When the manifold is in
Euclidean space, the Laplace operator is typi-
cally represented as ∇2, and Poisson’s equation
is commonly written as

∇2ρ∗ = f (37)

It has the following form in 3D Cartesian co-
ordinates:(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ρ∗(x, y, z) = f(x, y, z)

(38)

Numerical results of the Poisson equation by the
NOM are found in Fig. 6 [141]. Ren et al. [142]
also solved the Poisson equation with dimen-
sional number n = (2, 3, 4, 5) under various dis-
cretization and order of nonlocal operator, with
the statistical findings provided in Tab. 3.

3.5. Föppl–von Kármá
equations

The Föppl-von Kármá equations [185, 186] are
a set of nonlinear partial differential equations

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

Particle spacing [m]

|u
| L2

 

 

r=0.9567

−0.07
−0.07−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

x [m]

y 
[m

]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

x [m]

y 
[m

]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6: (a) Convergence of the displacement’s L2 er-
ror; (b) Contour of u without hourglass con-
trol for discretization 40 × 40; (c) Contour of
u with hourglass control µ = 0.1 for discretiza-
tion 40× 40 [141].

that describe the – large – deflections of thin
plates [187]. They are given by [188]:

Eh3

12 (1− ν2)
∇4w − h

∂

∂xβ

(
σαβ

∂w

∂xα

)
= P (39)

∂σαβ
∂xβ

= 0 (40)
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Tab. 3: The NOM results for different dimensional Poisson equations [142]

Dimension Nnode ∆x L2 norm umax

uexact
max

− 1 p-order phg

2 dimension

1681 0.025 0.0485 -0.0281 1 1
1681 0.025 0.0262 0.01 2 1
1681 0.025 0.0139 -0.00256 3 1
1681 0.025 0.0175 -0.00308 4 1
6561 0.0125 0.0379 0.033 1 0
6561 0.0125 0.0179 0.0714 1 1
6561 0.0125 0.011 0.00505 2 1
25921 0.00625 0.0202 0.0221 1 1
25921 0.00625 0.00501 0.00266 2 1
25921 0.00625 0.00191 -0.000417 3 1
40401 0.005 0.00777 -0.00263 1 1
160801 0.0025 0.00291 0.0007 1 1

3 dimension
10648 0.04763 0.0907 -0.0406 1 1
29791 0.03333 0.0604 -0.0248 1 1
68921 0.025 0.0485 -0.02 1 1

4 dimension

14641 0.1 0.169 -0.0514 1 1
65536 0.0667 0.118 -0.0171 1 1
160000 0.0526 0.0983 -0.0203 1 1
810000 0.0345 0.0579 0.00304 1 1
2560000 0.0256 0.0454 0.00152 1 1

5 dimension

7776 0.2 0.229 -0.114 1 1
100000 0.111 0.181 -0.0944 1 1
1048576 0.0667 0.13 -0.0485 1 1
4084101 0.05 0.0985 -0.0352 1 1

where h denotes the plate thickness, w the out-
of-plane deflection of the plate, P the external
normal force, σ the Cauchy stress tensor and
α, β are indices (the two orthogonal in-plane di-
rections). The biharmonic operator in 2D is de-
fined as

∇4w :=
∂2

∂xα∂xα

[
∂2w

∂xβ∂xβ

]
=
∂4w

∂x41
+
∂4w

∂x42
+ 2

∂4w

∂x21∂x
2
2

(41)

Figure 7 illustrates the NOM solution with a
ABAQUS solution based on S4R plate elements
[142, 189].

3.6. Cahn-Hilliard equation

The Cahn-Hilliard equation [190]-[194] describes
the process of phase separation, which occurs
when two components of a binary fluid spon-
taneously separate and form domains in each
component. If c is the fluid concentration, and
c = ±1 represents domains, the equation is writ-
ten as

∂c

∂t
= D∇2

(
c3 − c− γ∇2c

)
(42)

where D is the diffusion coefficient and √
γ is

the length of the transition areas between the
domains. The partial time derivative is ∂/∂t,
while the Laplacian in n dimensions is ∇2. Fur-
thermore, the number µ = c3−c−γ∇2c denotes
the chemical potential.
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Fig. 7: Comparison between NOM results (star dia-
mond etc symbols) and ABAQUS (lines) results:
(a) Displacement for nodes in y = L/2 ; (b) De-
flection for nodes in y = L/2; (c) Maximum de-
flection for middle node with a load level ranging
from 0.1 to 1 [142].

Assuming period and solid-wall boundary
conditions, Ren et al. [144] solved the CH
equation up to 6th order using NOM exploit-
ing NOM’s higher order continuity. The results
are summarized in Figs. 8-11.

3.7. Incompressible
neo-Hookean model

The neo-Hookean model [195] is common used
to model plastics and rubber-like material. The
strain energy for the virtually incompressible
Neo-Hooke material [196] can be written as

F(F ) =
1

2
κ(J − 1)2 +

1

2
µ(F : F − 3). (43)

where F is the deformation gradient, J = detF .

The nearly incompressible neo-Hookean
model has been solved by NOM with New-
ton–Raphson iteration method, in [142] and
agrees well with FE results, see Fig. 12 and
Tab. 4.

Tab. 4: Nearly incompressible 3D model: displacement
wmax (mm)[142]

Method/Element type Case 1 Case 2

FEM (H1 element) 13.17 (83 mesh) 19.52 (323 mesh)
FEM (H2 element) 19.54 (83 mesh) 20.01 (323 mesh)

NOM (node) 19.14 (113 nodes) 20.43 (213 nodes)

3.8. Gradient elasticity solid
problem

Gradient elasticity theory can be traced back to
the Cosserat theory [198]. The Cosserat theory
is based on higher-order gradients. Numerous
gradient elasticity theories were developed in-
cluding micro-polar solid [198], couple stress the-
ory [199]-[201], Mindlin solid theory [202, 203],
nonlocal elasticity [204] and second-grade mate-
rials [205]. To address gradient elasticity prob-
lems, a variety of theoretical solutions [206]-[210]
and numerical methods [211]-[223] have been de-
veloped. The isotropic elasticity gradient mate-
rial’s energy functional [207, 210] can be repre-
sented as

W =

ˆ
Ω

1

2
σ̄ : ε+

ℓ2

2
∇σ̄:̇∇ε dΩ−

ˆ
Ω

b · udΩ

−
ˆ
∂Ω

P · udS −
ˆ
∂Ω

R · (n∗ · ∇u)dS (44)

where σ̄ refers to the Cauchy-like stress ten-
sor, l is the gradient material factor, ε =
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(a) 0.64 s (b) 2.56 s (c) 8.96 s (d) 16.64 s

(e) 29.44 s (f) 60.16 s (g) 96.00 s (h) 131.80 s

(i) 218.9 s (j) 900.00 s (k) 2538.00 s (l) u = 2.84× 104 s

Fig. 8: The evolution of the Cahn-Hilliard phase field model in 3D block using NOM [144].

1
2 (∇u+ u∇), whereas P and R represents the
traction force and double traction force acting
on ∂Ω.

The lower gradient elasticity problem based
on either the Lagrange multipliers or modified
variational principle to enforce the boundary
conditions has been solved by the NOM in [143],
see Fig. 13. Ren et al. [145] derived the govern-
ing equations for the higher-order gradient solid,
and developed a NOM and applied it finally to
the higher-order gradient solid examples. The
numerical tests are consistent with the numeri-
cal analysis by FEM [224] and IGA [221], which
demonstrate the capability of the NOM in solv-
ing higher-order gradient elasticity problems as
shown in Fig. 14 and Fig. 15.

3.9. Phase field fracture
modeling

Phase-field models for fracture as presented in
[225]-[229] introduce an additional field to de-
scribe the damage status of a material point.
The evolution of the damage is obtained by solv-
ing an additional differential equation. Miehe et
al. [225] define the fracture surface density per
unit volume of the solid as

Λ(ϕ,∇ϕ) = ϕ2

2l0
+
l0
2
∇ϕ · ∇ϕ (45)

where the phase field ϕ = 1 denotes a totally
cracked/damaged material, while ϕ = 0 repre-
sents the intact material; l0 is a parameter. The
phase field energy functional, according to Bour-
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(a) 0.64 s (b) 2.56 s (c) 8.96 s (d) 16.64 s

(e) 29.44 s (f) 60.16 s (g) 96.00 s (h) 131.80 s

(i) 218.9 s (j) 900.00 s (k) 2538.00 s (l) u = 2.84× 104 s

Fig. 9: The evolution of the Cahn-Hilliard phase field model for domain with round internal BCs using NOM [144].

din and Miehe [230, 226], can be written as

Π(u, ϕ,Λ) =

ˆ
Ω

GcΛ(ϕ,∇ϕ)dΩ

+

ˆ
Ω

ψe(ε(u), ϕ)dΩ

−
ˆ
Ω

b · udΩ−
ˆ
∂Ωf

f · udS (46)

where Gc denotes the critical energy release rate
Λ(ϕ) and l0 is a length scale parameter. The dis-
placement field and elastic energy density are in-
dicated by u and ψe, respectively; the phase field
ϕ(x, t) ∈ [0, 1], smears the crack surface over a
specific domain. The elastic energy is decom-
posed into tensile and compressive components
to ensure that fracture occurs exclusively under
tension [230]. The strain tensor ε can be split

using the eigen-decomposition as follows:

ε+ =

b∑
a=1

⟨εa⟩+na ⊗ na,

ε− =

b∑
a=1

⟨εa⟩−na ⊗ na (47)

where ε+ and ε− are the tensile and compres-
sive components of the strain tensor, respec-
tively. The principal strain is εa and its direction
na. ψe is separated into two parts to distinguish
between the material’s tensile and compressive
strengths: the tensile component affected by the
phase field and the compressive component that
is independent of the phase field.

ψe(ε(∇u), ϕ) = [(1− ϕ)2 + κ0]ψ
+
e (ε(∇u))

+ ψ−
e (ε(∇u)) (48)
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(a) 0.64 s (b) 2.56 s (c) 8.96 s (d) 16.64 s

(e) 29.44 s (f) 60.16 s (g) 96.00 s (h) 131.80 s

(i) 218.9 s (j) 900.00 s (k) 2538.00 s (l) u = 2.84× 104 s

Fig. 10: The evolution of the Cahn-Hilliard phase field model for domain with square internal BCs using NOM
[144].

where κ0 (κ0 > 0 and κ0 ≪ 1) denotes a small
positive factor. The phase field governing equa-
tions are written as

{
∇ · σ + b = 0

Gc

(
ϕ− l2∇2ϕ

)
= 2l(1− ϕ)H

(49)

where H(x, T ) := maxt∈[0,T ] ψ
+
e (ε(x, t)) [226];

σ is the Cauchy stress. The phase field model
has been implemented using FEMs or IGA [231,
226, 232, 233, 234, 23] and in NOM in [147, 148],
see Fig. 16 and Fig. 17.

4. Future perspectives of
NOM

Although NOM has been successfully used to
solve various PDEs, the majority of the issues
that have been addressed are limited to contin-
uous problems as summarized in Tab. 5. Other
potential NOM applications still remain unex-
plored and can be found in Tab. 6. They could
exploit the higher-order continuity of NOM and
its ease in implementation. Since NOM can be
considered as an extension of PD, it can also ex-
ploits PD’s ability to naturally deal with discrete
material failure and fracture.
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(a) ℓ = 0, t = 24 s (b) ℓ = 0.1∆x, t = 20 s (c) ℓ = 0.5∆x, t = 30 s

(d) ℓ = ∆x, t = 24 s (e) ℓ = 2∆x, t = 30 s (f) ℓ = 10∆x, t = 18 s

Fig. 11: The early-stage 6th-order CH equation phase field model vs ℓ [144].
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(a) Setup of the model. (b) FEM with 83 mesh
[197]

-0.015
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-0.005

0

(c) NOM with 113 nodes

-0.020

-0.015

-0.010

-0.005

0

(d) NOM with 213 nodes

Fig. 12: (a) Setup of the model; (b)-(d) z-direction displacement in deformed configuration [142].

© 2022 Journal of Advanced Engineering and Computation (JAEC) 17



VOLUME: 6 | ISSUE: 1 | 2022 | March

(1,0)
x

y
(0,1)

(5,0)

(5,5)(0,5)

(a) (b)

0 10 20 30 40 50 60 70 80 90

-4

-2

0

2

4

6

8

10

12

14

x 10-6

 (degree)

u r (m
)

 

 
NOM l=0
NOM l=0.01
NOM l=0.1
NOM l=0.2
NOM l=0.5
NOM l=1
NOM l=2
NOM l=5
Exact l=0
Exact l=0.01
Exact l=0.1
Exact l=0.2
Exact l=0.5
Exact l=1
Exact l=2
Exact l=5

(c)

0 10 20 30 40 50 60 70 80 90
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
x 10-5

 (degree)

u 
 (m

)

 

 

NOM l=0
NOM l=0.01
NOM l=0.1
NOM l=0.2
NOM l=0.5
NOM l=1
NOM l=2
NOM l=5
Exact l=0
Exact l=0.01
Exact l=0.1
Exact l=0.2
Exact l=0.5
Exact l=1
Exact l=2
Exact l=5

(d)

Fig. 13: (a) setup and mesh of the plate; (b) numerical integration scheme; (c-d) ur and uθ on r = a for various
gradient coefficient l [143].
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(a)

(b) (c)

(d) (e)

Fig. 14: (a) Setup of the plate; (b)-(e) Displacement in x-direction with deformation for E1, E2, E3 and E4

elasticity [145].
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(a) (b)

(c) (d)

Fig. 15: (a)-(d)The derivative of deformation of all points on the right line for ∂u
∂x

, ∂u
∂y

, ∂2u
∂x∂y

and ∂2u
∂y2 [145].

Tab. 5: Successful NOM applications

Successful NOM applications
• Electromagnetic waveguide problems [140]
• 1D Schrödinger equation [141, 142]
• Poisson equation [141, 142]
• Von Kármán equations for a thin plate [142]
• Nonhomogeneous biharmonic equation [142]
• Nearly incompressible block [142]
• Gradient elasticity problems [143]
• Cahn-Hilliard phase field model[144]
• Finite deformation higher-order gradient elasticity [145]
• Quasi-static and dynamic fracture modeling [147, 148]

5. Conclusions

In this paper, we reviewed developments of the
NOM, a novel approach to solve PDEs and
challenging problems in engineering. Three
NOM versions have been proposed so far:

first-order/higher-order particle-based NOM
and higher-order ’numerical integration-based’
NOM. The first version NOM is based on
common nonlocal operators. These nonlocal
operators employ the first-order of the TSE.
The operator energy functional is introduced
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Initial crack

uTension

Shear

(a)

(b) u = 5.6× 10−3mm (c) u = 6.1× 10−3mm (d) u = 6.6× 10−3mm

(e) u = 1.0× 10−2mm (f) u = 1.2× 10−2mm (g) u = 1.4× 10−2mm

Fig. 16: (a) Geometry and boundary conditions; phase field (b-d) evolution process for l0 = 0.0375 mm in tension
test; phase field (e-g) evolution process for l0 = 0.015 mm in shear test [147].
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(a) (b)

Fig. 17: Reaction force-displacement curves in tension (a)/shear (b) test [147].

Tab. 6: Future NOM applications

Future NOM applications
• Material nonlinearities including plasticity, viscoelasticity and viscoplasticity.
• Multi-physics problems (coupled thermo-mechanical, electro-mechanical, electro-chemical
problems to name a few) exploiting the ease in implementation.
• Plate and shell problems, especially higher-order theories or theories of thin plate/shell analysis
exploiting the higher-order continuity of NOM. When NOM is applied to a curvilinear coordinate
system, it is also viable to handle shell problems.
• Higher order gradient (elastoplasticity) problems exploiting the higher-order continuity of
NOM
• Finite strain and/or large deformation problems exploiting the ’meshfree character’ of NOM.
• The wave propagation analysis of gradient elasticity problems and studying – in this context
– interesting phenomena like size, surface and nonlocal effects.
• Modeling of discontinuities as they occur in fracture/crack propagation in solids, fluid-structure
interaction or fluid mechanics such as two-phase flow.
• Higher-order PDEs on stationary and evolving surface exploiting the higher-order continuity
of NOM including its ease in implementation.

to eliminate the zero-energy model. The first
version of NOM is appropriate for C0 conti-
nuity problems such as solid mechanics and
phase-field fracture models. The second version
of NOM generalizes the first version of NOM
by employing a higher-order TSE. Higher-order
TSE can provide arbitrary order partial deriva-
tives in any dimension. These higher-order
derivatives are appropriate for higher-order
PDEs as required in some plate theories or
strain gradient solid mechanics. Higher-order
NOM considerably improves NOM’s capacity to
solve more complex issues. The third version of
NOM employs accurate numerical integration.
The boundary conditions of various orders can

be accurately applied as combined with the
Lagrange multiplier or modified variational
principle. NOM has been successfully applied
to the solutions of various lower-order and
higher-order PDEs. The nonlocal operators
for a given energy function can be constructed
automatically using the highest order of partial
derivative and spacial dimensions, and NOM
can also be utilized to derive the nonlocal
strong form based on variational principles.
The NOM obtains the residual and tangent
stiffness matrix simply and efficiently. In the
near future, the power of NOM in deriving
nonlocal models remains largely unexplored.
NOM will be applied to the solutions for many
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complicated physical PDEs problems, such as
gradient plate problems, higher order gradient
(elastoplasticity) problems, higher-order PDEs
on the stationary and evolving surfaces to name
only a few.
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