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Abstract. Flooding is one of the most common
natural disasters in Vietnam. Although a hydro-
logical monitoring system has been developed in
Vietnam, the adoption of a Flood Warning and
Monitoring System (FWMS) is still limited. A
practical issue is that the river water levels is
rarely flat, but undulating with flood water rip-
ples, which makes the measurement inaccurate.
In this paper, we will design a recursive Kalman
estimation for fluctuating flood water level in
the Node-Red IoT network. Indeed, the low
complezity of the popular Kalman filter algo-
rithm is very suitable for a low-cost IoT system
like Node-Red. In our experiments, the accuracy
of our Kalman algorithm is far superior to
the standard Moving Average (MA) algorithm.
To our knowledge, this is the first time that
the Kalman filter has been used in a practical
Node-Red IoT experiment. We will show that
our mnovel Moving-update Kalman algorithm,
which combines MA and Kalman methods, can
track data recursively without prior knowledge
of noise’s variance. Our novel algorithm is of
linear complexity and, hence, fast enough for
low cost IoT and FWMS systems in developing
countries like Vietnam. We also included
the industrial Message Queuing Telemetry
Transport (MQTT) protocol in IoT network
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in our Node-Red system, which means our
designed Node-Red proposal is capable of trans-
ferring data to any FWMS network via internet.
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1. Introduction

Vietnam is a coastal country, it suffers from
many storms and floods every year [1]. Natural
disasters and floods can strike at any time, ad-
versely affect society, particularly those who live
near the river [2]. As a result, a warning sys-
tem of flood calamity is required. The warning
system’s goal is to reduce the number of victims
and material harm to society while also provid-
ing data to authorities. Therefore, the applica-
tion of Internet-of-Things (IoT) to water level
measurement in lake and river is very important
and necessary.

However, a difficulty of measuring river and
lake water levels in IoT systems is fluctuating
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noise because the water level is always undulat-
ing with flood water ripples. There are many
methods for this problem in literature, but they
are unsuitable for low-cost IoT system imple-
mentation (c.f. section 1.1. for details). Fur-
thermore, the flooding places are mostly con-
strained with very low bandwidth communica-
tions. Hence, this paper will propose a solution
for estimating flood water levels via our novel
Moving-update Kalman filter (MKF) algorithm.
Our MKF algorithm combines the traditional
Kalman algorithm with moving-update estimate
of noise’s variance. Owing to our recursive de-
sign, this MKF method is suitable for a low-cost
industrial IoT networks like Node-Red systems.

DTS, Glo/Mal, Glo Linh, Quand T, Viet Nam
16°52'18.7"N 107°08'10.6'H

Fig. 1: A photo of central Vietnam flood, taken by us
in August 2020.

1.1. Literature review

Many studies on flood warning systems have fo-
cussed on the estimation of water levels in a wide
area in recent years. There are three main ap-
proaches for building estimation models [3]: tra-
ditional statistical methods, probability meth-
ods and machine learning (ML) methods [4, 5].

In statistical approaches, a Flood Warning
and Monitoring System (FWMS) model based
on Moving Average (MA) algorithm was pro-
posed [6]. Their model used an average of re-
cent real data to forecast the water level for
the next periods. It is well suited for imme-
diate prediction because of its recursive com-
putation process. The Exponentially Weighted
Moving Average (EWMA) model is proposed in
[7]. Their idea is that different weighting fac-
tors of flood data in different historical peri-
ods have distinct effects on the prediction pro-
cess. The EWMA model’s prediction outcomes
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are smoother and more accurate than the MA
model’'s.  In FWMS, the Autoregressive In-
tegrated Moving Average (ARIMA) model is
widely used [8, 9, 10]. The data difference was
used to filter the non-stationary components in
the original sequence and yield better predic-
tion results. Although the traditional statistical-
based models perform better in terms of inter-
pretability and low computational cost, it is con-
strained by its limited feature extraction and it
cannot handle complex prediction problems with
multiple constraints.

Hence, other studies have applied ML ap-
proaches or multi-mode fusion [11] to FWMS
since the rise of ML era. Based on the decision
tree method, the system in [12] can detect water
level and monitor floods with possible humani-
tarian consequences before they occur. In [13], a
prediction model of MIMO artificial neural net-
work was applied to FWMS. A two-year data
collection and a particular treatment of input
data were used to obtain accurate forecasts, al-
lowing a balance to be found between the spatial
and temporal resolution of rainfall information
and the model complexity. In [14], a convolu-
tional neural network (CNN) was employed to
predict fluvial flood inundation quickly. To esti-
mate water depth, the CNN model was trained
with outputs from a 2D hydraulic model.

Nonetheless, in practical FWMS, the predic-
tion model is all limited with the storage ca-
pacity and processing power of low-cost IoT de-
vices. Many ML models demand a large amount
of historical data for training (storage problem),
as well as a high temporal complexity during
the training process (calculation problem) to at-
tain higher prediction accuracy. As a result, al-
though the ML model has a higher prediction
accuracy, it cannot match the requirements of
the lightweight model for the low-cost IoT com-
puting node.

For low-cost scenarios of FWMS, the proba-
bility methods (mostly in Gaussian form) yield a
good trade-off between the statistics and ML ap-
proaches. For example, a coupled hydraulic and
Gaussian Kalman filter model was developed in
[15] for a real-time flood forecast correction in
the Yangtze river. This model is one of effective
approaches for reducing errors in real-time flood
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data under constraints of model structure, in-
put data and calibrated parameters. In [16], the
Extended Kalman Filter (EKF) technique was
used to predict and estimate flood water level.
Although the EKF can only solve the nonlinear
problems of flood level via local Gaussian ap-
proximation, it is still one of good predictors of
flood water level.

In summary, the above researches have stud-
ied both simple and complex models for FWMS.
The advantages and disadvantages of the afore-
mentioned strategies are summarized in Table 1.
Note that, there are also Extended Kalman fil-
ters in [17, 18, 19] for tracking flood water lev-
els, but their Taylor approximation is not fast
enough for our low-cost IoT system in this paper
because it requires a lot of memory and compu-
tation speed. Therefore, we has designed the
Moving-update Kalman algorithm in order to
balance these problems above.

1.2. Our contribution

Our paper’s aim is to design a recursive Kalman
algorithm and provide an IoT solution for esti-
mating flood water levels in a low-cost Node-Red
ToT network. To our knowledge, this is the first
time that a Kalman filter was designed via Node-
Red programming for a low-cost IoT system. In-
deed, we only found one failed attempt imple-
menting Kalman via the Node-RED program-
ming in [28], and it said that their Kalman code
didn’t work. We designed the Kalman block for
Node-Red following actual flow of computations.

Our Kalman method will be compared with
the traditional Moving Average method (MA)
in this paper. Our simulations and real-time
experiments will show that estimating water
level via the recursive Kalman algorithm con-
siderably enhance the accuracy, for a relatively
modest hardware cost. We also combine MA
and Kalman methods so that our novel Moving-
update Kalman algorithm can track data recur-
sively without prior knowledge of noise’s vari-
ance.

Also, in Vietnam, most of the places affected
by natural disasters are in remote places with
poor bandwidth and network access. Rapid up-
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load of monitoring data and analysis of pre-
dictive results cannot be guaranteed, affecting
decision-making time. Hence, for a real-time
IoT system of FWMS, we combined industrial
MQTT communication protocol [29] with recur-
sive Kalman algorithm in our experiments of
real-time processing, which is capable of solv-
ing the bandwidth bottleneck of FWMS’s cloud

communication systems.

1.3. Organization of paper

The following is the organization of the paper.
In section 2. , the system model and methodol-
ogy are presented. Section 3. introduces our
Node-Red Programming. The simulation results
are described in section 4. Section 5.  de-
scribes our practical experiments. Finally, sec-
tion 6. gives some conclusions.

2.  System model and

methodology

Many FWMS solutions are now built on tradi-
tional IoT architecture to develop a remote mon-
itoring system for FWMS [30], owing to the rise
of IoT and the integration of various sensor de-
vices and wireless technology.

In this paper, we use the industrial MQTT
protocol to solve the IoT network bottleneck.
With the ability to transmit data continuously
in a low bandwidth environment, the MQTT
data can be transmitted in real-time [31]. The
data at each measurement point is processed by
the our recursive Kalman filter algorithm. Fi-
nally, the data is transmitted in real-time to
the server via the industrial MQTT protocol, as
shown in Fig. 2.

A sensor network, which is made up of several
types of sensors, can be used for real-time moni-
toring water levels, precipitation, flow rates, etc.
The sensor network of low-cost ESP32 devices
transmits data to cloud server, which, in turn,
runs the Kalman Filter algorithm after receiving
the data. The cloud stores the data, communi-
cates with the client, and displays information
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period of time

observed object in advance of a long

Algorithms Advantages Disadvantages
MA [20], well suited for immediate prediction constrained by the limited feature
EWMA [21], because of its easy computation extraction and its accuracy is low for
ARIMA [22] process complex scenarios.
ML [23] accurately predict the trend of the demanding a large amount of data and

unsuitable for a low-cost IoT network

Kalman filters
[24, 25, 26, 27]
network

good trade-off between speed and
accuracy, suitable for real-time IoT

very few researches of Kalman filters
for a practical low-cost IoT network

Tab. 1: Pros and cons of the methods in section 1.1.

Sonar Sensors

HC-SR04
HC-SR04

’7 Water level

Cloud server

>> Node RED Server
>> Kalman Filter algorithm

the market [32].

to the user, such as the current flood status and
river water level.

2.1. Node-Red IoT platform

Node-Red is a programming tool for wiring to-
gether hardware devices, Application Program-
ming Interface (APIs) and online services via
drag-and-drop interface [33]. Node-Red is an
open-source JavaScript environment based on
Node.js. It was created by IBM experts and is
best suited for IoT system development [34, 35].
It’s a virtual programming environment that
connects hardware and software to build "data
streams" from the sensor to the cloud. It can
be used to write data processes, making data
processing easier. It can be used to construct
data processing logic and quickly transport pro-
cessed data to higher-level systems (SQL server,
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: IoT real-time data acquisition using industrial MQTT protocol. The ESP32 is a cheap wireless device in

enterprise management system, central data col-
lector, cloud-based service, etc.) [36, 37, 38].

Node-Red is made up of three fundamental
components: a node panel, a flow panel and a
Dashboard panel. Node-Red is a collection of
nodes that perform various tasks (MQTT bro-
ker, Raspberry Pi, TCP, etc.). It’s ideal for pro-
totyping because of its versatility and ability to
create applications in a short amount of time
[39]. In this paper, we will use the Node-Red
platform to build a IoT system for monitoring
water level, as shown in Fig. 3.

2.2.  Kalman filter algorithm

The popular Kalman filter (KF) algorithm dif-
fers from the conventional method of timing pre-
diction [40]. It can estimate the system’s state
via a set of incomplete observations (i.e. miss-
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o,

Node-RED

Fig. 3: Our Node-Red Dashboard for monitoring water
level via recursive Kalman algorithm.

ing time points in time-series data) or noisy ob-
servations (measurement error). The KF is a
fast recursive filter model [41]. It takes up small
memory and only needs to retain data for sys-
tem’s state at a time, rather than a long period
of time. The actual measured data are used to
correct the estimate results [42].

For a quick review, the one-dimensional
Kalman filter model is defined as follows:

z(t) = 2(t — 1) 4+ ny(t), withn, (t) ~ N(0,02),
(1)
2(t) = z(t) + nw(t), withn, (t) ~ N(0,02),

in which n,(¢t) and n,(t) are additive white
Gaussian noise (AWGN). The z(t) is the actual
water level over time ¢, z(t) is the sensor’s mea-
surement of x(t), water noise variance is o2 and
sensor noise variance is o2 in this paper.

We assume that the water level x(¢) is mostly
stable, only affected by noise caused by flood
water ripples, as shown in Fig. 5. The Kalman
estimate Z(t) of the water level z(¢) can be cal-
culated recursively, as follows [43]:

B(t) =2t =1) + K(t) [2(t) —2(t = 1)], (2)
1

1 1
20 21 +o2 a2 (3)
K(t) = &;97 (4)

in which 62(¢) is the estimate’s variance. Note
that, from Eq. (3), we can see that the estimate

variance 62 (t) is always bounded, as follows:
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ﬁ<0’ (t)<0'3), Vt.
L

()

x

Also, substituting 6,(t) = 6,(t — 1) = &, at

convergence to Eq. (3) yields [44]:

/ 9%
) 1—1-40—3—1

52 2 lim 6,(t) = o2 5

t—o0

(6)

The above equations are illustrated in Fig. 4 and
Fig. 5.

2.3. Moving average method

The well-known moving average (MA) method,
also known as a rolling average or running av-
erage, is a statistical computation that analyzes
data points by creating a series of averages of
data subsets. Given a series of values and a fixed
subset size, the first element of the moving av-
erage is obtained by taking the average of the
initial fixed subset of the number series. The
subset is then "shifted forward", which means
the first number in the series is excluded and
includes the next value in the subset.

In this paper, a moving average is the mean of
the previous k data-points, as shown in Fig. 6,
ie.:

A An—k+1 + Zn—k4+2 + ...+ 2n
B k

_ Z?zngk‘-‘rl Zi (7)

in which Zy is moving average of the previous k
data-points and z; is the measured data at time-
point <.

2.4. Computational complexity
From Eq. (2-4) and Eq. (7), we can see that both
one-dimensional Kalman algorithm and Moving
Average method has the same linear computa-
tional complexity O(n), in which n is number
of time-points. This low complexity is totally
suitable to low-cost IoT networks.
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Levely

z(t)

Illustration of one-dimensional Kalman filter algorithm, as explained in section 2.2.

Sensor Level

Water Level

Xx(1)

----- o ah 0k LTEL 02,

®
: T
Sensor noise

variance
Kalman

estimate

variance at
convergence

Kalman
estimated level

Water noise

variance

Time

Fig. 5: Illustration of one-dimensional Kalman filter estimate at convergence, as explained in Fig. 4.

3. Node-Red
Programming

(WEERVELREYC WAl 71 Zp Z3 Z4 Zs Zg Z7

Moving average Z;: F2RN2S 20 7 00 PR 21

In this section, we will use the Node-Red plat-
form to design the one-dimensional Kalman fil-
ter in a low-cost IoT network, as shown in Fig. 7.

Fig. 6: Simple moving average method, as shown in

Eq. (7) with k = 4.
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Sefling Parameters ———— switch delay 1s

Measured Data —

Display

Fig. 7: Recursive Kalman algorithm for IoT Network in Node-Red, as illustrated in Fig. 5.

3.1. Recursive Kalman

algorithm

Fig. 8 demonstrates the flowchart of our recur-
sive Kalman algorithm in Node-Red. Measure-
ment data is the input of “Kalman 1D” block.
For each coming data, the Kalman estimate is
updated again until convergence occurs.

Our recursive Kalman algorithm is given in
“Kalman 1D” block of Fig. 7. We designed
“Kalman 1D” block in Fig. 9 based on the Eq. (2-
4) and Fig. 4.

3.2. Moving average

In Fig. 25, we created block “Measured Data” for
our simulation in Node-Red. This block has the
function of simulating noisy measured data. The
data is passed through block “Moving Average”
and the results are displayed on the dashboard.

3.3. Moving-update Kalman filter

(MKF)

In Fig. 26, we have designed the “Moving-update
Kalman” block based on Eq. 8. Results are
automatically updated recursively. This block
combines the traditional Kalman algorithm and
the Moving Average. Experimentally, the results
are better and have the advantage of good data
tracking without knowing the noise’s variance in
advance.

In our novel algorithm, we apply MA method
in Eq. (7) and estimate the unknown noise’s vari-
ance o, over time in Kalman, as follows:

G (k) 2 \/ Z?:"—HZ(Z" A

Based on the measured data, we estimate the
unknown noise’s variance &,, via Eq. (8) and up-
date the value &, of Kalman formula in Eq. (3-
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4). Because the recursive measurement esti-
mate in Eq. 8 is consistent and leads to the
sensor noise’s variance asymptotically, our novel
Moving-update Kalman algorithm can track
data recursively without knowing noise’s vari-
ance in advance. Our Moving-update Kalman
method is more suitable in practice because the
noise’s variance is often unknown.

Setting Parameters

>
>

A 4

Measured Data

. Elmcscaic bt Pkl i it S ey 1
v Kalman 1D!

Prediction
Step

v

Kalman Gain
Step

v

Estimation
Step

Display

Fig. 8: Flowchart of recursive Kalman algorithm in
Fig. 7.
— Prediction: (0"} | —— Kalman Gain ——— Estimation : %(t+1)  ———
Fig. 9: Inside of “Kalman 1D” block in Fig. 7. Notation

o* is equivalent to notation & in the paper.
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4. Simulation results

In our Node-Red simulation, the input data and
necessary parameters are set up in the “Setting
Parameters” block in Fig. 23. We generate ran-
dom values that are similar to actual flood levels,
which simulate undulating flood levels caused by
water ripples.

Fig. 23 shows our setting parameters with true
value of water level, the initial estimate #(0),
initial estimate variance 62(t), water noise vari-
ance o2 and sensor mnoise variance o2. Our
Kalman parameters in Fig. 23 are set up as fol-
lows: #(0) = 10, 0,(0) = 0.1, 0, = 0.01 and
ow = 0.36, as shown in Node-Red dashboard in
Fig. 3 and Fig. 24. In this section, all x-axis is
of time in second, while y-axis is of centimeters

(cm).

4.1. Recursive Kalman

estimates

In our simulation, we use the recursive Kalman
algorithm to estimate the true value of water
level. Fig. 10 depicts the algorithm’s conver-
gence process. The “Measured Data” line is the
random observation with 200 samples in 10 min-
utes. The “Kalman Filter” line represents the
recursive Kalman estimates. The “True Value”
line is the true value of water level. At conver-
gence, we can see that the Kalman estimate is
very close to the true value.

Kalman Filter
® Measured Data

@ Kalman Filter
@ True Value

s .‘ ,“ ] “H‘ \\ H” ln]m
I fy ' U

i

90 120 150 180 210 240 270 330 347

Fig. 10: The convergence simulation of recursive

Kalman algorithm in Fig. 5
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MOVlIlg Average ® Measured Data

@® Moving Average
@ True Value
10

" m.ll hu L's yl”ll‘ﬂ’\h‘“ . . AU l,
i i i

5

25

0 30 60 90 120 150 180 210 240 270 330 347

Fig. 11: The convergence simulation of Moving Aver-
age method in Fig. 10.
4.2. Moving Average estimates

Our simulation in Fig. 11 shows that the Moving
Average estimates have lower variance than that
of measured data, but much higher than that of
Kalman estimates in Fig. 10.

4.3. Error comparison

In Fig. 12-13, we plot a comparative chart of
error in order to compare the accuracy of the
recursive Kalman algorithm and that of Moving
Average method. We can see that the error’s
variance of Kalman estimate is much lower than
that of Moving Average estimates.

Predictive Trend Comparison

@ Kalman Filter
@® Moving Average
@® True Value
10 @® Measured Data
7.5 &\
5 I.'ll’lll£ n!v{l ‘:\!“ JI‘”‘ LA l '.\ lm.‘nw
11T ‘m TS T
25
0
0 30 60 9 120 150 180 210 240 270 330 347

Fig. 12: Comparison of Kalman and Moving Average
estimates in Fig. 10-11.

4.4.

Moving-update Kalman
algorithm:

The result of our novel MKF algorithm is shown

in Fig. 15. This result is similar to the Kalman
method with known noise’s variance in Fig. 10.
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Error comparison
UImp EC @ Error Kalman Filter

6 @ Error Moving Average
45
2,25
0
225
-3
0 30 60 9 120 150 180 210 240 270 330 347

Fig. 13: Error comparison between Kalman and Mov-
ing Average estimates. The error value is the
difference between estimates and true value in

Fig. 12.

Kalman Filter

@® Measured Data
@ Kalman Filter
10 @ True Value

0 30 60 9 120 150 180 210 240 270
Convergence
0,011
- ® (0%
LG @ Converged (c;) X(t)
0,006
0,003
0
-0.001
0 30 60 9 120 150 180 210 240 270

Fig. 14: Converged 52 in equation 6.

Moving-update Kalman

@® Moving-update Kalman
@® True Value
@® Measured Data

™ [l MM\"I"WHlnl‘|:J|yl|i‘wi|;n; LTI, 11
l"l ﬂ‘r IIM | WHI‘ Hl iff H I ” H I

2,5

Fig. 15: Moving-update Kalman algorithm.
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4.5. Computational complexity
Because all algorithms in this paper are recur-
sive for one-dimensional data, their computa-
tional complexity is linear with O(n), where n is
the number of data. Hence our Moving-update
Kalman algorithm is fast enough for low-cost
ESP32 devices and Node-Red programming in
IoT systems.

A comparison of computational complexity
and requirement between our proposed method
and standard Kalman filters is shown in Table 2.

Kalman Filter
@® Kalman Filter

@® True Value

33 @® Measured Data
32
31,25

30
28,75

28

0 5 10 15 20 25 30 35 40 45 50 55 60 69

Fig. 16: Recursive Kalman estimates for our experi-
ment in Fig. 19. The y-axis is of centimeters.

Moving-update Kalman

@® Moving-update Kalman
@® True Value
33 ® Measured Data

i D R VLY,
U\/JJ\TW

A £ M

J

0 5 10

28,75

28

15 20 25 30 35 40 45 50 60 69

Fig. 17: Moving-update Kalman estimates for our ex-
periment in Fig. 19. The y-axis is of centime-
ters.

5. Experiment results

Following traditional IoT model in Fig. 2, we
built a simple experiment to measure the water
level in Fig. 19. We dropped pebbles into the
water in order to simulate the ripple process of
flood water waves. In our system, the ESP32

(© 2022 Journal of Advanced Engineering and Computation (JAEC)
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Algorithms Complexity Estimation Sultal?le
scenarios
Kalman filter O(n) Optimal, linear Know? noise’s
variance
- 1 1 K fan?
Extended Kalman O(K?n) Sub optimal, TOWN noise’s
non-linear variance
- —
Moving-update O(n) Asy‘mptot?cally Unknonn noise’s
optimal, linear variance
Kalman

Tab. 2: A comparison of computational complexity and suitable scenarios [45], in which n is the number of data
and K is the number of time-points for gradient computation in Taylor’s approximation.

0 29.380 10 29.820 20 208 30 209 40 302
1 29.380 1 29.410 21 209 31 299 41 30.3
2 29 410 12 29.380 22 209 32 299 42 303
3 29.000 13 29.410 23 299 33 299 43 3031
4 29410 14 28.970 24 2993 34 299 44 3031
5 29410 16 29.410 25 30 35 302 45 3033
6 29.410 16 29.410 26 299 36 30.23 46 30.33
4 29410 17 29.410 27 209 37 30.22 47 303
8 29410 18 282 28 209 38 30.22 438 3033
9 29410 19 298 29 209 39 30.2 49 3033

Fig. 18: Measured data from sonar sensor of our experiment in Fig. 19.

module is used to collect water level data from
a sonar sensor. The data obtained is shown in
Fig. 18. We set the actual water level to 30cm

-7 | and intentionally created noise around the true
/ value, as shown in Fig. 18. The initial prediction

Sonar value of the algorithm is 31.5¢m. After a while,
Sensor | the results converge to the true value 30cm, as

shown in Figs. 16-17.

HC-SR04

Via recursive and moving-update Kalman al-
gorithms, our Node-Red system can eliminate
the noise caused by water ripples and predict
the water level with high accuracy, as shown
in Figs. 16-17. Indeed, in our MKF algorithm,
we do not know the measurement noise variance
in advance. Furthermore, our recursive estima-
tions are updated continuously and asymptoti-
cally converged to the true value. For practical
illustration, we have applied our MKF to a low-
cost industrial Node-Red IoT system as a demo
for measuring water levels and its potential ap-
plication in floods. Therefore, experimentally
we can see that our MKF algorithm works well
even on low-cost devices.

Fig. 19: Our water level measurement experiment,
which follows traditional IoT model in Fig. 2.
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6. Conclusions

This study has proposed a recursive Kalman al-
gorithm in Node-RED platform for estimating
flood water levels. By using industrial MQTT
protocol in Node-RED program, our simulations
and experiments have demonstrated that the re-
cursive Kalman algorithm is fast and suitable for
a low-cost IoT and Flood Warning and Monitor-
ing System (FWMS). We also showed that our
novel Kalman recursion is far superior to the tra-
ditional Moving Average method, even with sim-
ilar computational complexity in a low-cost loT
system.

In future work, we can feasibly estimate more
flood-related information (such as flow rate,
temperature, humidity, etc.) via our Kalman
algorithm in Node-Red. Our recursive Kalman
algorithm can be embedded feasibly in practical
systems.

Appendix

Node-Red Programming

setup (0)7+ (o W (07 + (07) = A

Men)"=8 1/(A+B) = (@' kil

Fig. 20: Inside of “Prediction: (¢)2” block in Fig. 9.

setup (0x)*/ (ow)* = Kalman_Gain

Fig. 21: Inside of “Kalman Gain” block in Fig. 9.

——0 1 setp (—1 1 z(t+1)-K)=Emor —J 1 &(t+1) =3() + Kalman_Gain"Error

Fig. 22: Inside of “Estimation: #(¢t+1)” block in Fig. 9.

We designed “Kalman 1D” block in Fig. 9 with
three steps:

210

Fig.

Fig.

TrueValue TrueValue Tive Value

Estimate the first % Estimate the first X ®

Ov ov (0)* (0)?
Ox R O« C (0:)? R (0x)?
7% 7% (ow)* (ow)*

submit Get Value

23: Inside of “Setting Parameters” block in Fig. 7.

o] v 001 A
o, @

G, v 01 A
o, —@

o] v 036 ~
g, —@

True Value v 5 ~

True Value —————————@

Estimate the first X v 10 A

Estimate the first 9

24: The Node-Red dashboard frame of “Setting
Parameters” block in Fig. 23.

. Block “Prediction: (¢})?” in Fig. 20 com-

putes estimate variance of the system to ob-
tain the next estimate 6, (t+1)? for the next
time step t + 1, based on Eq. 3.

Block “Kalman Gain” in Fig. 21 performs
the function of calculating the correction
factor to estimate the next state of the sys-
tem, as shown in Fig. 21 and Eq. 4.

3. Block “Estimation: &(t + 1)” in Fig. 22 es-

timates the water level Z(t + 1) at the time
t+1 based on previously calculated estimate
variance results, as shown in Eq. 2.

(© 2022 Journal of Advanced Engineering and Computation (JAEC)
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Setting Parameters switch

delay 1s

Moving Average Display

Fig. 25: Moving Average algorithm for IoT Network in Node-Red [46].

Setting Parameters switch delay 0.5s

DATA

Moving-Update Kalman Display

Fig. 26: Moving-update Kalman algorithm for IoT Network in Node-Red.
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