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Abstract. The concern of this paper is to
compare the computational efficiencies and
accuracies of three approximate analytical
methods; namely, homotopy analysis method
(HAM), optimal homotopy asymptotic method
(OHAM) and differential transform method
(DTM) for the nonlinear thermal performance
analysis of a convective-radiative porous fin with
temperature-dependent internal heat generation
under the influence of the magnetic field. To
establish the computational accuracies of the
three methods, the results of the three-series
solutions are compared with the results of
the developed exact analytical and numerical
methods. Also, the symbolic solutions developed
in this work are used to explore the impacts of
the controlling parameters on the performance
of the passive device. It is established that as
the conductive-convective, conductive-radiative
and magnetic field parameters increase, the fin
temperature distribution decreases and hence,
the fin thermal efficiency is improved. An
increase in temperature distribution in the fin
is noticed as the nonlinear thermal conductivity
parameter increases. It is envisaged that the
present study will give a good insight into the

nonlinear analysis of extended surfaces which
will aid proper design in thermal systems.

Keywords

Approximate analytical methods, rectan-
gular porous fin, nonlinear analysis, com-
parative and parametric studies.

1. Introduction

The non-expensive but effective cooling of elec-
tronics and thermal systems have been achieved
through the applications of passive devices such
as fins [1]. The importance of extended sur-
faces has incited a large number of research
in literatures. The theoretical investigations of
thermal damage problems and heat transfer en-
hancement by the extended surfaces have attest
to facts that the controlling thermal models for
the passive devices are usually nonlinear. Con-
sequently, the nonlinear thermal models have
been successfully analyzed in the past studies
with the aids of approximate analytical, semi-
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analytical, semi-numerical, and numerical meth-
ods [2, 3, 4, 5, 6, 7]. In such previous stud-
ies, Jordan et al. [8] adopted optimal lineariza-
tion method to solve the nonlinear problems in
the fin while Kundu and Das [9] utilized Frobe-
nius expanding series method for the analysis
of the nonlinear thermal model. Subsequently,
Khani et al. [10] and Amirkolaei and Ganji
[11] applied homotopy analysis method to an-
alyze and obtain fin thermal profiles. In a fur-
ther analysis, Aziz and Bouaziz [12], Sobamowo
[13], Ganji et al. [14] and Sobamowo et al. [15]
employed methods of weighted residual to ex-
plore the nonlinear thermal behaviour of fins.
In another studies, methods of double decom-
position and variation of parameter were used
by Sobamowo [16] and Sobamowo et al. [17],
respectively to study the thermal characteris-
tics of fins. Also, differential transformation
method has been used by some researchers such
as Moradi and Ahmadikia [18], Sadri et al. [19],
Ndlovu and Moitsheki [20], Mosayebidarchech et
al. [21], Ghasemi et al. [22] and Ganji and
Dogonchi [23] to predict the heat transfer be-
haviour in passive devices. With the help of
homotopy perturbation method, Sobamowo et
al. [24], Arslanturk [25], Ganji et al. [26] and
Hoshyar et al. [27] scrutinized the heat flow in
the extended surfaces. However, these studies
are for thermal analysis of fin under assumed
constant heat transfer coefficient. The cases of
heat transfer with variable heat transfer coeffi-
cient along the passive device have also be inves-
tigated [28, 29, 30, 31, 32, 33, 34, 35]. Such anal-
ysis helps in providing the needed information
on the efficiency, effectiveness, and design of the
extended surfaces under various boiling modes
[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

In most engineering materials, the thermal
conductivities of fin materials are temperature-
dependent, the influence of the temperature-
dependent thermal properties on the perfor-
mance of fin have been explored in past stud-
ies. However, Sobamowo et al; [45] presented
some figures that show that the thermal con-
ductivity of palladium is constant at a rel-
atively low temperature. This depicts that
the thermal performances of some materials
have temperature-invariant thermal conductiv-
ity within some ranges of temperature. More-

over, influence of Lorentz force and temperature-
variant internal heat generation on the temper-
ature distribution of the extended surfaces is
yet to be analyzed using optimal asymptotic
analysis and homotopy analysis methods. The
analytical approaches of these methods reduce
the complex mathematical analysis, high com-
putational cost and time. Furthermore, under
large values of thermo-geometric and nonlinear
thermal conductivity parameters, it is estab-
lished that applications of Adomian decompo-
sition and homotopy perturbation methods are
limited [46]. However, through a holistic as-
sumed exponential solution in optimal asymp-
totic method and an inherent property of aux-
iliary parameters for the adjustment and con-
trol of region and rate of convergence of ap-
proximate series solutions, homotopy analysis
method has proven to be an efficient and capa-
ble technique in handling nonlinear engineering
problems in wider ranges of parameters. There-
fore, the present work compares the computa-
tional efficiencies and accuracies of three approx-
imate analytical methods, namely, homotopy
analysis method, optimal homotopy asymptotic
method and differential transformation method
for the nonlinear thermal performance analy-
sis of a convective-radiative porous fin with
temperature-dependent internal heat generation
under the influence of magnetic field. The de-
veloped symbolic solutions are used to explore
the influences of the controlling thermal model
parameters on the performance of the fin.

2. Problem formulation

In Fig. 1, it is consideration is given to a porous
fin with temperature-invariant thermal proper-
ties allowing radiative and convective heat trans-
fer.

To thermally describe the behaviour of the
passive device, assumptions are made that the
porous medium is filled with fluid of single-
phase. The solid portion of the extended surface
is homogeneous and isotropic. The fin tempera-
ture changes only along its length and the con-
dition of a perfect thermal contact between the
prime surface and the fin base is assumed.
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Fig. 1: Schematic of convective-radiative longitudinal fin under even magnetic field.

From the assumptions and with the aid of
Darcy’s model, the energy balance is

(1)

d

dx̃

(
dT̃

dx̃
+

4σ

3keffβR

dT̃ 4

dx̃

)

− ρβcpgK

vkeffAcr
(T̃ − Ta)

2

− h(1− ε)P

keffAcr
(T̃ − Ta)

− σP ∈
keffAcr

(T̃ 4 − T 4
a )

− Jc × Jc

σkeffAcr
As +

q
(
T̃
)

keff
= 0

Expansion of the first term in Eq. (1), it pro-
vides

(2)

d2T̃

dx̃2
+

4σ

3keffβR

d

dx̃

(
dT̃ 4

dx̃

)

− ρβcpgK

vkeffAcr
(T̃ − Ta)

2

− h(1− ε)P

keffAcr
(T̃ − Ta)

− σP ∈
keffAcr

(T̃ 4 − T 4
a )

− Jc × Jc

σkeffAcr
As +

q
(
T̃
)

keff
= 0

The boundary conditions are

(3a)x̃ = 0,

dT̃

dx̃
= 0,

(3b)x̃ = L,

T̃ = Tb
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The internal heat general varies linearly with
temperature as

(4)q(T̃ ) = qa

(
1 + λ

(
T̃ − Ta

))
When Eq. (4) is substituted into Eq. (2), one
arrives at

(5)

d2T̃

dx̃2
+

4σ

3keffβR

d

dx̃

(
dT̃ 4

dx̃

)

− ρβcpgK

vδkeff
(T̃ − Ta)

2

− h(1− ε)

keffδ
(T̃ − Ta)

− σ ∈
keffδ

(T̃ 4 − T 4
a )−

Jc × Jc

σkeffAcr
As

+
qo
keff

(
1 + λ

(
T̃ − Ta

))
= 0

The radiative temperature term can be ex-
pressed as a linear function of temperature as

(6)
T̃ 4 = T 4

a + 4T 3
a

(
T̃ − Ta

)
+ 6T 2

a

(
T̃ − T∞

)2
+ ...

∼= 4T 3
a T̃ − 3T 4

a

Substitution of Eq. (6) into Eq. (5), results in

(7)

d2T̃

dx̃2
+

16σ

3keffβR

d2T̃

dx̃2

− ρβcpgK

vδkeff
(T̃ − Ta)

2

− h(1− ε)

keffδ
(T̃ − Ta)

− 4σT 3
a ∈

keffδ
(T̃ − Ta)−

Jc × Jc

σkeffAcr
As

+
qo
keff

(
1 + λ

(
T̃ − Ta

))
= 0

It should be noted that

Jc × Jc

σ
= σmB2

ou
2 (8)

Therefore,

(9)

d2T̃

dx̃2
+

16σ

3keffβR

d2T̃

dx̃2

− ρβcpgK

vδkeff
(T̃ − Ta)

2

− h(1− ε)

keffδ
(T̃ − Ta)

− σT 3
a ∈

keffδ
(T̃ − Ta)−

σmB2
ou

2

Acrkeff
As

+
qo
keff

(
1 + λ

(
T̃ − Ta

))
= 0

Applying the following adimensional parameters
in Eq. (10) to Eq. (9),

X =
x̃

L
, θ =

T̃ − Ta

Tb − Ta
, Sh =

ρβcpgK

keffδv
L2,

M2 =
h(1− ε)L2

keff t
, Rd =

4σstT
3
∞

3βRkeff
,

N =
4σst ∈ L2T 3

∞
keff t

.

Ha =
σAsB

2
ou

2L2

Acrkeff
, G =

qot

h (TL − T∞)
, (10)

γ = λ(Tb − Ta)

One arrives at the adimensional form of the
governing Eq. (9) as presented in Eq. (11),

(11)d2θ

dX2
+ 4Rd

d2θ

dX2
− Shθ

2 −M2θ

−Nθ −Ha+M2G (1 + γθ) = 0

and the adimensional boundary conditions

(12a)X = 0,

dθ

dX
= 0

(12b)X = 1,

θ = 1
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Eq. (11) can be written as

(13)

d2θ

dX2
− Sh

1 + 4Rd
θ2 − M2

1 + 4Rd
θ

− N

1 + 4Rd
θ − Ha

1 + 4Rd

+
M2G

1 + 4Rd
(1 + γθ) = 0

Taking

Mc2 =
M2

1 + 4Rd
, Nr =

N

1 + 4Rd
, (14)

Ra =
Sh

1 + 4Rd
, H =

Ha

1 + 4Rd
, Q =

G

1 + 4Rd
,

we arrived at the dimensionless forms of the gov-
erning as follows;

(15)d2θ

dX2
−Raθ2 −Mc2θ −Nrθ

−H +Mc2Q+Mc2Qγθ = 0

and the dimensionless boundary conditions still
remain the same as in Eqs. (12).

3. Application of
Homotopy Analysis
Method to the
Nonlinear Thermal
Problem

It can be seen that the above governing differen-
tial equation is highly nonlinear, and such non-
linearity imposes some difficulties in the devel-
opment of exact analytical methods to generate
closed form solution for the equation. There-
fore, homotopy analysis method is presented
in this work. The homotopy analysis method
(HAM) which is an analytical scheme for pro-
viding approximate solutions to ordinary dif-
ferential equations is adopted in generating so-
lutions to ordinary nonlinear differential equa-
tions. Upon constructing the homotopy, the ini-
tial guess and auxiliary linear operator can be

expressed as
θ0(X) = 1 (16)

L(θ) = θ′′ (17)

L (c1X + c2) = 0 (18)

Where ci(i = 1, 2, 3, 4) are constants. Let P =∈
[0, 1] connotes the embedding parameter and h̄
is the non-zero auxiliary parameter. Therefore,
the homotopy is constructed as

3.1. Zeroth-order deformation
equations

(19)(1− p)L [θ (X; p)− θ0(X)]

= ph̄H(X)N [θ(X; p)]

θ′(0; p) = 0; θ (1; p) = 1; (20)

when p = 0 and p = 1 we have

θ(X; 0) = θ0(X); θ(X; 1) = θ(X) (21)

As p increases from 0 to 1. θ(X; p) varies from
θ0(X) to θ(X). By Taylor’s theorem and uti-
lizing Eq. (20), θ(X; p) can be expanded in the
power series of p as follows:

(22)θ(X; p) = θ0(X) +

∞∑
m−1

θm(X)pm,

θm(X) =
1

m!

∂m(θ(X; p))

∂pm

∣∣∣∣
p=0

where h̄ is chosen such that the series is conver-
gent at p = 1; therefore, by Eq. (22) it is easily
shown that

θ(X) = θ0(X) +

∞∑
m−1

θm(X) (23)

3.2. m-th order deformation
equations

L[θm(η)− χmθm−1(η)] = h̄H(X)Rm(X) (24)

θ′(0; p) = 0; θ (1; p) = 0 (25)
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where

(26)Rm(X) =
d2θ (X; p)

dX2
− Sh

n−1∑
i=0

θn−1−kθk

−Mc2θn−1 −Nrθn−1 −Ha

+Mc2Q+Mc2Qγθn−1

Now the results for the convergence, differential
equation and the auxiliary function are deter-
mined according to the solution expression. As-
suming;

H(X) = 1 (27)

The analytic solution is developed using the
MATLAB computational stencil. Hence, the
first deformation is expressed below

(28)

θ1(X) =
1

2
h̄
(
−Ra−Mc2+Mc2Q+Mc2Qγ

−H
)
X2 +

1

2
h̄Ra+

1

2
h̄Mc2

− 1

2
h̄Mc2Q− 1

2
h̄Mc2Qγ +

1

2
h̄H

θ2(X) =
5

120
h̄2
(
−Ra−Mc2 +Mc2Q+Mc2Qγ

−H
) (

−2Ra−Mc2 +M2Qγ
)
X4

+
1

2

[
−h̄Ra− h̄Mc2 + h̄Mc2Q− h̄H

+
3

2
h̄2RaMc2Qγ − h̄2Ra− h̄2Mc2

− h̄2Ra2 − 1

2
h̄2Mc4 + h̄2Mc2Q− h̄2H

− 3

2
h̄2RaMc2 +

1

2
h̄2Mc4Q

− 1

2
h̄2Mc2H + h̄2RaMc2Q− h̄2RaH

+ h̄2Mc4Qγ + h̄Mc2Qγ

− 1

2
h̄2Mc4Q2γ +

1

2
h̄2HMc2Qγ

− 1

2
h̄2Mc4Q2γ2 + h̄2Mc2Qγ

]
X2

+
5

24
h̄2Mc4 − 1

2
h̄2Mc2Q+

5

8
h̄2Mc2

− 5

24
h̄2Mc4Q+

5

24
h̄2Mc2H +

1

2
h̄Mc2

+
5

24
h̄2Mc4Q2γ2 − 5

12
h̄2RaMc2Q

+
5

12
h̄2RaH − 5

12
h̄2Mc4Qγ

+
5

12
h̄2Mc4Q2γ − 1

2
h̄2Mc2Qγ

− 1

2
h̄Mc2Qγ − 1

2
h̄Mc2Q+

1

2
h̄2H

− 5

8
h̄2RaMc2Qγ +

1

2
h̄2Ra

+
1

2
h̄2Mc2 +

1

2
h̄Ra+

5

12
h̄2Ra2

(29)

Similarly θ3(η), θ4(η), θ5(η)... are found but they
are too large expressions that cannot be included
in this paper. However, they are included in the
results displayed graphically. From the principle
of HAM

(30)θ(X) = θ0(X) +

∞∑
m=1

θm(X)

= θ0(X) + θ1(X) + θ2(X) + ...
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Therefore, substitute Eqs. (16), (28) and 29)
into Eq. (30), we have

θ(X) = 1 +
1

2
h̄
(
−Ra−Mc2 +Mc2Q+Mc2Qγ

−H
)
X2 +

1

2
h̄Ra+

1

2
h̄Mc2

− 1

2
h̄Mc2Q− 1

2
h̄Mc2Qγ +

1

2
h̄H

+
5

120
h̄2
(
−Ra−Mc2+Mc2Q+Mc2Qγ

−H
) (

−2Ra−Mc2 +M2Qγ
)
X4

+
1

2

[
−h̄Ra− h̄Mc2 + h̄Mc2Q− h̄H

+
3

2
h̄2RaMc2Qγ − h̄2Ra− h̄2Mc2

− h̄2Ra2 − 1

2
h̄2Mc4 + h̄2Mc2Q− h̄2H

− 3

2
h̄2RaMc2 +

1

2
h̄2Mc4Q

− 1

2
h̄2Mc2H + h̄2RaMc2Q− h̄2RaH

+ h̄2Mc4Qγ + h̄Mc2Qγ − 1

2
h̄2Mc4Q2γ

+
1

2
h̄2HMc2Qγ − 1

2
h̄2Mc4Q2γ2

+ h̄2Mc2Qγ

]
X2

+
5

24
h̄2Mc4 − 1

2
h̄2Mc2Q+

5

8
h̄2Mc2

− 5

24
h̄2Mc4Q+

5

24
h̄2Mc2H

+
1

2
h̄Mc2 +

5

24
h̄2Mc4Q2γ2

− 5

12
h̄2RaMc2Q+

5

12
h̄2RaH

− 5

12
h̄2Mc4Qγ +

5

12
h̄2Mc4Q2γ

− 1

2
h̄2Mc2Qγ − 1

2
h̄Mc2Qγ − 1

2
h̄Mc2Q

+
1

2
h̄2H − 5

8
h̄2RaMc2Qγ +

1

2
h̄2Ra

+
1

2
h̄2Mc2 +

1

2
h̄Ra+

5

12
h̄2Ra2 + ...

(31)

3.3. Convergence of the HAM
solution

In order to control the convergence rate of h̄
in the approximate analytical solutions given by

HAM, Liao [47] presented the auxiliary param-
eter. It is established that the convergence rate
of approximation for the HAM solution strongly
depend on the value of the auxiliary parameter.
For the 10th-order of approximation, different
values of the model parameters are used for the
different simulations to arrive at the acceptable
range of values of the parameter h̄ for the differ-
ence controlling parameters of the model.

4. Solution of the Thermal
Model using Optimal
Asymptotic Homotopy
Method

The approximate analytical solution of the non-
linear thermal model using optimal homotopy
asymptotic method is presented in this section.

For OHAM (developed by Marinca and Her-
izanu [23, 34] and applied in other works [25, 26,
27, 28], we choose the linear operators from Eq.
(4) in the form:

L [θ] =
d2θ

dX2
(32)

The initial approximation θ0(X) can be obtain
as:

d2θ0
dX2

= 0 (33)

with the boundary conditions:

X = 0,
dθ0
dX

= 0 ; X = 1, θ0 = 1 (34)

Last equation has solutions:

θ0 (X) = 1 (35)

Nonlinear operators corresponding to Eq. (15)
and linear operator given in Eq. (35) is defined
by:

N [θ] = −αθ2 (X)− βθ (X)− λ (36)

where

α = Ra, β = Mc2 +Nr −Mc2Qγ,

λ = Ha−Mc2Q

© 2023 Journal of Advanced Engineering and Computation (JAEC) 7
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By substituting Eq. (10) into Eq. (11), we
can obtain the expression of N [θ0(X)]:

N [θ0 (X)] = −α− β − λ (37)

If we consider the first-order approximate solu-
tion for nonlinear differential equation (15):

θ (X) = θ0 (X) + θ1 (X,Ci) (38)

where θ1(X,Ci) are obtained as:

d2θ1
dX2

= N [θ0 (X)] h̄ (X,Ci) (39)

with boundary conditions:

X = 0,
dθ1
dX

= 0 ; X = 1, θ1 = 0 (40)

Note that the convergence of the approximate
solution θ(X) depends up on the auxiliary func-
tion h̄(X,Ci), we can choose h̄(X,Ci) as:

(41)h̄ (X,Ci) = C1 + C2e
−X + C3e

−2X

+ · · ·Cpe
−(p−1)X

By solving Eq. (39) with boundary condition
(40), we obtained:

θ1 (X) = 1
2 (β + α+ λ)

2

9
C4

(
e−3X − e−3

)
+

1

2
C3

(
e−2X − e−2

)
+ 2C2

(
e−X − e−1

)
+ (X − 1)

(
C1X + C1 + 2C2 + C3 +

2

3
C4

)


(42)

Finally, the solution (13) is obtained through
(10) and (17):

θ (X) = 1 + 1
2 (β + α+ λ)

2

9
C4

(
e−3X − e−3

)
+

1

2
C3

(
e−2X − e−2

)
+ 2C2

(
e−X − e−1

)
+ (X − 1)

(
C1X + C1 + 2C2 + C3 +

2

3
C4

)


(43)

Where Ci is unknown parameters which can
be obtained with Least-square method (LSM).
In our study we choose p = 4. For exam-
ple, when Ra=0.3, Rd=0.4, Nc=0.3, Nr=0.5,
Ha=0.6, Q=0 and ε, the values of constants
are: C1=–3.034900727, C2=6.159911506, C3=
–6.848991138, C4=2.590773069

Substituting these values in Eq. (32), we ob-
tain θ(X) in a series form as follow:

(44)

θ (X) = 2.652103740 − 2.463964602e−X

+ 0.6848991138e−2X

− 0.1151443183e−3X

− 1.439594147X + 0.6069801454X2

5. Differential Transform
Method to the
Nonlinear Thermal
Model

The nonlinear thermal model is also solved in
this section using differential transform method.
The definition and the operational properties of
the method can be found in our previous study
[28]. The recursive relations of Eq. (15) is given
as

(45)

(k + 1) (k + 2)θ(k + 2)

−Ra

k∑
l =0

θ (l)θ (k − l)

−Mc2θ(k) +Mc2Qγθ(k)

+
(
Mc2Q−H

)
δ (k) = 0

where

θ(k + 2) =

Ra
k∑

l=0

θ (l)θ (k − l) +Mc2θ(k)−Mc2Qγθ(k)−
(
Mc2Q−H

)
δ (k)

(k + 1) (k + 2)
(46)

From the boundary conditions, one gets

θ(0) = a, θ(1) = 0

8 © 2023 Journal of Advanced Engineering and Computation (JAEC)
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We arrived at

θ(2) =
a2Ra+ aMc2 − aMc2Qγ −

(
Mc2Q−H

)
2

θ(3) = 0

θ(4) =

{
2aRa+Mc2 +Nr −Mc2Qγ

12

}{
a2Ra+ aMc2 − aMc2Qγ −

(
Mc2Q−H

)
2

}

θ(5) = 0

θ(6) =
1

720

(
2aRa+Mc2 +Nr −Mc2Qγ

)2 {
a2Ra+ aMc2 − aMc2Qγ −

(
Mc2Q−H

)}
+

1

120

{
a2Ra+ aMc2 − aMc2Qγ −

(
Mc2Q−H

)}2
Ra

Therefore, from the definition

θ(X) = a+

{
a2Ra+ aMc2 + aNr − aMc2Qγ −

(
Mc2Q−H

)
2

}
X2

+
1

24

(
2aRa+Mc2 +Nr −Mc2Qγ

) {
a2Ra+ aMc2 + aNr − aMc2Qγ −

(
Mc2Q−H

)}
X4

+
1

720

[(
2aRa+Mc2 +Nr −Mc2Qγ

)2 {
a2Ra+ aMc2 − aMc2Qγ −

(
Mc2Q−H

)}
+ 6
{
a2Ra+ aMc2 − aMc2Qγ −

(
Mc2Q−H

)}2
Ra

]
X6 + ....

(47)

6. Numerical Procedure
for the Steady State
Analysis

In order to verify the results of the present
work, the nonlinear model in Eq. (15) was
also solved numerically using fifth-order Runge-
Kutta Fehlberg method (Cash-Karp Runge-
Kutta) coupled with shooting method. Since
Runge-Kutta method is for solving first-order
ordinary differential equation, the fourth-order
ordinary differential equation is decomposed
into a system of first-order differential equations
as follows:

θ(5) = 0 ⇒ θ′′ = p′, (48)

(49)p′ = Shθ
2 +Mc2θ +Nrθ

+Ha−Mc2Q−Mc2Qγθ

The above Eqs. (48) and (49) can be written as

f (X, θ, p) = p, (50)

g (X, θ, p) = Shθ
2 +Mc2θ +Nrθ +Ha

−Mc2Q−Mc2Qγθ,

The iterative scheme of the fifth-order Runge-
Kutta Fehlberg method (Cash-Karp Runge-
Kutta) for the above system of first-order equa-
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tions is given as

(51)θi+1 = θi + h

(
2835

27648
k1 +

18575

48384
k3

+
13525

55296
k4 +

277

14336
k5 +

1

4
k6

)

(52)pi+1 = pi+h

(
2835

27648
l1+

18575

48384
l3+

13525

55296
l4

+
277

14336
l5 +

1

4
l6

)

where
k1 = f (Xi, θi, pi)

l1 = g (Xi, θi, pi)

k2 = f

(
Xi +

1

5
h, θi +

1

5
k1h, pi +

1

5
l1h

)

l2 = g

(
Xi +

1

5
h, θi +

1

5
k1h, pi +

1

5
l1h

)

k3 = f

(
Xi +

3

10
h, θi +

3

40
k1h+

9

40
k2h, pi

+
3

40
l1h+

9

40
l2h

)

l3 = g

(
Xi +

3

10
h, θi +

3

40
k1h+

9

40
k2h, pi

+
3

40
l1h+

9

40
l2h

)

k4 = f

(
Xi +

3

5
h, θi +

3

10
k1h− 9

10
k2h

+
6

5
k3h, pi +

3

10
l1h− 9

10
l2h+

6

5
l3h

)
l4 = g

(
Xi +

3

5
h, θi +

3

10
k1h− 9

10
k2h

+
6

5
k3h, pi +

3

10
l1h− 9

10
l2h+

6

5
l3h

)

k5 = f

(
Xi + h, θi −

11

54
k1h+

5

2
k2h− 70

27
k3h

+
35

27
k4h, pi −

11

54
l1h+

5

2
l2h− 70

27
l3h

+
35

27
l4h

)

l5 = g

(
Xi + h, θi −

11

54
k1h+

5

2
k2h− 70

27
k3h

+
35

27
k4h, pi −

11

54
l1h+

5

2
l2h− 70

27
l3h

+
35

27
l4h

)

k6 = f

Xi +
7

8
h, θi +

1631

55296
k1h+

175

512
k2h+

575

13824
k3h+

44275

110592
k4h+

253

4096
k5h,

pi +
1631

55296
l1h+

175

512
l2h+

575

13824
l3h+

44275

110592
l4h+

253

4096
l5h,



l6 = g

Xi +
7

8
h, θi +

1631

55296
k1h+

175

512
k2h+

575

13824
k3h+

44275

110592
k4h+

253

4096
k5h,

pi +
1631

55296
l1h+

175

512
l2h+

575

13824
l3h+

44275

110592
l4h+

253

4096
l5h,
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Using the above fifth-order Runge-Kutta
Fehlberg method coupled with shooting method,
computer programs are written in MATLAB for
the solutions of the Eq. (9). The results for step
size, h = 0.01 are presented in the following sec-
tion.

7. Development of an
Exact Analytical
Solution for the
Thermal Model

Exact analytical solution is also developed for
the nonlinear thermal model. In doing this, we
write

(53)d2θ

dX2
−Raθ2 −Mc2θ −Nrθ

−Ha+Mc2Q+Mc2Qγθ = 0

Using a variable transformation
dθ

dX
= ϕ (54)

One can write that
d2θ

dX2
=

dϕ

dX
=

dθ

dX

dϕ

dθ
= ϕ

dϕ

dθ
(55)

Putting Eq. (54) and (55) into Eq. (53), results
in

(56)ϕ
dϕ

dθ
−Raθ2

−
(
Mc2θ +Nrθ −Mc2Qγ

)
θ

+Mc2Q−H = 0

This can easily be written as

(57)ϕdϕ+
{
−Raθ2 −Mc2θ −Nrθ

−H +Mc2Q+Mc2Qγθ
}
dθ = 0

The above Eq. (57) is a total differential equa-
tion which has a solution of the form

(58)

1

2
ϕ2 +Ra

(
−Mc2 −Nr − 1

) θ3
3

+
{
Mc2Qγ −

(
Mc2 −Nr

)} θ2

2
+Mc2Qθ −Hθ = C

where C is the constant of integration Recall
that ϕ = dθ

dX → ϕ2 =
(

dθ
dX

)2
Therefore, Eq. (58) can be expressed as fol-

lows

(59)

1

2

(
dθ

dX

)2

+Ra
(
−Mc2 −Nr − 1

) θ3
3

+
{
Mc2Qγ −

(
Mc2 −Nr

)} θ2

2

+Mc2Qθ −Hθ = C

Using the first boundary condition,

X = 1,
dθ

dX
= 0

→ X

= 1, θ

= θo

Therefore, the constant C as

(60)
Ra
(
−Mc2 −Nr − 1

) θ30
3

+
{
Mc2Qγ −

(
Mc2 +Nr

)} θ20
2

+
(
Mc2Q−H

)
θ0 = C

where θ0 is the dimensionless temperature at the
tip When Eq. (60) is substituted into Eq. (59),
we have

(61)

1

2

(
dθ

dX

)2

−Ra
(
−Mc2−Nr−1

)(θ30
3
− θ3

3

)
+
{
Mc2Qγ −

(
M2 +Nr

)}(θ20
4

− θ2

4

)
−
(
Mc2Q−H

)
(θ0 − θ) = 0
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On re-arranging

1

2

(
dθ

dX

)2

= Ra
(
−Mc2 −Nr − 1

)(θ30
3

− θ3

3

)
+
(
Mc2Q−H

) (
θ̃0−θ

)
+
{
Mc2Qγ

−
(
M2 +Nr

)}(θ20
4

− θ2

4

)
(62)

Eq. (62) is expressed as

√
2dX =

dθ√{
Ra (Mc2 +Nr + 1)

(
θ3

3 − θ3
0

3

)
− (Mc2Q−H) (θ − θ0)− {Mc2Qγ − (M2 +Nr)}

(
θ2

4 − θ2
0

4

)}
(63)

Integrating both sides of the Eq. (63), provides

√
2

∫
dX =

∫
dθ√{

Ra (Mc2 +Nr + 1)
(

θ3

3 − θ3
0

3

)
− (Mc2Q−H) (θ − θ0)− {Mc2Qγ − (M2 +Nr)}

(
θ2

4 − θ2
0

4

)}
(64)

√
2X =

∫
dθ√{

Ra (Mc2 +Nr + 1)
(

θ3

3 − θ3
0

3

)
− (Mc2Q−H) (θ − θ0)− {Mc2Qγ − (M2 +Nr)}

(
θ2

4 − θ2
0

4

)} + C∗

(65)

Where the arbitrary constant C∗ is found from

X = 0,
dθ

dX
= 0 → θ = θe (66)

suppose that

G (θ;Ra,Mc,H,Q, θo) = G (θ;Ra,N,Qh, θo)

=

∫
dθ√{

Ra (Mc2 +Nr + 1)
(

θ3

3 − θ3
0

3

)
− (Mc2Q−H) (θ − θ0)− {Mc2Qγ − (M2 +Nr)}

(
θ2

4 − θ2
0

4

)}
(67)

where

N = Mc2 +Nr, Qh = Mc2Q−H (68)

The integral in Eq. (67) is expressible (e.g. via Wolfram′s Mathematica) in term of incomplete
elliptic integrals of the first kind. For instant

G (θ; 1, 1, 1, θo) =

√
α2
1

3 + 6θo + α1




√

3 + 6θo + α1

α1

√
−3− 6θo + α1

α1
EllipticF

(√
3 + 6θo + α1

2α1
,

√
2α1

3 + 6θo + α1

)
α2

− 3

√
3 + 2θo + α1 + 4θ

α1

√
θo − θ

√
−3− 2θo + α1 + 4θ

α1
EllipticF

(√
3 + 2θo + α1 + 4θ

2α1
,

√
2α1

3 + 6θo + α1

)
α3


α2α3


(69)
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where

α1 =
√
57− 12θo − 12θ2o

α2 =
√

6θ3 − 18θ + 9θ2 − 6θ3o + 18θo − 9θ2o

α3 =
√
2− 2θo − 2θ2o

Therefore, the closed-form solution of Eq. (15)
can be implicitly expressed as

X = G (θ;Ra,N,Qh, θo) (70)

It should be stated that the unknown θ0 in the
closed-form solution is found from the follow-
ing boundary condition This means that for any
given N, Ra and Q, θ0 is obtained from

G (1;Ra,N,Qh, θo) = 0 (71)

With the aid of Wolfram’s Mathematica, the
computations of the function G(θ;Ra,N,Qh, θ0
are carried out.

8. Thermal Efficiency of
the fin

The fin efficiency is the ratio of the heat transfer
rate by the extended surface to the rate of heat
transfer that would be if the entire extended sur-
face were at the base temperature and is given by
With the application of the adimensional vari-
ables in Eq. (10), Eq, (72) becomes Eq. (73)
can be expressed as

η =
Sh

∫ 1

0
θ2dX +

{
M2 +Nr

} ∫ 1

0
θdX +H

Sh +M2 +Nr +H
(72)

9. Results and Discussion

The OHAM solutions are simulated for the pur-
pose of graphical illustrations, sensitivity and
parametric investigations. Table 1 presents the

verifications of results of the OHAM of order 1,
numerical method (NM) and differential trans-
formation method (DTM). Although, the DTM
provides higher accurate results than OHAM as
compared to the results of NM and exact ana-
lytical solutions. The higher accuracy is due to
the large number of terms (18 terms) in the so-
lutions of DTM as compared to the small num-
ber of terms (2 terms) in OHAM. This proves
that OHAM is a very convenient mathemati-
cal method with high convergence rate for the
analysis of the nonlinear models. DTM provides
simple analytical procedures with high accuracy.
However, homotopy analysis method gives the
freedom of choosing the best auxiliary parame-
ter that could be used to adjust and control the
convergence of the series solution. Such freedom
of choice is not offered in the other approximate
analytics methods.

The significance of various parameters of the
nonlinear model on the thermal management en-
hancement of thermal systems using the solu-
tions presented are graphical represented for pic-
torial discussion in Figs. 2-11. The results illus-
trate that the augmentations of the conductive-
radiative, conductive-convective, porosity and
magnetic field cause the extended surface adi-
mensional temperature to reduce as a result of
increased rate of heat flow via the passive device.
The graphical illustrations show that the effi-
ciency and effectiveness of the fin is high at low
values of the radiative-conductive, convective-
conductive, porosity and magnetic field param-
eters.

The impacts of convective-conductive,
radiative-conductive and porosity parameters
on the adimensional temperature distribution
in the passive device is graphically illustrated
in Fig. 2. The figure shows that as the
convection-radiative increases the adimen-
sional temperature in the fin increases. This
also means that the local temperature in the
extended surface increases as the conduction-
convection parameter increases.

It is presented in Fig. 3 about the impact
of porosity on the extended surface tempera-
ture behaviour. The graphical illustrations show
that the amplification of parameter of poros-
ity (Rayleigh number) causes the passive device
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Tab. 1: Comparative of results via OHAM with DTM and NUM for θ(X) when Rd = 0.5, ε = 0.1, Ra = 0.4, Nc
= 0.3, Nr = 0.2, H= 0.1.

X NUM DTM OHAM HAM Exact
0.0 0.86349923 0.86349915 0.86349987 0.86349966 0.86349907
0.1 0.86481708 0.86481703 0.86481420 0.86481754 0.86481693
0.2 0.86877626 0.86877619 0.86877319 0.86877671 0.86877611
0.3 0.87539340 0.87539333 0.87539383 0.87539386 0.87539328
0.4 0.88469650 0.88469643 0.88469975 0.88469697 0.88469639
0.5 0.89672509 0.89672504 0.89672757 0.89672557 0.89672497
0.6 0.91153065 0.91153060 0.91152929 0.91153112 0.91153054
0.7 0.92917705 0.92917701 0.92917206 0.92917749 0.92917693
0.8 0.94974120 0.94974116 0.94973660 0.94974156 0.94974112
0.9 0.97331376 0.97331372 0.97331485 0.97331396 0.97331368
1.0 1.00000000 1.00000000 1.00000741 1.00000000 1.00000000

Fig. 2: Effects of conductive-radiative on the tempera-
ture distribution.

temperature to be lessened because of the in-
creased permeability allowed by the fin.

Figs. 4 and 5 display the effects of convective-
conductive and radiative-conductive parameters
on the fin temperature behaviour. It is shown
that the rise of the conductive-radiative, and
conductive-convective cause the extended sur-
face adimensional temperature to fall as a result
of increased rate of heat flow via the fin. The
graphical illustrations show that the efficiency
and effectiveness of the fin is high at low values of
the radiative-conductive, convective-conductive,
porosity and magnetic field parameters.

Fig. 3: Effects of porous parameter on the temperature
distribution.

Fig. 6 displays the effect of value of magnetic
field or Lorentz force on the fin temperature be-
haviours. It is illustrated that when the value
of the parameter of the magnetic field increase,
the passive device temperature decrease. The
graphical illustrations show that the efficiency
and effectiveness of the fin is high at low values
of the magnetic field parameters.

The effects of convective-conductive,
radiative-conductive, magnetic field and
porous parameters on the thermal efficiency
of the fin are presented in Figs. 8, 9 and
10 while the effect of porosity or void ratio
on the fin thermal efficiency is shown in Fig.
11. It is shown in the figures that when the
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Fig. 4: Effects of convective parameter on the temper-
ature distribution.

Fig. 5: Effects of radiative parameter on the tempera-
ture distribution.

convective-conductive, radiative-conductive,
porosity and magnetic field parameters rise, the
passive device efficiency falls.

10. Conclusion

This work explored the computational efficien-
cies and accuracies of three approximate analyt-
ical methods; namely, HPM, OHAM and DTM
for the nonlinear thermal performance analy-
sis of the convective-radiative porous fin with
temperature-dependent internal heat generation

Fig. 6: Effects of magnetic parameter on the tempera-
ture distribution.

Fig. 7: Effects of porosity/void ratio on the tempera-
ture distribution.

under the influence of magnetic field. The op-
timal homotopy asymptotic method is shown
to be a very convenient mathematical method
with high convergence rate. Also, differential
transformation method provides simple analyt-
ical procedures with high accuracy. However,
homotopy analysis method gives the freedom of
choosing the best the auxiliary parameter that
could be used to adjust and control the conver-
gence of the series solution. Such freedom of
choice is not offered in the other approximate
analytics methods. The effect of various pa-
rameters of the nonlinear model on the thermal

© 2023 Journal of Advanced Engineering and Computation (JAEC) 15



VOLUME: 7 | ISSUE: 1 | 2023 | March

Fig. 8: Effects of convective parameter on the thermal
efficiency.

Fig. 9: Effects of radiative parameter on the thermal
efficiency.

management enhancement of thermal systems
have been explored using the solutions presented
by the method. The graphical representations
of the thermal behaviour of the extended sur-
faces have been presented and the results have
been discussed. The study has showed that
the augmentations of the conductive-radiative,
conductive-convective, porosity and magnetic
field cause the extended surface temperature to
reduce as a result of increased rate of heat flow
via the passive device. The graphical illustra-
tions show that the efficiency and effectiveness
of the fin is high at low values of the radiative-
conductive, convective-conductive, porosity and

Fig. 10: Effects of porous parameter on the tempera-
ture distribution.

Fig. 11: Effects of porosity/void ratio on the tempera-
ture distribution.

magnetic field parameters. This study will as-
sist in proper thermal analysis of fins and in the
design of passive device.

Nomenclature

Acr Area of the fin cross sections, m2

Bo magnetic field intensity, Tesla or
kg/see2Amp

cpa specific heat capacity, J/kgK
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h coefficient of convective heat transfer,
W/m2K

Jc conduction current intensity, A

k fin thermal conductivity, W/mK

kb fin thermal conductivity at the base tem-
perature, W/mK

L fin length, M

Mc adimensional convective parameter

Nr adimensional radiation parameter

P fin perimeter, m

t time, sec.

T fin temperature, K

T∞ ambient temperature, K

Tb fin temperature at the base, K

x fin axial distance, m

X adimensional fin length

Greek Symbols

δ fin thickness, m

θ adimensional temperature

θb adimensional temperature at the fin base

ρ fin material density, kg/m3

σ Stefan-Boltzmann constant, W/m2K4

σ Electrical conductivity, Ω−1m−1 or
sec2Amp2/kgm3
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