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Abstract. This study combines the isogeomet-
ric approach (IGA) and refined plate theory
(RPT) with two variables to investigate the
buckling behavior of magneto-electro-elastic
(MEE) foam plates resting on an elastic foun-
dation. The pores in the MEE foam plates
are arranged in three patterns: uniform, sym-
metric, and asymmetric distributions across
the plate thickness. The elastic foundation
supported by Winkler and Pasternak is utilized
to approach the computational model. The
governing equations are derived by using RPT
and Hamilton’s principle. The Non-Uniform
Rational B-Splines (NURBS) basic functions in
the IGA method are used to approximate the
displacement fields and magnetic and electric
potentials. The critical buckling load of the
MEE foam plates is determined by solving
the above governing equations with the help of
the IGA. The study investigates and discusses
the influence of various parameters such as
porosity distributions, porous coefficient, ex-
ternal electric voltage and magnetic potential,
spring/shear coefficients of the elastic founda-
tion, and the geometry of the MEE foam plates
on the critical buckling load. The results show
that these parameters significantly influence
the buckling behavior of the MEE foam plates.
This study provides valuable insights into the
buckling behavior of magneto-electro-elastic

foam plates and can inform the design of novel
materials and structures with tailored properties.
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1. Introduction

A magneto-electro-elastic material is a type of
material that has both magnetic and electro-
elastic behavior. This material can be used in
various applications, including vibration damp-
ing, sensing, and energy harvesting. It is unique
because it combines magnetic and electric fields
with mechanical deformation to produce a com-
posite behavior tailored to specific needs. The
mechanical, electrical, and magnetic properties
of the material can be controlled and optimized
through the design and fabrication process,
making it a promising candidate for a wide range
of technological applications. Therefore, numer-
ous investigations have been into the mechanical
behaviors of the MEE structures in recent years.
Ramirez et al. [1] studied the free vibration of
the laminated plates with homogeneous elastic,
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piezoelectric and piezomagnetic layers. Employ-
ing the semi-analytical finite element method,
Xin et al. [2, 3] presented the free vibration
analysis of the fixed supported and simply sup-
ported multilayer MEE plates. Li and Zhang [4]
used the Mindlin theory and analytical method
to investigate the free vibration of the MEE
plate resting on an elastic foundation. Besides,
according to the third-order beam theory and
nonlocal elasticity theory, the analytical thermal
buckling of the magneto-electro-thermo-elastic
(METE) functionally graded (FG) nanobeams
was examined by Ebrahimi et al. [5]. Liu [6] pre-
sented the bending of the laminated plates with
MEE layers using the Kirchhoff plate theory
(KPT) and the analytical method. The KPT
and modified strain gradient theory are used
by Jamalpoor et al. [7] to investigate the an-
alytical size-dependent buckling and free vibra-
tion of the MEE microplate resting on a visco-
Pasternak foundation considering the external
electric and magnetic loads. Moreover, Ansari
and Gholami [8] studied the buckling and post-
buckling analyses of the METE nanoplates un-
der external mechanical, magnetic, electric and
thermal loads employing the nonlocal elastic-
ity theory and nonlinear first-order plate theory.
Shooshtari et al. [9] found the analytical nat-
ural frequency of the rectangular MEE plates
resting on an elastic foundation based on the
higher-order shear deformation theory (HSDT).
According to the HSDT and analytical method,
Razavi [10] presented the mechanical buckling
of the MEE plates with axial and biaxial com-
pressive loads. The analytical buckling of the
MEE nanoplates according to the nonlocal elas-
tic theory and the HSDT was investigated by
Park et al. [11]. Malikan et al. [12] used
the simple FSDT combined with nonlocal strain
gradient theory to present the forced vibration
of the MEE nanoplates based on the analyti-
cal method. The nonlinear bending of the MEE
plates with linear variable thickness was stud-
ied by Wang et al. [13] based on von Karman
plate theory. Yang et al. [14] investigated the
influence of the surface effect on the analyti-
cal free vibration and bending of the circular
MEE nanoplates under the external electric volt-
age and magnetic potential employing the KPT.
Based on the nonlocal elasticity theory, Arefi et
al. [15] present the bending and buckling of the

three-layered doubly curved nanoshells with ho-
mogeneous core and MEE face sheets according
to the analytical method. Based on the third-
order shear deformation theory, Hong et al. [16]
studied the analytical vibration of FG cylindri-
cal shell in a thermal environment. Solby et al.
[17], employing the refined shear deformation
theory, studied the free vibration of the MEE
FG plate reinforced by the graphene platelets
resting on an elastic substrate.

As we see in the above literature review, the
MEE structure was studied by using the an-
alytical method, which is suitable for a sim-
ple problem with a simple boundary. The nu-
merical method, such as finite element method
(FEM), meshfree, IGA, etc., are the best choice
for the problem with complex boundaries. In
addition, Kiran and Kattimani [18, 19] used
FSDT and the finite element method (FEM)
to find the critical buckling load of the multi-
layered rectangular and skew plates with piezo-
electric and piezomagnetic layers. The IGA can
efficiently fulfill the higher-order derivatives of
the refined plate theory due to its foundation in
Non-uniform rational B-splines (NURBS) basic
functions, which provide versatility in achieving
any preferred level of continuity within the basis
functions. The IGA and its computational ex-
pense is first proposed by Hughes [20]. Bazilevs
et al. [21] analyzed the wind turbines and tur-
bomachinery using IGA. Furthermore, accord-
ing to IGA, microplate size-dependent free vi-
bration, bending, and buckling can be exam-
ined in references [22, 23, 24]. The free vibra-
tion and static analyses of the FGM plate and
the buckling of the Mindlin–Reissner plates were
introduced in [25, 26] employing the extended
IGA. Tajikawa et al. [27] investigated compu-
tational cardiovascular medicine based on the
IGA. Based on the isogeometric mesh-free collo-
cation method, the free vibration, static bending
and mechanical buckling of the laminated com-
posite plates were investigated by Huang et al.
[28]. Zhang et al. [29] proposed the nonlocal
operator method for solving complex multifield
problems. Besides, Zhou et al. [30] provided an
optimal solution to address the problem of re-
ducing the degree of C-Bézier surfaces with pre-
scribed constraints in the L2 norm. According
to the isogeometric-reproducing kernel particle
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method, Kiran et al. [31] presented the buckling
of the orthotropic three-dimensional plates and
shells containing cracks.

As far as the authors know that there has
not been a study that uses IGA and RPT
with two variables to examine the buckling of
the MEE foam plate resting on the Winkler-
Pasternak foundation. This article fills that re-
search gap by using RPT with two variables
and IGA to perform the mechanical buckling
of the MEE foam plates resting on a Winkler-
Pasternak foundation. The impact of the porous
distribution types, porosity coefficient, external
electric and magnetic loads, shear and spring co-
efficients of the elastic foundation and geometric
parameters on the MEE foam plates is analyzed
and discussed.

2. The Basic Equations

2.1. The MEE foam plates

As we see in Figure 1, the MEE foam plate with
porosities is arranged in uniform, symmetric,
and asymmetric distributions across the plate
thickness, respectively. The effective material
properties of the MEE foam plate are presented
as follows [32]

Uniform:
Peff = P1 (1− e0ξ)
ρeff = ρ1 (1− emξ)

ξ = 1
e0

− 1
e0

(
2
π

√
1− e0 − 2

π + 1
)2

Symmetric:
Peff = P1

(
1− e0cos

(πz
h

))
ρeff = ρ1

(
1− emcos

(πz
h

)) (1)

Asymmetric:
Peff = P1

(
1− e0cos

(πz
2h

+
π

4

))
ρeff = ρ1

(
1− emcos

(πz
2h

+
π

4

))
where

e0 = 1− E2

E1
= 1− G2

G1
, 0 < e0 < 1

em = 1− ρ2
ρ1

; 0 < em < 1
(2)

in which P and ρ are the material properties and
density of the MEE foam plates, respectively; e0
is the porous coefficient, em is the porosity coef-
ficient of density; E and G are the moduli of elas-
ticity and shear modulus, respectively. Indexes
“1” and “2” indicate the maximum and minimum
values of the material properties, respectively.

2.2. The refined plate theory
with two variables

The vector of displacement fields at any point in
the MEE foam plate is represented by using the
RPT [33] as follows

u =

uv
w

 = u1 + zu2 + f (z) u3 = ...

 0
0

wb + ws

+ z

−wb,x
−wb,y

0

+ f (z)

ws,xws,y
0


(3)

in which wb and ws represent the bending and
shear transverse displacements along the z-axis,
respectively; symbol “,” describes the differential
operator; f(z) represents the distribution func-
tion, which is specified as

f (z) = − 4z3

3h2
(4)

Based on Eq. (3), the linear strain tensor com-
ponents are defined by

εx = −zwb,xx + f (z)ws,xx

εy = −zwb,yy + f (z)ws,yy

γxy = −2zwb,xy + 2f (z)ws,xy

γxz = (1 + f ′ (z))ws,x

γyz = (1 + f ′ (z))ws,y

(5)

Eq. (5) is rewritten in matrix form as follows

ε =

{
εb

εs

}
=

{
zεb1 + f (z) εb2

(1 + f ′ (z))γs

}
(6)

where

εb =

 εx
εy
γxy

 ; εb1 = −

 wb,xx
wb,yy
2wb,xy

 ; εb2 =

 ws,xx
ws,yy
2ws,xy

 ;

εs =

{
γxz
γyz

}
; γs =

{
ws,x
ws,y

}
(7)
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Fig. 1: The geometry of the MEE foam plates resting on an elastic foundation.

In accordance with Maxwell’s equation, as out-
lined in [34], the electric and magnetic potentials
can be taken by the following forms


Φ (x, y, z) = g (z)φ (x, y) +

2z

h
V0;

Ψ (x, y, z) = g (z)ψ (x, y) +
2z

h
Ω0

(8)

where g (z) = − cos (πz/h); Φ and Ψ are the
electric and magnetic potentials, respectively;
V0 and Ω0 are the initial external electric volt-
age and magnetic potential, respectively.

The electric and magnetic fields are obtained
from the electric and magnetic potentials ac-
cording to Eq. (8) as follows

E =


Ex

Ey

Ez

 = −

Φ,x
Φ,y
Φ,z

 = −


g (z)φ,x
g (z)φ,x

g′ (z)φ+ 2V0

h

 ;

H =


Hx

Hy

Hz

 = −

Ψ,x
Ψ,y
Ψ,z

 = −


g (z)ψ,x
g (z)ψ,x

g′ (z)ψ + 2Ω0

h


(9)

in which Ex, Ey, Ez are the electric field’s com-
ponents and Hx, Hy, Hz are the magnetic field’s
components.

2.3. Constitutive equations

The constitutive relations of the MEE foam
plate are formulated as follows [7]
σx
σy
τxy
τxz
τyz

 =


c̄11 c̄12 0 0 0
c̄12 c̄22 0 0 0
0 0 c̄66 0 0
0 0 0 c̄44 0
0 0 0 0 c̄55



εx
εy
γxy
γxz
γyz

− ...


0 0 ē31
0 0 ē31
0 0 0
ē15 0 0
0 ē15 0


ExEy
Ez

−


0 0 q̄31
0 0 q̄31
0 0 0
q̄15 0 0
0 q̄15 0


Hx

Hy

Hz

 ;

Dx

Dy

Dz

 =

 0 0 0 ē15 0
0 0 0 0 ē15
ē31 ē31 0 0 0



εx
εy
γxy
γxz
γyz

+ ...

k̄11 0 0
0 k̄22 0
0 0 k̄33

ExEy
Ez

+

d̄11 0 0
0 d̄22 0
0 0 d̄33

Hx

Hy

Hz

 ;

(10)BxBy
Bz

 =

 0 0 0 q̄15 0
0 0 0 0 q̄15
q̄31 q̄31 0 0 0



εx
εy
γxy
γxz
γyz

+ ...

d̄11 0 0
0 d̄22 0
0 0 d̄33

ExEy
Ez

+

µ̄11 0 0
0 µ̄22 0
0 0 µ̄33

Hx

Hy

Hz
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where σx, σy, τxy, τxz and τyz are the stress ten-
sor’s components; Dx, Dy, Dz and Hx, Hy, Hz

are electric and magnetic displacements, respec-
tively; c̄ij is the reduced elastic stiffness’s com-
ponents; ēij , q̄ij and k̄ij are the reduced piezo-
electric, piezo-magnetic and dielectric permittiv-
ity, respectively; d̄ij and µ̄ij are reduced electro-
magnetic and magnetic permittivity coefficients,
respectively. The reduced material properties in
Eq. (10) are formulated as follows

c̄11 = c11 −
c213
c33

; c̄12 = c12 −
c213
c33

;

c̄66 = c66; c̄55 = c55; c̄44 = c44;

ē31 = e31 −
e33c13
c33

; ē15 = e15;

q̄31 = q31 −
q33c13
c33

; q̄15 = q15;

k̄33 = k33 +
e233
c33

; k̄11 = k11;

d̄33 = d33 +
q33e33
c33

; d̄11 = d11;

µ̄33 = µ33 +
q233
c33

; µ̄11 = µ11

(11)

where the coefficients cij , eij , qij , kij , dij , µij
are calculated from Eq. (1). In matrix form,
the constitutive equations (10) are reformed by



σb = Cuubεb −CuebEb −CumbHb;

σs = Cuusεs −CuesEs −CumsHs;

Db = CT
uebεb +CeebEb +CembHb;

Ds = CT
uesεs +CeesEs +CemsHs;

Bb = CT
umbεb +CembEb +CmmbHb;

Bs = CT
umsεs +CemsEs +CmmsHs

(12)

where

σb =
{
σx σy τxy

}T
; σs =

{
τxz τyz

}T
;

Db =
{
0 0 Dz

}T
; Ds =

{
Dx Dy

}T
;

Bb =
{
0 0 Bz

}T
; Bs =

{
Bx By

}T
;

Eb =
{
0 0 Ez

}T
;Es =

{
Ex Ey

}T
;

Hb =
{
0 0 Hz

}T
;Hs =

{
Hx Hy

}T
(13)

and

Cuub =

c̄11 c̄12 0
c̄12 c̄22 0
0 0 c̄66

 ; Cueb =

0 0 ē31
0 0 ē31
0 0 0

 ;

Cumb =

0 0 q̄31
0 0 q̄31
0 0 0

 ; Ceeb =

0 0 0
0 0 0
0 0 k̄33

 ;

Cmmb =

0 0 0
0 0 0
0 0 µ̄33

 ; Cemb =

0 0 0
0 0 0
0 0 d̄33

 ;

Cuus =

[
c̄44 0
0 c̄55

]
; Cues =

[
ē15 0
0 ē15

]
;

Cums =

[
q̄15 0
0 q̄15

]
; Cees =

[
k̄11 0
0 k̄11

]
;

Cmms =

[
µ̄11 0
0 µ̄22

]
; Cems =

[
d̄11 0
0 d̄22

]
(14)

2.4. Variational principle

Based on Hamilton’s principle, the governing
equation for the mechanical buckling of an MEE
foam plate resting on an elastic foundation can
be expressed as

t∫
0

(δΠ− δVem − δVf − δVm) dt = 0 (15)

where δΠ represents the virtual strain energy,
δVem is the virtual work done by the external
electric voltage and magnetic potential, δVf is
the virtual work done by an elastic foundation,
δVm is the virtual work done by the external
compressive loads.

The virtual strain energy of the MEE foam
plate is expressed as

δΠ =

∫
V

(
δεTb σb + δεTs σs − δETb Db − ...

δETsDs − δHT
b Bb − δHT

s Bs

)
dV

(16)
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The virtual work performed by the initial exter-
nal electric and magnetic loads is formulated by

δVem =

∫
Ω

δNT
wNemNwdΩ;

Nem = −
[
2ē31V0 + 2q̄31Ω0 0

0 2ē31V0 + 2q̄31Ω0

]
;

Nw =

{
wb,x + ws,x
wb,y + ws,y

}
(17)

The virtual work performed by the Winkler-
Pasternak foundation is expressed as

δVf =

∫
Ω

δNT
w

(
kwNw − ks∇2Nw

)
dΩ (18)

where ∇ = ∂
∂x +

∂
∂y is the gradient operator; kw

and ks are spring and shear coefficients of the
Winkler-Pasternak foundation, respectively.

In addition, the virtual work done by the ex-
ternal compressive loads can be expressed by

δVm =

∫
Ω

δNT
wNmNwdΩ; Nm =

[
Nx 0
0 Ny

]
(19)

where Nx and Ny are the inplane external com-
pressive loads.

By substituting the appropriate expressions
into Eq. (15), the weak form of the governing

equation can be rewritten as following∫
Ω

δ
(
ε̄b
)T

D̄uubε̄
bdΩ−

∫
Ω

δ
(
ε̄b
)T

D̄uebĒ
bdΩ−...∫

Ω

δ
(
ε̄b
)T

D̄umbH̄
bdΩ+

∫
Ω

δ(γs)
T
D̄uusγ

sdΩ− ...∫
Ω

δ(γs)
T
D̄uesĒ

sdΩ−
∫
Ω

δ(γs)
T
D̄umsH̄

sdΩ− ...∫
Ω

δ
(
Ēb
)T

D̄T
uebε̄

bdΩ−
∫
Ω

δ
(
Ēb
)T

D̄eebĒ
bdΩ− ...∫

Ω

δ
(
Ēb
)T

D̄embH̄
bdΩ−

∫
Ω

δ
(
Ēs
)T

D̄T
uesγ

sdΩ− ...∫
Ω

δ
(
Ēs
)T

D̄eesĒ
sdΩ−

∫
Ω

δ
(
Ēs
)T

D̄emsH̄
sdΩ−...∫

Ω

δ
(
H̄b
)T

D̄T
umbε̄

bdΩ−
∫
Ω

δ
(
H̄b
)T

D̄embĒ
bdΩ− ...∫

Ω

δ
(
H̄b
)T

D̄mmbH̄
bdΩ−

∫
Ω

δ
(
H̄s
)T

D̄T
umsγ

sdΩ− ...∫
Ω

δ
(
H̄s
)T

D̄emsĒ
sdΩ−

∫
Ω

δ
(
H̄s
)T

D̄mmsH̄
sdΩ−...∫

Ω

δNT
wNemNwdΩ =

∫
Ω

δNT
wNmNwdΩ+ ...∫

Ω

δNT
w

(
kwNw − ks∇2Nw

)
dΩ

(20)
where

ε̄b =

{
εb1
εb2

}
; Ēb = −

{
0 0 φ

}T
; Ēs = −

{
φ,x φ,y

}T
;

H̄b = −
{
0 0 ψ

}T
; H̄s = −

{
ψ,x ψ,y

}T
;

D̄uub =

[
Ab Bb

Bb Db

]
; D̄uus =

∫ h/2

−h/2
(1 + f ′)

2
Cuusdz;

(Ab,Bb,Db) =

∫ h/2

−h/2

(
z2, zf, f2

)
Cuubdz;

D̄ueb =
{
C1
ueb C2

ueb

}
; D̄umb =

{
C1
umb C2

umb

}
;(

C1
ueb,C

2
ueb

)
=

∫ h/2

−h/2
Cueb (z, f) g

′dz;

(
C1
umb,C

2
umb

)
=

∫ h/2

−h/2
Cumb (z, f) g

′dz;

D̄ues =

∫ h/2

−h/2
Cues (1 + f ′) gdz;

D̄ums =

∫ h/2

−h/2
Cums (1 + f ′) gdz;

D̄emb =

∫ h/2

−h/2
Cembg

′2dz; D̄ems =

∫ h/2

−h/2
Cemsg

2dz;

D̄eeb =

∫ h/2

−h/2
Ceebg

′2dz; D̄ees =

∫ h/2

−h/2
Ceesg

2dz;

D̄mmb =

∫ h/2

−h/2
Cmmbg

′2dz; D̄mms =

∫ h/2

−h/2
Cmmsg

2dz

(21)
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2.5. The isogeometric
approximation

Employing the NURBS basic function [20], the
displacement, electric and magnetic vectors are
approximated as follows

u (x, y) =

m×n∑
I=1

NI (x, y)qI ;

φ (x, y) =

m×n∑
I=1

NφI (x, y)χI ;

ψ (x, y) =

m×n∑
I=1

NψI (x, y)χI

(22)

where

NI (x, y) =

[
NI (x, y) 0

0 NI (x, y)

]
;

NφI (x, y) =
{
NI (x, y) 0

}
;

NψI (x, y) =
{
0 NI (x, y)

}
;

qI = {wbI , wsI}T ;χI = {φI , ψI}T

(23)

where NI(x, y) is the NURBS basic function.

By substituting Eq. (22) into Eq. (21), the
strain, electric and magnetic fields can be re-
expressed as

ε̄b =
m×n∑
I=1

{
B̄b1I

B̄b2I

}
qI =

m×n∑
I=1

B̄b
IqI ;γ

s =
m×n∑
I=1

B̄s
IdI ;

Ēb =
m×n∑
I=1

B̄φbIχI ; Ē
s =

m×n∑
I=1

B̄φsIχI ;

H̄b =
m×n∑
I=1

B̄ψbIχI ; H̄
s =

m×n∑
I=1

B̄ψsIχI

(24)
in which

Bb
1I = −

NI,xx 0
NI,yy 0
2NI,xy 0

 ; Bb
2I =

0 NI,xx
0 NI,yy
0 2NI,xy

 ;

B̄s
I =

[
0 NI,x
0 NI,y

]
; B̄φbI =

 0 0
0 0

−NI 0

 ;

B̄ψbI =

0 0
0 0
0 −NI

 ; B̄φsI =

[
−NI,x 0
−NI,y 0

]
;

B̄ψsI =

[
0 −NI,x
0 −NI,y

]
(25)

Substituting Eq. (22) into Eq. (17), the vector
Nw is reformed as

Nw =

m×n∑
I=1

B̄wIqI ; B̄wI =

[
NI,x NI,x
NI,y NI,y

]
(26)

Substituting Eqs. (24) and (26) into Eq. (20),
the weak form for buckling analysis of the MEE
foam plate resting on a Winkler-Pasternak foun-
dation can be presented as following

(K− λcrKg)q = 0 (27)

where

K = Kuu −KuχK
−1
χχKKT

uχ; Kg =

∫
Ω

BT
wNmBwdΩ;

Kuu =

∫
Ω

(
B̄b
)T

D̄b
uuB̄

bdΩ+

∫
Ω

(
B̄s
)T

D̄s
uuB̄

sdΩ−...∫
Ω

BT
wNemBwdΩ−

∫
Ω

BT
w

(
kwBw − ks∇2Bw

)
dΩ

Kuχ = −
∫
Ω

(
B̄b
)T

D̄uebB̄
b
φdΩ−

∫
Ω

(
B̄s
)T

D̄uesB̄
s
φdΩ − ...∫

Ω

(
B̄b
)T

D̄umbB̄
b
ψdΩ−

∫
Ω

(
B̄s
)T

D̄umsB̄
s
ψdΩ;

Kχχ = −
∫
Ω

B̄T
φbD̄eebB̄

b
φdΩ−

∫
Ω

B̄T
φsD̄eesB̄

s
φdΩ− ...∫

Ω

B̄T
φbD̄embB̄

b
ψdΩ−

∫
Ω

B̄T
φsD̄emsB̄

s
ψdΩ − ...∫

Ω

B̄T
ψbD̄embB̄

b
φdΩ−

∫
Ω

B̄T
ψsD̄emsB̄

s
φdΩ − ...∫

Ω

B̄T
φbD̄mmbB̄

b
ψdΩ−

∫
Ω

B̄T
ψsD̄mmsB̄

s
ψdΩ

(28)
in which λcr is critical buckling load, Kg is ge-
ometrical stiffness matrix.

3. Numerical Results

In order to validate the accuracy and con-
sistency of the current method, we investi-
gate the MEE FG plates with the material
properties listed in Table 1 [35]. Table 2
presents the non-dimensional critical buckling
load N̄ = Ncra

2/c11th
3 of the fully simply sup-

ported (SSSS) MEE FG plates with even and
uneven porous distributions under biaxial com-
pressive load (Nx = Ny = 1) without an elastic
foundation. We can see in Table 2, the numeri-
cal results obtained from the presented method
are in good agreement with those provided by
Ebrahimi [35]. The results of the comparison in
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Table 2 demonstrate the precision and reliability
of the present method.

Next, we consider the uniaxial mechanical
buckling (Nx = 1, Ny = 0) of the rectangu-
lar MEE foam plate resting on the Winkler-
Pasternak foundation with the material proper-
ties taken in Table 3. In addition, the nondi-
mensional spring and shear coefficients of the
Winkler-Pasternak foundation are normalized as
follows

Kw =
kwc11h

3

a4
; Ks =

ksc11h
3

a2
(29)

In addition, the boundary conditions (BCs) en-
compass a combination of clamped (C), simply
supported (S), and free (F) edges. The dimen-
sionless critical buckling load of the MEE foam
plates resting on an elastic foundation is taken
for the parametric study by

ˆ̄N = Ncra
2/c11h

3 (30)

The effect of the porosity distribution and
porous coefficient on the dimensionless critical
buckling load of the MEE foam plate without an
elastic foundation is presented in Table 4. We
can see in Table 4 that a rise of the porosity
coefficient leads to a decrease of the plate’s stiff-
ness, decreasing the critical buckling load of the
MEE foam plate. Besides, the uniform porosity
distribution provides the smallest critical buck-
ling load, while the symmetric porosity distri-
bution provides the largest. Table 5 and Table
6 tabulate the influence of initial external elec-
tric voltage and magnetic potential on the non-
dimensional critical buckling load of the MEE
foam plate with various BCs. The results in Ta-
ble 5 and Table 6 show that with a positive value
of the external electric and magnetic potential,
the critical buckling load of the MEE foam plate
reduces and increases, respectively. Whereas the
opposite response for critical buckling load with
a negative value of the external electric and mag-
netic potentials. This is because the positive
magnetic potential and negative electric voltage
create the in-plane tensile force, which makes
the plate stiffer. In contrast, the opposing mag-
netic and positive electric potential create the
in-plane compressive force, reducing the plate
stiffness. Next, the effect of the spring and shear
coefficients and length-to-thickness ratio on the

dimensionless buckling load of the MEE foam
plates resting on an elastic foundation is shown
in Table 7 and Table 8, respectively. As indi-
cated by these tables, a rise in the spring and
shear coefficients of the elastic foundation in-
creases the plate’s stiffness, producing in an in-
crease of the critical buckling load. Addition-
ally, the critical buckling load of the MEE foam
plate increases as the length-to-thickness ratio
increases. The dimensionless critical buckling
load of the MEE foam plate resting on an elastic
foundation with various width-to-length ratios is
depicted in Figure 2. As demonstrated by Fig-
ure 2, a rise in the width-to-length ratio leads to
a decrease in the critical buckling load. Finally,
Figure 3 plots the first four buckling modes of
the SSSS MEE foam square plate.

Fig. 2: Dimensionless critical buckling load of the SSSS
MEE foam rectangular plates resting on elastic
foundation with various width-to-length ratios
(a/h = 10, e0 = 0.1, V0 = Ω0 = 0, Kw = 1, Ks

= 1).

4. Conclusion

This article was presented the mechanical buck-
ling of the MEE foam plates resting on a
Winkler-Pasternak foundation according to the
RPT with two variables and the IGA. The MEE
foam plate comprises the MEE material with
pores. The validity of the current method has
been confirmed through comparisons with prior
references. The effect of the porosity distribu-
tions, porous coefficient, initial external electric
voltage and magnetic potential, foundation pa-
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Tab. 1: The material properties of the MEE FG plates.

Properties Top (BaTi2O3) Bottom (CoFe2O4)

Elastic (GPa)
c11 = c22 = 166; c33 = 162; c12 = 77;

c13 = c23 = 78; c55 = 43; c66 = 44.5

c11 = c22 = 286; c33 = 269.5; c12 = 173;

c13 = c23 = 170.5; c55 = 45.3; c66 = 56.5
Piezoelectric (Cm−2) e31 = −4.4; e33 = 18.6; e15 = 11.6 e31 = 0; e33 = 0; e15 = 0

Piezomagnetic (N/Am) q31 = q33 = q15 = 0 q31 = 580.3; q33 = 699.7; q15 = 550
Dielectric

(10−9 C2m−2N−1)
k11 = k22 = 11.2; k33 = 12.6 k11 = k22 = 0.08; k33 = 0.093

Magnetic

(10−6 Ns2/C2)
µ11 = µ22 = 5; µ33 = 10 µ11 = µ22 = −590; µ33 = 157

Magnetoelectric

(10−12 Ns/VC)
d11 = d22 = d33 = 0 d11 = d22 = d33 = 0

Density (kg/m3) ρ = 5800 ρ = 5300

Tab. 2: The dimensionless critical buckling load of the MEE FG plate with various external electric voltage and
porous volume fraction (p =2, a/h = 100, Ω0 = 0).

Type V0(V)
α

0 0.1 0.2
Ref. [35] Present Ref. [35] Present Ref. [35] Present

Even
porosity

-500 0.92876 0.9334 0.82967 0.8352 0.72971 0.7363
-250 0.91233 0.9170 0.81467 0.8202 0.71618 0.7228

0 0.89590 0.9006 0.79968 0.8052 0.70266 0.7093
250 0.87948 0.8841 0.78468 0.7902 0.689135 0.6957
500 0.86305 0.8677 0.76969 0.7752 0.67561 0.6822

Uneven
porosity

-500 0.928761 0.9334 0.903227 0.9082 0.877596 0.8829
-250 0.912334 0.9170 0.8875 0.8925 0.862577 0.8679

0 0.895907 0.9006 0.871774 0.8767 0.847558 0.8529
250 0.87948 0.8841 0.856047 0.8610 0.832539 0.8378
500 0.863052 0.8677 0.840321 0.8453 0.81752 0.8228

Tab. 3: The material properties of the MEE foam plates.

Properties BaTi2O3-CoFe2O4

Elastic (GPa)
c11 = c22 = 226; c12 = 125; c13 = 124;

c44 = c55 = 44.2; c66 = 50.5
Piezoelectric (Cm−2) e31 = −2.2; e33 = 9.3; e15 = 5.8

Piezomagnetic (N/Am) q15 = 275; q31 = q32 = 290.1; q33 = 349.9
Dielectric

(10−9 C2m−2N−1)
k11 = k22 = 5.64; k33 = 6.35

Magnetic

(10−6 Ns2/C2)
µ11 = µ22 = −297; µ33 = 83.5

Magnetoelectric

(10−12 Ns/VC)
d11 = d22 = 5.367; d33 = 2737.5

Density (kg/m3) ρ = 5550
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Tab. 4: The effect of the porous distribution and porous coefficient on the critical buckling load of the MEE foam
square plate (a/h = 10, V0 = Ω0 = 0, Kw = Ks = 0).

Type BCs e0
0.1 0.3 0.5 0.7

Uniform

SSSS 2.0821 1.7864 1.4727 1.1283
SFSF 0.9735 0.8353 0.6886 0.5275
SCSC 3.2816 2.8155 2.3211 1.7782
CCCC 4.5740 3.9244 3.2352 2.4785
CFCF 1.7457 1.4978 1.2348 0.9460

Symmetric

SSSS 2.1381 1.9616 1.7799 1.5866
SFSF 1.0010 0.9210 0.8395 0.7501
SCSC 3.3596 3.0577 2.7408 2.3910
CCCC 4.6688 4.2155 3.7325 3.1882
CFCF 1.7903 1.6367 1.4777 1.3050

Asymmetric

SSSS 2.0946 1.8334 1.5721 1.3104
SFSF 0.9795 0.8582 0.7363 0.6145
SCSC 3.2993 2.8836 2.4674 2.0501
CCCC 4.5960 4.0110 3.4249 2.8369
CFCF 1.7557 1.5358 1.3157 1.0951

Tab. 5: The dimensionless critical buckling load of the MEE foam square plate with various initial external electric
voltages (a/h = 50, e0 = 0.2, Ω0 = 0, Kw = Ks = 0).

Type BCs V0 (V)
-500 -250 0 250 500

Uniform

SSSS 2.0691 2.0654 2.0618 2.0582 2.0545
SFSF 0.9477 0.9447 0.9417 0.9387 0.9357
SCSC 3.4724 3.4692 3.4661 3.4629 3.4598
CCCC 5.1695 5.1662 5.1630 5.1598 5.1565
CFCF 1.7857 1.7835 1.7814 1.7792 1.7770

Symmetric

SSSS 2.2048 2.2012 2.1975 2.1939 2.1903
SFSF 1.0098 1.0068 1.0038 1.0008 0.9978
SCSC 3.6995 3.6963 3.6931 3.6900 3.6868
CCCC 5.5060 5.5027 5.4995 5.4962 5.4930
CFCF 1.9027 1.9005 1.8984 1.8962 1.8940

Asymmetric

SSSS 2.1014 2.0978 2.0942 2.0905 2.0869
SFSF 0.9625 0.9595 0.9565 0.9535 0.9505
SCSC 3.5266 3.5234 3.5203 3.5171 3.5140
CCCC 5.2499 5.2467 5.2434 5.2402 5.2369
CFCF 1.8136 1.8114 1.8093 1.8071 1.8049

rameters and the parameters of the geometries
on the critical buckling load of the MEE foam
plates resting on a Winkler-Pasternak founda-
tion has been examined. The numerical results
show that the stiffness of the MEE foam plates
reduces with a rise of the porous coefficient. The
increase of the external magnetic potential leads

to the growth of the plate’s stiffness, while a
rise of the external electric voltage decreases
the plate’s stiffness. Besides, the MEE foam
plates become stiffer with a rise of the spring
and shear coefficients of an elastic foundation.
As the width-to-length and length-to-thickness
ratios increase, the critical buckling load of the
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Tab. 6: The dimensionless critical buckling load of the MEE foam square plate with various initial external magnetic
potentials (a/h = 50, e0 = 0.2, V0 = 0, Kw = Ks = 0).

Type BCs Ω0 (A)
-500 -250 0 250 500

Uniform

SSSS 1.9759 2.0189 2.0618 2.1047 2.1477
SFSF 0.8706 0.9062 0.9417 0.9772 1.0125
SCSC 3.3915 3.4288 3.4661 3.5033 3.5405
CCCC 5.0860 5.1245 5.1630 5.2014 5.2398
CFCF 1.7295 1.7554 1.7814 1.8073 1.8332

Symmetric

SSSS 2.1114 2.1545 2.1975 2.2406 2.2837
SFSF 0.9325 0.9682 1.0038 1.0394 1.0749
SCSC 3.6184 3.6558 3.6931 3.7305 3.7678
CCCC 5.4223 5.4609 5.4995 5.5380 5.5765
CFCF 1.8463 1.8723 1.8984 1.9243 1.9503

Asymmetric

SSSS 2.0080 2.0511 2.0942 2.1372 2.1803
SFSF 0.8852 0.9209 0.9565 0.9921 1.0276
SCSC 3.4455 3.4829 3.5203 3.5576 3.5950
CCCC 5.1662 5.2048 5.2434 5.2820 5.3205
CFCF 1.7572 1.7832 1.8093 1.8352 1.8612

Tab. 7: The influence of nondimensional spring coefficient Kw and length-to-thickness ratio on the dimensionless
critical buckling load of the MEE foam square plate with uniform porous distribution resting on an elastic
foundation (e0 = 0.2, V0 = Ω0 = 0, Ks = 0).

Kw BCs a/h
10 20 30 40 50

1

SSSS 1.9965 2.0933 2.1123 2.1190 2.1222
SFSF 0.9433 0.9724 0.9780 0.9799 0.9808
SCSC 3.0932 3.4109 3.4759 3.4994 3.5104
CCCC 4.2867 4.9756 5.1234 5.1771 5.2024
CFCF 1.6336 1.7550 1.7790 1.7878 1.7919

2

SSSS 2.0569 2.1537 2.1726 2.1794 2.1826
SFSF 0.9807 1.0106 1.0164 1.0184 1.0194
SCSC 3.1348 3.4546 3.5199 3.5435 3.5546
CCCC 4.3199 5.0136 5.1621 5.2162 5.2416
CFCF 1.6438 1.7654 1.7895 1.7983 1.8024

3

SSSS 2.1173 2.2141 2.2330 2.2398 2.2430
SFSF 1.0172 1.0482 1.0542 1.0563 1.0573
SCSC 3.1761 3.4981 3.5638 3.5876 3.5987
CCCC 4.3526 5.0513 5.2007 5.2551 5.2806
CFCF 1.6540 1.7758 1.7999 1.8087 1.8129

MEE foam plate decreases and increases, respec-
tively. Finally, the symmetric distribution yields
the highest critical buckling load among the var-

ious porosity distributions. The uniform distri-
bution results in the lowest critical buckling load
for the MEE foam plates.
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Tab. 8: The influence of nondimensional shear coefficient Ks and length-to-thickness ratio on the dimensionless
critical buckling load of the MEE foam square plate with uniform porous distribution resting on an elastic
foundation (e0 = 0.2, V0 = Ω0 = 0, Kw = 0).

Ks BCs a/h
10 20 30 40 50

1

SSSS 3.1282 3.2250 3.2439 3.2507 3.2539
SFSF 1.8432 1.8845 1.8923 1.8951 1.8964
SCSC 4.0492 4.3895 4.4582 4.4830 4.4946
CCCC 5.2112 5.9693 6.1297 6.1880 6.2153
CFCF 2.3349 2.4599 2.4847 2.4937 2.4980

2

SSSS 4.2531 4.4171 4.4360 4.4428 4.4459
SFSF 2.5970 2.6650 2.6782 2.6829 2.6852
SCSC 5.0197 5.3971 5.4718 5.4986 5.5112
CCCC 5.9808 6.9634 7.1414 7.2058 7.2360
CFCF 3.0404 3.1702 3.1958 3.2052 3.2096

3

SSSS 4.9981 5.3339 5.4057 5.4317 5.4439
SFSF 3.2972 3.3682 3.3819 3.3869 3.3892
SCSC 5.9587 6.3880 6.4708 6.5004 6.5143
CCCC 6.7039 7.7457 7.9932 8.0852 8.1287
CFCF 3.7408 3.8762 3.9029 3.9127 3.9173

(a) Mode 1. (b) Mode 2.

(c) Mode 3. (d) Mode 4.

Fig. 3: The first four buckling modes of the SSSS MEE foam square plate.
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