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Abstract. This paper proposes a method of
optimally utilizing electric vehicles (EVs) in
the distribution network. The method is firstly
based on segregating the distribution network
into communities and then optimally placing an
EV charging station (EVCS) in each commu-
nity using the backward forward sweep (BFS)
technique. The Second phase uses particle
swarm optimization (PSO) to size and allocates
photovoltaic systems in the network for power
loss minimization and voltage improvement.
The proposed method is tested on an IEEE 33
node test feeder and simulation results showed
the effectiveness of the BFS in finding the
best nodes for the placement of EVCS in each
community as well as the effectiveness of the
PSO in allocating the photovoltaic systems. To
validate the effectiveness of the BFS technique,
its results obtained are compared with those
obtained when the EVCSs are placed on some
nodes other than those chosen by the BFS
technique.

Keywords

Charging station, Electric vehicle, Photo-
voltaic, Communities.

1. Introduction

Electric vehicles (EVs) are fast gaining ground in
today’s transport sector as they are a promising
technology to reduce greenhouse gases (GHG)
in the atmosphere [1]. Research has shown that
to achieve the target of reducing global warming
pollution to less than 80 percent of that of 1990
(22.4 billion metric tons of carbon dioxide) by
2050 [2], the transport sector needs to be com-
pletely revolutionized by EVs and powered by
renewable as well as other zero-carbon emission
energy sources [3]. This, coupled with the con-
tinuous depletion of crude oil has led to the fu-
ture of petroleum-based vehicles being overshad-
owed. The fast deployment of EVs in today’s
transport sector greatly depends on the fast ex-
pansion of charging facilities where consumers
live, play, and work. This, therefore, means
that the electricity sector needs to be upgraded
and made robust to accommodate strategically
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placed electric vehicle charging stations (EVCS).
The Increased penetration of EVs into the distri-
bution network will necessitate solutions to com-
pensate for the effects they have on the network
such as increased power loss, voltage and fre-
quency instability due to random charging, and
network overloads [4]. A potential solution is the
installation of distributed generation (DG) such
as photovoltaic (PV) systems.

Owing to the extended length of distribution
networks and the high R/X ratio of transform-
ers, minimizing power loss, improving the relia-
bility of the network and the power factor, and
improving the voltage profile of the network are
also big challenges [5]. The installation of dis-
tributed PV systems close to load centers has
been a potential solution to this challenge. The
penetration of PV systems in the distribution
network is fast increasing as the war against
GHG emissions, the restructuring of the distri-
bution network, and the deregulation of the elec-
tricity market are implemented [6]. The distri-
bution network can benefit from the fast pene-
tration of PVs such as in ancillary services, net-
work voltage improvement, network reliability
enhancement, reduced power loss, and distribu-
tion feeders congestion [7]. Nevertheless, this
technology needs to be strategically deployed to
reduce harmful fault current increase in the net-
work [8], and reverse power flow at a certain time
of the day which can result in excess power loss
or malfunctioning of protective devices [9], fre-
quency excursion in the case of loss in load or
generation [10], voltage rise, and power factor
degradation [11].

Due to the challenges that EVs bring to the
distribution network, several techniques have
been used for their optimal integration into
the distribution network alongside PV systems.
In [12], the authors optimally placed PV systems
and EVCSs simultaneously in the distribution
network for a reduction in power loss and im-
provement in the network voltage profile using
Artificial Bee Colony (ABC) taking into consid-
eration the uncertainty of the loads. The au-
thors in [13] focused on optimally placing EVCSs
by striving to minimize the distance traveled
by the EVs using fuzzy C-means and K-means
clustering techniques. Testing the techniques
on a modified IEEE 123 node test feeder ren-

dered satisfactory results. The work presented
in [14] proposed a strategy to optimally size and
place different types of EVCSs (Level 1, Level
2, and Level 3) in a distribution network that
comprised commercial and residential buildings
with PV systems, considering the effect of the
PV systems using particle swarm optimization
(PSO). The objective was to reduce the cost of
installation of the EVCSs and the cost of power
losses. The results demonstrated a reduction in
the cost of the EVCS by 75% and network losses
by 82%. In [15], EVCSs were optimally placed in
the distribution network using PSO for minimal
power loss. The work went further to propose
the reconfiguration of the network to reduce the
increase in power loss as a result of the EVCSs.
A strategy for the optimal sizing of EVCSs by
minimizing system losses and augmenting the
utilization factor of the EVCSs was solved us-
ing a non-dominated sorting Genetic Algorithm
in [16]. Simulation results demonstrated the
ability of the proposed algorithm in reducing
power losses as well as achieving economic bene-
fits for the EVCSs. The researchers in [17] opti-
mally sized and placed EVCSs in an unbalanced
distribution network using PSO. To increase the
sustainability and reliability of their test net-
works, type one DGs which compensate only for
reactive power were incorporated into the distri-
bution systems. The research elaborated in [18]
proposed an optimization technique based on
scenarios for the optimal sizing of EVCSs in a
commercial distribution network with the aim
of increasing the PV penetration level and also
reducing the effect of the EVCSs on the network.
The objective function was solved using PSO for
power loss and voltage deviation minimizations.
The authors in [19] proposed a multi-objective
index-based approach to determine the size and
site of more than one DG considering the distri-
bution network to have various load models and
obtained the optimal location and sizes of DGs
were significantly affected by load models. PSO
was used to solve the multiobjective function.

This paper proposes a new approach for the
optimal placement of EVCSs and distributed PV
systems in the distribution network wherein the
distribution network is segregated into commu-
nities using an improved spectral clustering tech-
nique and in each community, an EVCS is opti-
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mally placed using the backward forward sweep
(BFS) power flow method. The distributed PV
systems are then optimally sized and placed in
the distribution network using Particle Swarm
Optimization (PSO) to compensate for the ex-
tra power loss and voltage drops as a result of
the EVCSs. The rest of this paper is organized
as follows; the next section is the methodology,
followed by results and discussions, and then the
conclusion.

2. Methodology

2.1. Test Network

The IEEE 33-node test feeder is used as a test
network in this research work. The IEEE 33-
node test distribution network is a balanced
distribution network with a system voltage of
12.66 kV. This network is chosen because this
research aims to expand on the work done in [20]
wherein the test network is divided into commu-
nities based on an improved spectral clustering
technique as shown in Fig. 1 with the aim of
maximizing the usage of flexible resources. The
division of the network into communities per-
mits each community to have an electric vehi-
cle charging station (EVCS) with a number of
charging points to serve that particular commu-
nity.

Fig. 1: Division of the test network into communi-
ties [20].

2.2. Estimation of the Number
of Electric Vehicles in Each
Community

The number of EVs in each community is esti-
mated based on the estimated number of house-
holds in each community. The number of house-
holds is estimated based on the total load de-

mand of that community. In this research, it is
assumed that all the households have the same
three-phase power demand of 12.7 kVA. From
that, it is possible to calculate the number of
households in each community. However, not all
households are considered to own an EV. An EV
penetration of 20 percent is considered in this
study. The percentage EV calculation is done
using (1).

%EV =
Households with EVs

Total Number of Households
∗ 100

(1)

From equation (1), it is possible to know the
number of EVs in each community and the re-
quired number of charging points in each EVCS.
The number of households and EVs in each com-
munity is shown in Tab. 1.

Tab. 1: Estimation of the number of households in each
community

Community
Total Load
Demand
(kVA)

Power demand
of a single
household
(kVA)

Number of
Households

Number of
EVs

1 829.60 12.7 66 14
2 523.93 12.7 42 9
3 411.47 12.7 33 7
4 1341.64 12.7 106 22
5 1263.02 12.7 100 20

2.3. EV Charging Station
Modelling Using ETAP

Electric vehicles nowadays are manufactured by
a good number of motor companies such as Nis-
san, Tesla, Chevrolet, and Renault among oth-
ers. The EV considered in this study is the 2018
Nissan Leaf (Leading which is environmentally
friendly, affordable, and a Family Car) battery
electric vehicle which has a battery capacity of
40 kWh with 36 kWh useable to cover a dis-
tance of up to 220 km [21]. The 2018 Nissan
Leaf model has a Lithium-ion battery pack with
the specifications shown in Tab. 2 below.

Charging the 2018 Nissan Leaf can be done
using its 6.6 kW onboard charger. Depending on
the country, the Nissan Leaf could be charged as
per the options shown in Tab. 3.

In this study, the 5th charging option is used
wherein the EV charger draws 32 A from the
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Tab. 2: 2018 Nissan Leaf battery specifications [22].

Characteristics
Manufacturer AESC
Battery type Lithium ion

Number of cells 192
Number of modules 24

Battery pack Nominal voltage 360 V
Battery pack capacity 40kWh

Useable Battery Capacity 36kWh
Energy Density 224 Wh/kg

Tab. 3: Nissan Leaf charging options using the 6.6kW
onboard charger [2].

Opt Charging
Point

Max.
Power Power Charging

time
1 Wall plug (2.3kW) 230V/1x10A 2.3 kW 18h30m
2 1-phase 16A (3.7kW) 230V/1x16A 3.7 kW 11h30m
3 1-phase 32A (7.4kW) 230V/1x29A 6.6 kW 6h30m
4 3-phase 16A (11kW) 230V/1x16A 3.7 kW 11h30m
5 3-phase 32A (22kW) 230V/1x29A 6.6 kW 6h30m

main supply through a 230 V three-phase charg-
ing socket. Since the voltage of the test network
is 12.66 kV, a 12.66/0.23 kV step-down trans-
former is used to supply the EV charger. As per
the international standard IEC 61851, an EV
charger taking a maximum current of 32 A from
the mains is categorized as a mode 2 (Level 2)
charger [23]. Level 2 chargers are faster than
Level 1 chargers and have an average efficiency
of 89.4, which is higher than that of level 1 charg-
ers [24].

A battery is used to model the EV using
ETAP. ETAP has a large library of batteries
of various specifications. The YUASA-EXIDE
CX battery model is used here. It is a 65 AH
battery with each cell having a voltage of 2.06
V. To have a battery pack of 360 V like that of
the Nissan Leaf, 175 cells are used as shown in
Fig. 2. The EV charger rating required to draw
a maximum of 32 A from the mains to charge
the Nissan Leaf is calculated using basic power
calculation and its specifications are shown in
Fig. 3.

The modeled Nissan Leaf and the charging
system were tested and the result shows the Nis-
san Leaf charger taking 32 A from the 12.66/0.23
kV stepdown transformer as shown in Fig. 4.

The power demand of a single charging point
is calculated and verified from the simulation, is

Fig. 2: Nissan Leaf Model in ETAP.

Fig. 3: Modeled Nissan Leaf Charger Characteristics.

Fig. 4: Testing the Modeled Nissan Leaf.
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used to obtain the total power of each EVCS as
shown in Tab. 4.

Tab. 4: Power Demand of Each EVCS.

Community No of
CP

EVCS rating (kVA)
kW kVAR

Community 1 14 172.872 35.103
Community 2 9 111.132 22.566
Community 3 7 86.24 18.49
Community 4 22 271.656 54.148
Community 5 20 246.96 50.147

2.4. Optimal Placement of
EVCSs in the Communities

The backward forward sweep load flow method
is used for the optimal placement of the EVCSs
to serve the various communities. Since there
are five communities, five EVCSs are to be
placed in the network with each community hav-
ing one EVCS. The number of charging points
in the charging stations matches the number of
EVs in the given community.

The backward-forward sweep (BFS) is an it-
erative method of load flow calculation wherein
two computational stages are done at each it-
eration. The first set of equations of the BFS
is for power flow calculation through the net-
work’s branches beginning from the last branch
and moving backward toward the source bus,
and the second set of equations is the calcula-
tion of the voltage magnitude and angle of ev-
ery bus beginning from the source bus to the end
bus [25].

In the forward direction, the objective is sim-
ply to calculate the voltage drops at every bus
and update the current and power flow in the
network while in the backward direction, the aim
is simply power or current flow solution while
updating the bus voltages. With reference to
Fig. 5, the apparent power flowing into bus j is
given by

Ṡj = Ṡlj +
∑
k

Ṡk (2)

where Ṡlj is the apparent power consumed at
bus j, and Ṡk is the apparent power flowing to
bus k.

Fig. 5: Simple Network with an EV charging point.

With an EVCS installed on node j, the power
Ṡlj consumed at bus j is given by

Ṡlj = (Ṗlj + Ṗch) + j(Q̇lj + Q̇ch) (3)

where Ṗlj is the load active power, Ṗch is the
EVCS active power, Q̇lj is the load reactive
power and Q̇ch is the charging station reactive
power.

The current İi+1
j injected into the load bus j

at the i+ 1 iteration is given by

İi+1
j =

(
Ṡlj

V̇ i
j

)∗

(4)

where V̇ i
j is the voltage at node j at the ith it-

eration.

In the backward sweep, the current, İi+1
h,j in

the branch h−j at the i+1 iteration is calculated
as

İi+1
h,j = İi+1

j +
∑
k

İi+1
j,k (5)

where İi+1
j is the current consumed by the loads

on bus j, and İi+1
j,k is the current leaving bus j.

On the other hand, in the forward sweep, the
h− i branch current İi+1

h,j is utilized to calculate
the voltage at bus h as shown in (6)

V̇ i+1
h = V̇ i+1

j − (İi+1
h,j )(Zh,j) (6)

where Zh,j is the impedance of branch h− j.

Upon satisfaction of the convergence criterion
given by (7) for all the buses, the BFS power
flow is ended. At that instant, the voltage at
node j is equal to V̇ i+1

k , and the current in the
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j − k branch is equal to İi+1
j,k . The convergence

factor is the scaler ε shown in equation (7).∣∣∣V̇ i+1
k − V̇ i

k

∣∣∣ ≤ ε (7)

The BFS has been used in the past by re-
searchers for the optimal placement of DGs in
the distribution network [26] as well as the opti-
mal placement of capacitors in the distribution
network [27]. In this research, it is used for the
optimal placement of EVCSs.

2.5. Problem Formulation for
the Optimal Placement of
EVCSs

The problem is formulated as a minimization
problem. The power loss is to be minimized as
shown in (8)

Floss = min

n∑
j,k=1

gj,k
[
V 2
j +V

2
k −2VjVkcos(θj−θk)

]
(8)

where Floss is the total active power loss in the
network, gj,k is the conductance of branch j−k,
n is the total number of lines in the network, Vj
is the voltage magnitude at node j and Vk is the
voltage magnitude at node k, θj and θk are the
voltage angles at nodes j and k, respectively.

Equation (8) is subject to the following con-
straints

a) Voltage constraint

V min
j ≤ Vj ≤ V max

j (9)

where V min
j is considered as 0.95pu and V max

j

as 1.05pu.

Current constraint

Ia ≤ Imax
a (10)

The current flowing through the conductors is
limited to the maximum current capacity of the
conductors.

2.6. Proposed algorithm

In each community, all the nodes are candidate
nodes for the placement of the EVCS as shown
in Tab. 5.

Tab. 5: Candidate nodes for the optimal placement of
EVCS in the various Communities.

Community
1

Community
2

Community
3

Community
4

Community
5

6 13 1 3 27
7 14 2 4 28
8 15 19 5 29
9 16 20 23 30
10 17 21 24 31
11 18 22 25 32
12 33

For each community, the BFS technique lo-
cates the node with the least network power loss
when its EVCS is placed and considers it a suit-
able place for the installation of the EVCS. For
a particular community, the BFS determines the
best node for the placement of its EVCS in the
following steps:

• Step 1: Place the EVCS on the first candi-
date node

• Step 2: Run power flow calculation using
BFS while observing the constraints

• Step 3: Record the network power loss

• Step 4: Place the EVCS on the next candi-
date node

• Step 4: Run power flow calculation using
BFS while observing the constraints

• Step 5: Record the network power loss

• Step 6: Have all the candidate nodes been
tested? Go back to step 4 if NO, otherwise
go to step 7

• Step 7: Compare the power losses from all
the candidate nodes

• Step 8: Select the node with the least power
loss as the best position
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2.7. Optimal Sizing and
Placement of PV Systems
Using PSO

The aim of the optimal sizing and placement
of PV systems is to compensate for the extra
power losses as a result of the EVCSs and also
enhance the network voltage profile. Two cases
of PV sizing and placement are considered. Case
1 deals with the sizing and placement of a single
PV system and case 2 deals with the sizing and
placement of two PV systems. The utilization
of PV systems is to assist the network to ser-
vice the EVCSs without violating its operating
constraints.

1) Problem Formulation

The objective of this optimization problem is to
minimize the network’s total power loss and the
average voltage deviation index of the network.
In other words, enhance the voltage profile of
the network.

2) Objective function

A. Active and reactive power loss minimization

f1(j) = min

br∑
i=1

(Ri ∗ I2i +Xi ∗ I2i ) (11)

where f1(j) is the total power loss, br is the num-
ber of branches in the network, Ri is the branch
resistance, Ii is the branch current and Xi is the
branch reactance.

B. Minimize average voltage deviation

f2(j) =
1

Nb

Nb∑
j=1

|1− Vj |2 (12)

where f2(j) is the average voltage deviation of
the network, Nb is the number of nodes in the
network, Vj is the voltage at bus j.

Therefore, the objective function is written as

F (j) = min{f1(j) + f2(j)} (13)

3) Constraints

i. Equality constraints

Power balance constraints

PGrid+

Npv∑
i=1

Ppv =

Nbus∑
i=1

Pload+

NEV CS∑
i=1

PEV CS+

Nbr∑
i=1

Ploss

(14)
where PGrid is the grid active power, Ppv is the
PV systems active power, Npv is the number
of installed PV systems, Pload is the load ac-
tive power demand, Nbus is the number of load
nodes, PEV CS is the active power demand by the
EVCS, NEV CS is the number of EVCS, Ploss is
the total active power loss in the network, and
Nbr is the number of branches in the network.

QGrid+

Npv∑
i=1

Qpv =

Nbus∑
i=1

Qload+

NEV CS∑
i=1

QEV CS+

Nbr∑
i=1

Qloss

(15)
where QGrid is the grid reactive power, Qpv is
the PV systems reactive power, Qload is the load
reactive power demand, QEV CS is the reactive
power demand by the EVCS, and Qloss is the
total reactive power loss in the network.

ii. Inequality Constraints

a. Voltage constraints

V min
j ≤ Vj ≤ V max

j (16)

where V min
j is considered as 0.95pu and V max

j

as 1.05pu.

b. Current constraints: Current flow should
not exceed the feeder’s capacity

Ij ≤ Imax
j (17)

The current flowing through the conductors is
limited to the maximum current capacity of the
conductors.

c. PV power constraints

Pmin
pv ≤ Ppv ≤ Pmax

pv (18)

where Pmin
pv = 0 KW and Pmax

pv = 5000 kW.
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PSO is used to solve the optimization prob-
lem. It is a metaheuristic algorithm with great
capabilities for optimizing nonlinear functions
and it was developed by Kennedy and Eberhart
in 1995 [28]. PSO algorithm equation has two
optimum concepts; the global optimum, gbest
and the local optimum pbest. The global op-
timum gbest is the optimum solution obtained
by the particle swarm while the local optimum,
pbest is the optimum solution obtained by each
particle. Formulating the equations of PSO are
as follows; For a swarm with particles, P , there
exists a position vector Xt

i = (xi1xi2xi3...xin)
T

and a velocity vector V t
i = (vi1vi2vi3...vin)

T at t
iteration for each of the i particles making up the
swarm. The above vectors are updated through
dimension j in accordance to the following equa-
tions:

V t+1
ij = wV t

ij+c1r
t
1(pbestij−Xt

ij)+c2r
t
2(gbestij−Xt

ij)
(19)

Xt+1
ij = Xt

ij + V t+1
ij (20)

where i = 1, 2, 3, ..., P and j = 1, 2, 3, ..., n, c1
and c2 are learning factors, rt1 and rt2 are ran-
dom numbers between 0 and 1, the parameter w
is an initial weight constant, usually positive for
classical PSO, and serves to balance the global
search (known as exploration in the case of be-
ing set with higher values) as well as the local
search (known as exploitation when being set
with lower values).

Equation (19) updates the velocities of the
particles while equation (20) updates the po-
sitions of the particles. To optimally size and
place the PV systems using PSO, the following
stages are followed:

• Stage 1: Input the network data with the
EVCSs placed at optimal locations

• Stage 2: Run load flow calculation and
record the power losses at all the branches
as well as node voltages

• Stage 3: Set the desired number of itera-
tions, the number of particles, the initial
weights, and the acceleration vectors

• Stage 4: Randomly generate the initial pop-
ulation of the swarm with initial velocities
and positions

• Stage 5: Run power flow calculation for
each particle while checking the network
constraints

• Stage 6: Compare the result of the individ-
ual best of all particles and select the par-
ticle with the lowest individual best (pbest)
and set its value as the global best (gbest)

• Stage 7: Update the particle’s velocity and
position using equation (18) and equation
(19)

• Stage 8: Check if the maximum number of
iterations has been reached. If YES, go to
the next stage, else go back to stage 4 for
the k = k + 1 iteration

• Stage 9: Output the results which are the
optimal PV size and location. Also, record
the active and reactive power losses and
node voltages.

The PSO parameters used in the simulation
are shown in Tab. 6.

Tab. 6: PSO parameter values.

Parameter Symbol value
Population size pop_size 33

Number of iterations iteration 30
Maximum inertia wmax 0.9
Minimum inertia wmin 0.4

Acceleration vectors c1
c2

2
2

The optimization problem is solved using
MATLAB. PSO was run five times and the best
results were recorded.

3. Results and Discussion

Simulation is done for peak load conditions, all
EVCSs have EVs connected and charging, and
the PV systems are also at their peak produc-
tion. The IEEE 33 node test feeder which is our
test network is divided into communities and an
EVCS is optimally placed in each community
using the BFS load flow method.
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3.1. Optimal location for the
EVCSs and the optimal
allocation of the
compensating PV(s)

The best nodes among the candidate nodes in
each community obtained from the BFS load
flow method are shown in Tab. 7. The rating
of each EVCS is also shown.

Tab. 7: EVCS Best Location Using BFS.

Community EVCS rating (kVA) Best
locations

kW kVAR
Community 1 172.872 35.10 6
Community 2 111.132 22.57 13
Community 3 86.24 18.49 2
Community 4 271.656 54.15 3
Community 5 246.96 50.15 27

Two scenarios of PV sizing and placement us-
ing PSO were simulated. The first case was the
sizing and siting of a single PV system and the
second case was the sizing and siting of two PV
systems. The best PV sizes and locations as ob-
tained by PSO in both scenarios are shown in
Tab. 8.

Tab. 8: Best Size and Position for the two cases of PV
integration.

1 PV system 2 PV systems
Size (kW) Node Size (kW) Node
3235.35 4 1257.36 13

1294.15 29

The effects of the placement of the EVCS on
the test network and the compensation by the
PV systems are shown in the following sections.

3.2. Network Voltage profile

The optimal placement of the EVCSs in the net-
work results in a drop in the voltage profile of
the network with the minimum voltage dropping
from 0.913 p.u. with no EVCSs to 0.899 p.u. as
observed on node 18 shown in Fig. 6. For case 1
where a single PV system is optimally sized and
placed, an improvement in the voltage profile of

the network is noticed. The new voltage profile
is even better than when there was no EVCS
with the minimum voltage being 0.93 p.u. com-
pared to 0.913p.u. with no EVCSs and 0.899
p.u. with EVCSs at node 18. In the second case
of simulation where two PV systems are used,
the network voltage profile is substantially im-
proved with all the nodes having voltages above
the minimal (0.95 p.u.). The optimal sizing and
location of the two PV systems lead to a min-
imum voltage of 0.96 p.u. noticed at node 18.
The network voltage profiles in all the scenarios
are shown in Fig. 6.

Fig. 6: Network Voltage Profile without EVCS,
with EVCS, with EVCS+1PV, and with
EVCS+2PV.

3.3. Average Voltage Deviation
Index

The voltage deviation index (VDI) is an indi-
cator of a bus voltage drift from the reference
voltage which is usually 1 p.u. The smaller the
VDI the closer the bus voltage is to the reference
voltage and the larger the VDI, the further the
bus voltage is from the reference voltage and the
more vulnerable the bus is exposed to voltage
stability issues. The average voltage deviation
index is the average of all the VDI of the net-
work. The smaller it is, the greater the voltage
stability of the network. It is seen that the intro-
duction of the EVCSs led to an increase in the
AVDI of the network from 0.05149 to 0.06024 as
the EVCS serve as extra loads to the network as
shown in Fig. 7.
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The introduction of 1 PV leads to a drop in
the AVDI to 0.03411 and the insertion of a sec-
ond PV system further improves the AVDI to
0.02288.

Fig. 7: AVDI without EVCS, with EVCS, with
EVCS+1PV, and with EVCS+2PV.

3.4. Network Active and
Reactive Power Losses

As expected, an increase in the network’s active
and reactive power loss with the installation of
the EVCSs is noticed and this is a result of the
extra stress the EVCSs introduce into the net-
work. It is realized that both active and reactive
power losses have a greater percentage increase
from nodes 1 to 5 as compared to other nodes
as shown in Fig. 8 and Fig. 9. The optimal in-
stallation of the PV systems reduces the active
and reactive power losses at each node and the
overall active and reactive power losses of the
network as shown in Fig. 10 and Fig. 11. The
reduction in the active and reactive power losses
upon introduction of the PV systems is a result
of the reduction in the current flow through the
distribution network feeders as the PV systems
supply parts of the power that was to be gotten
from the main substation.

3.5. Validation of the
effectiveness of the BFS
technique in finding the
best nodes for the EVCSs

To validate the effectiveness of the BFS tech-
nique in finding the best nodes for the placement
of the EVCS in each community, its results are

Fig. 8: Network active power loss profile.

Fig. 9: Reactive power loss profile.

Fig. 10: Total active power loss with no EVCS, with
EVCS, with EVCS and 1 PV, and, with EVCS
and 2PV.
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Fig. 11: Total reactive power loss with no EVCS, with
EVCS, with EVCS and 1 PV, and, with EVCS
and 2PV.

compared with those obtained when randomly
choosing a node for the placement of an EVCS
in each community. The random choice of nodes
for the placement of the EVCSs is done thrice
and for each case, the load flow results with the
EVCSs placed are recorded. Table 9 shows the
optimal location of the EVCSs as obtained by
the BFS technique versus the three cases of ran-
domly allocating the EVCSs in the communities.
It is reminded that each community is expected
to have one EVCS of a predetermined size as
depicted in Tab. 9. For a given community, the
random allocation of an EVCS is done by choos-
ing any other node among the candidate nodes
of that community other than the node chosen
when the BFS technique. For each case of ran-
dom placement of an EVCS in each community,
the compensating PV(s) is(are) sized and placed
using PSO; firstly 1 PV system, then after 2 PV
systems as shown in Tab. 10.

Tab. 9: Optimal location of the EVCSs using BFS vs
randomly locating the EVCSs.

Community EVCS rating (kVA)
Best

locations
by BFS

Random allocations

kW kVAR Case 1 Case 2 Case 3
1 172.872 35.10 6 8 11 12
2 111.132 22.57 13 15 18 17
3 86.24 18.49 2 20 19 22
4 271.656 54.15 3 4 23 25
5 246.96 50.15 27 30 29 33

As shown in Tab. 10, it is seen that for all
three random cases of integrating the EVCSs,
a greater compensation is required to cater for
the adverse effects of the EVCSs compared to
when the EVCSs are placed using the proposed
BFS technique. When 1 PV is used for compen-
sation, the required PV capacity is 3235.35kW,

and this is lower compared to the required com-
pensation PV in random case 1 (3351.077 kW),
case 2 (3324 kW), and case 3 (3349.67 kW). In
the scenario of installing 2 PVs for compensa-
tion, the total PV capacity when using the BFS
is 2551.36 kW, and it is again lower compared
to 2894.968 kW in case 1, 2763.279 kW in case
2, and 2749.916 kW in case 3. This, there-
fore, means that more costs will be incurred for
compensation if the EVCSs are not installed on
the designated node obtained by the BFS tech-
nique in each community. This demonstrates the
strength of the BFS in choosing the best nodes
for the installation of the EVCSs.

Looking at the convergence curves of PSO in
each scenario of PV sizing and siting (1 PV and
2 PVs), it is seen that PSO convergences faster
when the EVCSs are integrated into the net-
work using BFS compared to when integrated
randomly as shown in Fig. 12 and Fig. 13. This
demonstrates that the BFS places the EVCSs in
every community so well that, PSO does not find
it very difficult to size and place the appropri-
ate compensating distributed PV system(s) to
compensate the adverse effects of the EVCSs.

Fig. 12: Convergence Curve of PSO in the placement of
1 PV.

The network parameters are compared when
the EVCSs are placed using the BFS against

270 c© 2022 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 6 | ISSUE: 4 | 2022 | December

Tab. 10: Optimal Sizing and Siting of the PV systems in each case of EVCS placement.

Best
locations
by BFS

When
EVCSs

are placed
using BFS

When EVCSs are random allocated

Case 1 Case 2 Case 3
Size
(kW) Node Size

(kW) Node Size
(kW) Node Size

(kW) Node

1 PV 3235.35 4 3351.077 4 3324 4 3349.67 4
2 PVs 1257.36 13 1397.21 13 1382.911 30 1387 12

1294.15 19 1497.759 12 1380.368 11 1362.916 12

Fig. 13: Convergence Curve of PSO in the placement of
2 PVs.

when randomly placed as shown in the follow-
ing sections.

1) Network voltage profile comparison

From Fig. 14, it is observed that the network
voltage profile upon placing the EVCSs using
the BFS method is better than those when ran-
domly choosing other nodes for the placement of
the EVCSs. The minimum node voltage when
the EVCSs are placed using the proposed BFS
method is 0.8987 p.u. and this is greater than
the minimum node voltage of random case 1
(0.8946 p.u.), case 2 (0.8896 p.u.), and case 3
(0.8895 p.u.).

2) Comparison of the average voltage
deviation indices

It can be observed in Fig. 15 that the network’s
AVDI is 0.060242 when the EVCSs are placed
using the BFS. When other nodes are chosen
for the placement of the EVCSs, this results
in a higher network AVDI (0.062724 in case 1,

Fig. 14: Comparison of the network voltage profile
when the EVCSs are placed using the BFS
technique with when they are randomly placed.

0.0631576 in case 2, and 0.0640606 in case 3).
This means that when the EVCSs are placed
on the nodes chosen by the BFS technique, the
network has better voltage stability compared to
when the EVCSs are placed on other nodes. It is
noticed that, even when 1 PV system is used for
compensation and of the lowest value when the
BFS technique is used, the AVDI of the network
is still better (smaller) compared to the AVDI
when the EVCSs are randomly placed. In the
scenario of 2 PVs compensation, the resulting
AVDI of the random cases is lower than that of
the BFS, and this is because the sum of the 2
compensating PVs in all three random cases is
much higher (2894.968 kW in case 1, 2763.2785
kW in case 2, and 2749.916 kW) than those of
the BFS technique (2551.36 kW). The higher the
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PV wattage, the more the amelioration of the
AVDI.

Fig. 15: Comparison of the network AVDI when the
EVCSs are placed using the BFS technique
with when they are randomly placed.

3) Power loss comparison

Looking at the total active and reactive power
losses of the network when the EVCSs are placed
using the BFS technique and when they are not
placed using the BFS technique as shown in
Fig. 16 and Fig. 17, it is seen total active and
reactive power losses of the network upon in-
stalling the EVCSs using the proposed BFS tech-
nique is lesser than when randomly installing the
EVCSs on other nodes. Even the total power
losses upon inserting 1 compensating PV sys-
tem are lower compared to case 1, case 2, and
case 3. Nevertheless, in the scenario of 2 com-
pensating PVs, the resulting active and reactive
power losses in case 2 are lower than those when
the BFS is used.

4. Conclusion

Despite electric vehicles (EVs) being the way
forward to reducing greenhouse gases from the
transport sector, the fast deployment of this
technology will critically depend on the fast up-
grading of the distribution network to accom-
modate large numbers of charging facilities in
our communities. The increasing integration
of this technology also necessitates solutions to
compensate for their effect on the distribution

Fig. 16: Comparison of the network active power loss
when the EVCSs are placed using the BFS
technique with when they are randomly placed.

Fig. 17: Comparison of the network reactive power loss
when the EVCSs are placed using the BFS
technique with when they are randomly placed.

network. PV systems have been proposed by
several researchers as the DG of choice to min-
imize the effect of EVs on the distribution net-
work. This research aimed at utilizing the work
of Huizi Gu and X. Chu who divided the IEEE
33 node test distribution network into commu-
nities based on an improved spectral clustering
technique with the aim of maximizing the us-
age of flexible resources [20]. The segregation
of the network into communities is utilized for
the placement of EVCSs into the distribution
network using a new approach and later on in-
tegrating compensating PV systems to remedy
the effect of the EVCSs.
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The new approach for the placement of the
EVCSs used here is the backward forward sweep
(BFS) technique of power flow calculation con-
sidering that each community needs a single
EVCS. Using PSO, two scenarios of PV inte-
gration were used to compensate for the effects
of the EVCSs in the distribution network. The
first case was the optimal sizing and siting of a
single PV system and the second case was the
optimal sizing and placement of 2 PV systems.
In both scenarios, the optimization problem was
aimed at minimizing the real and reactive power
losses and enhancing the network voltage pro-
file. Simulation results showed the effectiveness
of the BFS in obtaining the best node for the
placement of an assigned EVCS in each com-
munity. The compensation was also properly
done using PSO. The effectiveness of the BFS
in the placement of the EVCSs was validated
by randomly placing the EVCSs on nodes other
than the ones chosen by the BFS. Three ran-
dom cases were simulated and it was seen that
the resulting active and reactive power losses,
minimum network node voltage, and the AVDI
of the network were all better when the EVCSs
were placed using the proposed BFS technique.
This demonstrated the efficacy of the proposed
BFS in finding the best node for the installa-
tion of a given EVCSs in every community. The
proposed BFS technique for the integration of
EVCSs in a distribution network segregated into
communities necessitates that the transport sec-
tor and the utility company work hand in glove
to ensure the proper segregation of the network
into communities.

As a future scope of this study, the driving
distance of the EVs and the state of charge of the
EV batteries will be considered in the allocation
of the EVCSs.
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