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Abstract. The free vibration analysis of the ho-
mogenous magneto-electro-elastic (MEE) plate
based on a refined first-order shear deformation
theory and moving Kriging meshfree method is
presented in this paper. The refined first-order
shear deformation theory (RFSDT) only in-
cludes four variables and reduces one variable
when compared to the original first-order shear
deformation theory. The MEE materials which
are coupled between piezoelectric and piezomag-
netic effects are combined with BaTiO3 and
CoFe2O4 materials. The magnetic and electric
potentials satisfying the Maxwell equations are
assumed to be a combination of cosine and
linear variations along the plate thickness. The
coupled governing equations of motion of the
MEE plates are obtained by using the principle
of extended virtual displacement. These equa-
tions are solved to achieve the natural frequency
of MEE plates by utilizing the moving Kriging
mesh-free method. Several numerical examples
are examined to evaluate the influence of the
geometrical parameter on the natural frequency
of the MEE plates.
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1. Introduction

In recent years, thanks to the capacity to con-
vert energy from one form to another, mag-
neto electro-elastic (MEE) materials have had
a wide range of applications in various indus-
tries, including sensors, actuators, energy har-
vesting, medical devices, and aerospace and de-
fense. MEE materials are a kind of smart mate-
rials that show a strong coupling between their
magnetic, electric, and elastic properties. In
addition, these smart materials have exhibited
several advantageous properties such as multi-
functional behavior, high sensitivity, low power
consumption, tailorable properties, and large de-
formation. In this study, the MEE materials are
created by a combination of the piezoelectric and

© 2023 Journal of Advanced Engineering and Computation (JAEC) 31



VOLUME: 7 | ISSUE: 1 | 2023 | March

piezomagnetic phases from barium titanate (Ba-
TiO3) [1] and the cobalt ferrite (CoFe2O4) [2, 3],
respectively.

The study of MEE structures has been con-
cerned by many scientists. Liu et al. [4] and
[5] respectively presented the free vibration and
bending analyses of an isotropic MEE plate
based on a classical plate theory (CPT). In an-
other work, Shooshtari and Razavi [6] studied
a free vibration behavior of the laminated MEE
rectangular plates under the Pasternak founda-
tion by using the first-order shear deformation
theory (FSDT). Similar to this theory, the non-
linear bending analysis of MEE plates was in-
troduced by Chen and Wu [7], Milazzo [8] and
Alaimo et al. [9]. On the other hand, Vinyas
and Kattimani [10] investigated the vibration re-
sponse of the MEE plates in hygrothermal envi-
ronment using the higher-order shear deforma-
tion theory (HSDT). The same with this model,
the free vibration behavior of carbon nanotube-
reinforced MEE plates was provided in [11, 12].
Zheng et al. [13] and Xu et al. [14] investigated
the nonlinear bending and vibration behaviors
of MEE plates, respectively. Besides, Chen et
al. [15] presented the free vibration analysis of
MEE-FG plates using a three-dimensional elas-
ticity theory. By using this theory, Zhang et al.
[16] investigated static and dynamic behaviors of
MEE plates. The bending behavior of FG MEE
sandwich plates was also investigated by Pan et
al. [17].

As we have known, the solution of such prob-
lems using a three-dimensional elasticity the-
ory is not often simple due to complex geome-
tries, large computational costs and other dis-
advantaged multiple factors. So, the develop-
ment and use of numerical methods have always
been paid attention by scientists. There are
several popular methods such as isogeometric
analysis (IGA), finite element methods (FEM),
meshfree methods, . . . Among them, meshless
methods have proven their power in solving var-
ious problems. Because they involve uncompli-
cated dispensation, arbitrary node distribution,
and flexibility of placing nodes at random loca-
tions. It means that the approximate functions
of the meshfree method use only nodal data in
the global Cartesian coordinates and the results
of displacement and stresses are also immedi-

ately computed at arbitrary points in physical
space. This thing is different from IGA/FEM
[18, 19, 20] which the calculation is performed
in the natural coordinate. In addition, when us-
ing the moving Kriging (MK) meshfree method
the enforcement of necessary boundary condi-
tions is easily operated similar to FEM. Because
the moving Kriging integration shape function
satisfies the Kronecker delta function property,
it has got huge benefits in enforcing the essential
boundary conditions without any special tech-
niques as the penalty methods or Lagrange mul-
tiplier of other meshfree methods. Gu [21] has
first presented the moving Kriging interpolation
and has successfully shown the helpfulness of the
MK interpolation functions in solving the two-
dimensional boundary value problems. The MK
mesh-free method has effectively been utilized
for various problems. For example, the static,
dynamic and buckling analyses of FG isotropic
and sandwich plates based on a two-variable re-
fined plate theory and the higher order shear
deformation theory (HSDT) are respectively in-
troduced in [22, 23]. Based on same method, the
size-dependent model for analysis of function-
ally graded carbon nanotube-reinforced compos-
ite nanoplates and functionally graded isotropic
and sandwich microplates were respectively in-
vestigated in Refs. [24, 25]. The nonlinear static
bending and free vibration of the FGM plates us-
ing an improved MK meshfree method based on
a refined plate theory were presented by Nguyen
et al. [26]. On the other hand, the local weak-
form MK meshfree method was established for
two-dimensional structural examination by Lam
et al. [27]. Its more enlargements can be ob-
tained in [28, 29]. As we see in the above publi-
cations, there is no study of the free vibration of
the MEE plates using the MK meshfree method.
For those motivations, we utilize the MK mesh-
free method and a refined first-order shear defor-
mation theory for free vibration analyses of the
homogeneous MEE plate. It can be seen that
this report is a novel topic and has not been
issued yet. The effect of the geometrical param-
eters on the natural frequency of the homoge-
neous MEE plate is presented and discussed.
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2. The Basic Equations

2.1. Material properties of the
homogeneous MEE plate

A homogeneous MEE plate (length a, width
b and thickness h) subjected to an electric
potential Φ(x, y, z, t) and magnetic potential
Ψ(x, y, z, t) is considered, as shown in Figure 1.
The MEE materials is made by BaTi2O3 and
CoFe2O4 materials. Table 1 presents the ma-
terial properties of a homogeneous MEE square
plate.

Tab. 1: Material properties of BaTiO3-CoFe2O4.

Elastic (GPa) c11 = c22 = 226; c12 = 125; c13 = 124;
c44 = c55 = 44.2; c66 = 50.5

Piezoelectric (C/m2) e31 = e32 = −2.2; e33 = 9.3; e15 = 5.8
Dielectric (10-9 C/V.m) k11 = k22 = 5.64; k33 = 6.35

Piezomagnetic (N/A.m) q15 = q24 = 275; q31 = q32 = 290.1;
q33 = 349.9

Magnetoelectric (10-12 Ns/VC) d11 = d22 = 5.367; d33 = 2737.5
Magnetic (10-6 Ns2/C2) µ11 = µ22 = −297; µ33 = 83.5

Fig. 1: The geometry of MEE rectangular plate.

2.2. The refined FSDT
formulation

The displacement fields of the MEE plate at any
point according to the refined FSDT are pre-
sented as follows

⌢

u =


⌢

u (x, y, z)
⌢

v (x, y, z)
⌢

w (x, y, z)

 =


u (x, y)

v (x, y)

wb (x, y) + ws (x, y)

− z


wb,x (x, y)

wb,y (x, y)

0


= u1 (x, y) + z u2 (x, y)

(1)

where u, v are the in-plane displacements along
x and y directions, respectively; wb and ws are

transverse bending and shear displacements, re-
spectively. According to the displacement fields
in Eq. (1), the linear strain tensor is formulated
by

ε =

{
εb

γ

}
=

{
εb1 + zεb2

εs

}
(2)

where

εb =

 εx
εy
γxy

 ; εb1 =

 u,x
v,y

u,y + v,x

 ; εb2 = −


wb,xx
wb,yy
2wb,xy

 ;

(3)

γ =

{
γxz
γyz

}
; ”s =

{
ws,x

ws,y

}

In this study, the electric and magnetic poten-
tials are chosen to satisfy Maxwell’s equation
and given [30]

Φ (x, y, z) = g (z)φ (x, y) +
2z

h
φ0; (4)

Ψ(x, y, z) = g (z)ψ (x, y) +
2z

h
ψ0

where Φ and Ψ are the electric and magnetic
potentials, respectively; ϕ0 and ψ0 are initial
electric voltage and magnetic potential, respec-
tively; g(z) = −cos(πz/h). The electric (E) and
magnetic (H) fields according to Eq. (4) can be
formulated by

E =

ExEy
Ez

 = −

Φ,x
Φ,y
Φ,z

 = −

 g (z)φ,x
g (z)φ,y

g′ (z)φ+ 2φ0/h

 ;

(5)

H =

Hx

Hy

Hz

 = −

Ψ,x
Ψ,y
Ψ,z

 = −

 g (z)ψ,x
g (z)ψ,y

g′ (z)ψ + 2ψ0/h


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2.3. Constitutive equations

For the analysis of the MEE plate, the couple
constitutive equations are presented by
σx
σy
τxy
τxz
τyz

 =


c̃11 c̃12 0 0 0
c̃12 c̃22 0 0 0
0 0 c̃66 0 0
0 0 0 c̃44 0
0 0 0 0 c̃55



εx
εy
γxy
γxz
γyz

− ...


0 0 ẽ31
0 0 ẽ31
0 0 0
ẽ15 0 0
0 ẽ15 0


ExEy
Ez

−


0 0 q̃31
0 0 q̃31
0 0 0
q̃15 0 0
0 q̃15 0


Hx

Hy

Hz

 ;

Dx

Dy

Dz

 =

 0 0 0 ẽ15 0
0 0 0 0 ẽ15
ẽ31 ẽ31 0 0 0



εx
εy
γxy
γxz
γyz

+ ...

k̃11 0 0

0 k̃22 0

0 0 k̃33

ExEy
Ez

+

d̃11 0 0

0 d̃22 0

0 0 d̃33

Hx

Hy

Hz

 ;

(6)BxBy
Bz

 =

 0 0 0 q̃15 0
0 0 0 0 q̃15
q̃31 q̃31 0 0 0



εx
εy
γxy
γxz
γyz

+ ...

d̃11 0 0

0 d̃22 0

0 0 d̃33

ExEy
Ez

+

m̃11 0 0
0 m̃22 0
0 0 m̃33

Hx

Hy

Hz


in which σx, σy, τxy, τxz, τyz are the stress com-
ponents; Dx, Dy, Dz are the electric displace-
ments and Bx, By, Bz are the magnetic induc-
tions; c̃ij are symbol of the reduced elastic co-
efficients; ẽij are the reduced piezo-electric con-
stants; q̃ij are the magnetostrictive constants;
k̃ij are the dielectric coefficients; d̃ij and m̃ij are
the electro-magnetic coupling coefficients and
magnetic permittivity coefficients, respectively.
The reduced material properties used in Eq. (6)
are defined as follows

c̃11 = c11 −
c213
c33

; c̃12 = c12 −
c213
c33

; c̃66 = c66; c̃55 = c55;

c̃44 = c44; ẽ31 = e31 −
e33c13
c33

; ẽ15 = e15; q̃31 = q31 −
q33c13
c33

;

q̃15 = q15; k̃33 = k33 +
e233
c33

; k̃11 = k11; d̃33 = d33 +
q33e33
c33

;

d̃11 = d11; m̃33 = m̃33 +
q233
c33

; m̃11 = m11

(7)

For numerical computations, the Eq. (6) can be
rewritten by a matrix form as follows{
œb

œs

}
=

[
Cb
uu 0
0 Cs

uu

]{
”b

γ

}
−

[
Cb
uφ 0
0 Cs

uφ

]{
Eb

Es

}
− ...

[
Cb
uψ 0

0 Cs
uψ

]{
Hb

Hs

}
;

{
Db

Ds

}
=

[
CbTuφ 0
0 Csuφ

]{
εb

γ

}
+

[
Cbφφ 0
0 Csφφ

]{
b

s

}
+ ...[

Cbφψ 0

0 Csφψ

]{
Hb

Hs

}
;

(8){
Bb

Bs

}
=

[
CbTuψ 0

0 Csuψ

]{
εb

γ

}
+

[
Cbφψ 0

0 Csφψ

]{
b

s

}
+ ...[

Cbψψ 0

0 Csψψ

]{
Hb

Hs

}
where

œb =

σx
σy
τxy

 ; œb =

{
τxz
τyz

}
;Db =

 0
0
Dz

 ; Db =

{
Dx

Dy

}
;

Bb =

 0
0
Bz

 ; Bb =

{
Bx
By

}
;Eb =

 0
0
Ez

 ;Es =

{
Ex
Ey

}
;

(9)

Hb =

 0
0
Hz

 ;Hs =

{
Hx

Hy

}
;

in which

Cb
uu =

c̃11 c̃12 0
c̃12 c̃22 0
0 0 c̃66

 ;Cb
uφ =

0 0 ẽ31
0 0 ẽ31
0 0 0

 ;

Cb
uψ =

0 0 q̃31
0 0 q̃31
0 0 0

 ;Cs
uu =

[
c̃44 0
0 c̃55

]
;

Cs
uφ =

[
ẽ15 0
0 ẽ15

]
; Cs

uψ =

[
q̃15 0
0 q̃15

]
;

Cb
φφ =

0 0 0
0 0 0

0 0 k̃33

 ; Cb
φψ =

0 0 0
0 0 0

0 0 d̃33

 ;

(10)

Cb
ψψ =

0 0 0
0 0 0
0 0 m̃33

 ;Cs
φφ =

[
k̃11 0

0 k̃22

]
;

Cs
φψ =

[
d̃11 0

0 d̃22

]
;Cs

ψψ =

[
m̃11 0
0 m̃22

]
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2.4. Variational equation of
equilibrium

According to Hamilton’s principle, governing
equations of the MEE plate are presented by

t∫
0

(δΠ+ δK − δW ) dt = 0 (11)

where δΠ, δK and δW are the virtual strain
energy, virtual kinetic energy and virtual work
done by external electric voltage and magnetic
potential, respectively. The virtual strain energy
of the MEE plate is defined by

δΠ =

∫
V

δ(”b)Tœb + δγTœs − δ
(
Eb

)T
Db − ...

δ(Es)
T
Ds − δ

(
Hb

)T
Bb − δ(Hs)

T
Bs

dV
(12)

Substituting Eq. (8) into Eq. (12), the virtual
strain energy is reformed by following

δΠ =

∫
Ω

δ
(
”̄b

)T [
D̄b
uu”̄

b − D̄b
uφĒ

b − D̄b
uψH̄

b
]
dΩ+ ...∫

Ω

δ(”s)
T [
D̄s
uu”

s − D̄s
uφĒ

s − D̄s
uψH̄

s
]
dΩ− ...∫

Ω

δ
(
Ēb

)T [(
D̄b
uφ

)T
”̄b + D̄b

φφĒ
b + D̄b

φψH̄
b
]
dΩ−...∫

Ω

δ
(
Ēs

)T [(
D̄s
uφ

)T
”s + D̄s

φφĒ
s + D̄s

φψH̄
s
]
dΩ− ...∫

Ω

δ
(
H̄b

)T [(
D̄b
uψ

)T
”̄b +

(
D̄b
φψ

)T
Ēb + D̄b

ψψH̄
b
]
dΩ− ...∫

Ω

δ
(
H̄s

)T [(
D̄s
uψ

)T
”s +

(
D̄s
φψ

)T
Ēs + D̄s

ψψH̄
s
]
dΩ

(13)
where

”̄b =
{
εb1 εb2

}T
; Ēb =

{
0 0 φ

}T
; Ēs =

{
φ,x φ,y

}T
;

H̄b =
{
0 0 ψ

}T
; H̄s =

{
ψ,x ψ,y

}T
;

(14)

D̄b
uu =

[
Ab Bb

Bb Db

]
;
(
Ab, Bb, Db

)
=

∫ h/2

−h/2

(
1, z, z2

)
Cb
uudz ;

D̄s
uu =

∫ h/2

−h/2
Cs
uudz ;D̄b

uφ =
{
Ĉb1
uφ Ĉb2

uφ

}
;

(
Ĉb1
uφ, Ĉ

b2
uφ

)
=

∫ h/2

−h/2
Cb
uφ (1, z) g

′(z)dz; D̄s
uφ =

∫ h/2

−h/2
Cs
uφg(z)dz;

D̄b
uψ =

{
Ĉb1
uψ Ĉb2

uψ

}
;
(
Ĉb1
uψ, Ĉ

b2
uψ

)
=

∫ h/2

−h/2
Cb
uψ (1, z) g′(z)dz;

D̄s
uψ =

∫ h/2

−h/2
Cs
uψg(z)dz;

D̄b
φφ =

∫ h/2

−h/2
Cb
φφg

′2(z)dz; D̄s
φφ =

∫ h/2

−h/2
Cs
φφg

2(z)dz;

D̄b
φψ =

∫ h/2

−h/2
Cb
φψg

′2(z)dz; D̄s
φψ =

∫ h/2

−h/2
Cs
φψg

2(z)dz;

D̄b
ψψ =

∫ h/2

−h/2
Cb
ψψg

′2(z)dz; D̄s
ψψ =

∫ h/2

−h/2
Cs
ψψg

2(z)dz

The virtual kinetic energy is formulated by

δK =

∫
Ω

δūTm¨̄udΩ (15)

where

ū =

{
u1

u2

}
; m =

[
Im 0
0 Im

]
; Im =

[
I1 I2
I2 I3

]
;

(16)

(I1, I2, I3) =

∫ h/2

−h/2
ρ (z)

(
1, z, z2

)
dz

The plate subjected to the pre-buckling forces
including the external electric voltage and mag-
netic potential, the virtual work is given by
[30, 31]

δW = h

∫
Ω

δ(Bg)
T
N0B

gdΩ (17)

where

Bg =

{
w0,x

w0,y

}
;N0 =

[
N0
x 0
0 N0

y

]
; (18)

N0
x = Ne

x +Nm
x ;N0

y = Ne
y +Nm

y ;

Ne
x = Ne

y = −2ẽ31φ0;N
m
x = Nm

y = −2q̃31ψ0

Inserting Eqs. (15), (13), and (17) into Eq. (11),
the weak form of the MEE plates is reformed as
follows

δΠ =

∫
Ω

δ
(
”̄b

)T [
D̄b
uu”̄

b − D̄b
uφĒ

b − D̄b
uψH̄

b
]
dΩ+ ...∫

Ω

δ(”s)
T [
D̄s
uu”

s − D̄s
uφĒ

s − D̄s
uψH̄

s
]
dΩ− ...∫

Ω

δ
(
Ēb

)T [(
D̄b
uφ

)T
”̄b + D̄b

φφĒ
b + D̄b

φψH̄
b
]
dΩ−...∫

Ω

δ
(
Ēs

)T [(
D̄s
uφ

)T
”s + D̄s

φφĒ
s + D̄s

φψH̄
s
]
dΩ− ...∫

Ω

δ
(
H̄b

)T [(
D̄b
uψ

)T
”̄b +

(
D̄b
φψ

)T
Ēb + D̄b

ψψH̄
b
]
dΩ− ...∫

Ω

δ
(
H̄s

)T [(
D̄s
uψ

)T
”s +

(
D̄s
φψ

)T
Ēs + D̄s

ψψH̄
s
]
dΩ− ...

h

∫
Ω

δ(Bg)
T
N0B

gdΩ+

∫
Ω

δūTm¨̄udΩ = 0

(19)
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2.5. A moving Kriging
formulation of the MEE
plate

Based on the moving Kriging interpolation
shape function [21], the displacement fields in
Eq. (1) can be interpolated by

uh (x) =

N∑
I=1

NI (x, y) I6×6dI (20)

where N is the total number of nodes in the
problem domain; NI is the moving Kriging in-
terpolation shape function; is a unique matrix
and is the degree of freedom (DOFs) at a node.
Bending and shear components are rewritten by
inserting Eq. (20) into Eq. (2) by

εb =
{
εb1 εb2

}T
=

N∑
I=1

{
Bb1I Bb2I

}T
dI =

N∑
I=1

B̄bIdI

(21)

εs =

N∑
I=1

B̄sIdI

where

Bb1I =

NI,x 0 0 0 0 0
0 NI,y 0 0 0 0

NI,y NI,x 0 0 0 0



Bb2I = −

0 0 NI,xx 0 0 0
0 0 NI,yy 0 0 0
0 0 2NI,xy 0 0 0

 (22)

B̄sI =

[
0 0 0 NI,x 0 0
0 0 0 NI,y 0 0

]
Substituting Eq. (20) into Eq. (5), electric and
magnetic fields are presented by

Eb =

N∑
I=1

B̄b
φIdI ; Es =

N∑
I=1

B̄s
φIdI (23)

Hb =

N∑
I=1

B̄b
ψIdI ; Hs =

N∑
I=1

B̄s
ψIdI

where

B̄b
φI =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −NI 0



B̄b
ψI =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −NI

 (24)

B̄s
φI =

[
0 0 0 0 −NI,x 0
0 0 0 0 −NI,y 0

]
B̄s
ψI =

[
0 0 0 0 0 −NI,x
0 0 0 0 0 −NI,y

]
Similarly, by substituting Eq. (20) into Eq. (1),
displacement fields are expressed by

ū =
{
u1 u2

}T
=

N∑
I=1

{
M1
I M2

I

}T
dI =

N∑
I=1

M̄IdI

(25)
where

M1
I =

NI 0 0 0 0 0
0 NI 0 0 0 0
0 0 NI NI 0 0

 (26)

M2
I = −

0 0 NI 0 0 0
0 0 NI 0 0 0
0 0 0 0 0 0


The matrix is described by replacing Eq. (20)
with Eq. (17) as follows

Bg =

N∑
I=1

B̄g
IdI (27)

where

B̄g
I =

[
0 0 NI,x NI,x 0 0
0 0 NI,y NI,y 0 0

]
(28)

Finally, the governing equations for the MEE
plates are formulated by inserting the corre-
sponding components into Eq. (19) as(

(K −Kg)− ω2M
)
d̄ = 0 (29)

where K, M and Kg are the global stiffness ma-
trix, mass matrix, and geometry matrix, respec-
tively, and

K =

∫
Ω

(
B̄b

)T
D̄b
uuB̄

bdΩ−
∫
Ω

(
B̄b

)T
D̄b
ueB̄

b
φdΩ− ...

∫
Ω

(
B̄b

)T
D̄b
umB̄b

ψdΩ+

∫
Ω

(
B̄s

)T
Ds
uuB̄

sdΩ− ...∫
Ω

(
B̄s

)T
D̄s
ueB̄

s
φdΩ−

∫
Ω

(
B̄s

)T
D̄s
umB̄s

ψdΩ− ...

36 © 2023 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 7 | ISSUE: 1 | 2023 | March

∫
Ω

(
B̄b
φ

)T
D̄b
euB̄

bdΩ−
∫
Ω

(
B̄b
φ

)T
D̄b
eeB̄

b
φdΩ− ...∫

Ω

(
B̄b
φ

)T
D̄b
emB̄b

ψdΩ−
∫
Ω

(
B̄s
φ

)T
D̄s
euB̄

sdΩ− ...

(30)∫
Ω

(
B̄s
φ

)T
D̄s
eeB̄

s
φdΩ−

∫
Ω

(
B̄s
φ

)T
D̄s
emB̄s

ψdΩ−...∫
Ω

(
B̄b
ψ

)T
D̄b
muB̄

bdΩ−
∫
Ω

(
B̄b
ψ

)T
D̄b
meB̄

b
φdΩ− ...∫

Ω

(
B̄b
ψ

)T
D̄b
mmB̄b

ψdΩ−
∫
Ω

(
B̄s
ψ

)T
D̄s
muB̄

sdΩ− ...∫
Ω

(
B̄s
ψ

)T
D̄s
meB̄

s
φdΩ−

∫
Ω

(
B̄s
ψ

)T
D̄s
mmB̄s

ψdΩ

M =

∫
Ω

M̄TmM̄dΩ;Kg =

∫
Ω

(
B̄g

)T
N0B̄

gdΩ

in which ω is the natural frequency and d̄ is the
modes shape.

3. Numerical Results

In this section, obtained results from the present
solution are verified through a numerical exam-
ple by comparison to published results in the
literature. Let us consider a simply supported
homogeneous MEE square plate. In this study,
the initial electric voltage and magnetic poten-
tial are taken by and, respectively. The natural
frequency is computed by Table 2 tabulates the
four first dimensionless frequencies of the sim-
ply supported homogeneous MEE square plate.
Obtained results are compared to those reported
by Ke et al. [30] using the Kirchhoff plate the-
ory (3DOFs), Sobhy and Mukahal [32] using re-
fined HSDT (4 DOFs), Gholami et al. [33] using
HSDT (5 DOFs) and Abazid [34] using refined
FSDT (4 DOFs). It is noted that a good agree-
ment between the current and compared results
is shown. In addition, it can be seen that ob-
tained results are similar to the results in [34]
due to using the same refined FSDT. From these
results, it is important that the present solution
is accurate and efficient to analyze MEE plates.

Next, the first five non-dimensional natural
frequencies of simply supported homogeneous
MEE squares with different length-to-thickness
ratios are listed in Table 3. It can be seen that

Tab. 2: The first four dimensionless natural frequencies
ω̄ of a simply supported MEE square plates
(a/h=15).

Refs ω̄
1 2 3 4

Ref [32] 0.3830 0.9330 0.9330 1.4571
Ref [33] 0.3682 0.9136 0.9136 -
Ref [34] 0.3829 0.9329 0.9329 1.4568
Ref [30] 0.3698 0.9247 0.9247 1.4800
Present 0.3843 0.9404 0.9413 1.4757

natural frequencies reduce when increasing the
length-to-thickness ratio.

Tab. 3: The first five non-dimensional natural fre-
quency ω̄ = ωa

√
ρ/c̄11e of simply supported

homogeneous MEE square plates.

a/h ω̄
1 2 3 4 5

5 1.0345 1.7911 1.7917 2.2646 2.2661
10 0.5656 1.3504 1.3516 1.7917 2.0756
20 0.2902 0.7170 0.7177 1.1352 1.4084
50 0.1170 0.2922 0.2925 0.4677 0.5843
100 0.0586 0.1465 0.1467 0.2349 0.2938

Finally, a simply supported MEE-FG square
plate with a heart cutout is examined, as shown
in Figure 2. Again, as observed, a rise in the
length-to-thickness ratio leads to a decline in
the natural frequencies of MEE square plates.
Moreover, results from MEE square plates with
a heart cutout are slightly larger than the ones
from MEE square plates. Figure 3 plots the first
six modes of shape of the MEE square plates
with a heart cutout.

Tab. 4: The first five non-dimensional natural fre-
quency ω̄ = ωL

√
ρ/c̄11e of simply supported

MEE square plates with a heart cutout.

a/h ω̄
1 2 3 4 5

10 0.6582 1.0199 1.0942 1.2227 1.7833
20 0.3385 0.5729 0.6422 1.0199 1.0324
50 0.1365 0.2325 0.2608 0.4240 0.4647
100 0.0684 0.1165 0.1307 0.2128 0.2334
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(a) Geometry.

(b) Node distribution.

Fig. 2: The geometry and node distribution of a square
plate with a heart cutout.

4. Conclusion

A weak formulation based on the refined FSDT
for free vibration analysis of MEE plates was
represented in this study by using the princi-
ple of extended virtual displacement. Governing
equations were also solved by using the mov-
ing Kriging mesh-free method to determine the
natural frequency of MEE plates. The refined
FSDT reduces one variable when compared to
the classical FSDT. To satisfy the Maxwell equa-
tions, the magnetic and electric potentials are
considered by a combination of cosine and lin-
ear functions via the plate thickness. Obtained
results were compared to the published ones. In
this study, it was indicated that the natural fre-
quencies of MEE square plates decrease when
increasing the length-to-thickness ratio and are
slightly smaller than the ones of MEE square
plates with a heart cutout.

(a) Mode 1.

(b) Mode 2.

(c) Mode 3.

(d) Mode 4.

(e) Mode 5.

(f) Mode 6.

Fig. 3: The first six modes shape of the MEE square
plates with a heart cutout.
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