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Abstract. This study introduces a novel
approach by representing a multi-input-multi-
output (MIMO) differential drive wheel mobile
robot (DDWMR) using the standard state space
representation for the first time. This repre-
sentation facilitates the application of analysis
and control system design techniques to MIMO
systems. Specifically, the investigation delves
into stability, controllability, observability,
input-output interaction, and the relative gain
array of the DDWMR model. To demonstrate
the concept, the established methodology em-
ploys the conventional pole placement controller
design technique to formulate a state feed-
back control law for trajectory tracking in the
DDWMR system, utilizing both a nominal and
a generalized model. The generalized model
incorporates distinct parameters for the left and
right motor-wheel systems, unlike the nominal
model where they are assumed to be identical.
Simulation results highlight that accounting
for the asymmetric characteristics through the
controller derived from the generalized model
yields superior performance compared to the
nominal model-based controller. Furthermore,
the proposed model can be served as an illustra-
tive platform for evaluating innovative MIMO
control methodologies in prospective studies.
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1. Introduction

Differential drive wheeled mobile robot is a
robotic platform that uses independently con-
trolled wheels on each side of its chassis to
achieve movement and turning capabilities. Due
to their mobility, DDWMRs can be used in a
wide range of applications such as manufactur-
ing and logistics, agriculture, search and res-
cue, military and defense, education and re-
search [1–8]. This robot platform is considered
highly nonlinear, non-holonomic constraint sys-
tems that make them a challenge for model-
ing and control [9]. To overcome the unmod-
elled dynamics, parameter uncertainty, and un-
known disturbances, various nonlinear control
techniques have been applied. In [10–12] au-
thors used sliding mode control technique to
handle the uncertainties and nonlinearities of
wheeled mobile robots. In [13], the authors
prosed an adaptive controller that can reject the
effect of disturbances by fusing the robust and
the sliding mode control techniques together.
In [14], Roy et. al. solved the overestimation-
underestimation problem of switching gain by
using adaptive switching-gain-based robust con-

174 © 2023 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 7 | ISSUE: 3 | 2023 | September

trol (ASRC). More recent evidence revealed that
using a matrix-measure-based contraction ap-
proach, the intended guidance vector field’s con-
vergence to the task route was theoretically as-
sured [15]. In [16], a nonlinear error feedback
controller was utilized to track the outer loop
intended velocities. In their works, Dogan et.
al. studied the stability requirements of model
reference adaptive control architectures with un-
structured system uncertainties and unmodeled
dynamics. They then synthesized adaptive and
robust terms to ease the stability condition [17].

In DDWMRs, each side of the robot’s chas-
sis has its own independently driven wheel.
This design typically consists of two wheels,
one on the left side and one on the right side,
where each wheel is actuated by its own elec-
tric motors that can be controlled separately
in terms of speed and direction. The motors
are interconnected and make DDWMRs cou-
pling multi-input-multi-output systems. As a
consequence, several MIMO control techniques
have been applied for DDWMRs. In [18], au-
thors used MIMO model predictive controller
for autonomous trajectory tracking. In [19],
the authors introduced a partially decentralized
adaptive control approach for MIMO non-square
systems. Recently, Rayguru et al. introduced
a time-scale redesign-based saturation tracking
controller for a class of feedback linearizable
MIMO nonlinear systems [20].

Although many control systems for WMRs
have been published, to the authors’ knowledge,
none of them have incorporated the full dynam-
ics of the mechanical structure and actuators
into a standard MIMO state space model. Fur-
thermore, prior literature commonly presumed
uniformity in the motor and wheel parameters
in both sides of the robot chassis during model-
ing and control system design.

The aim of this study is to present a com-
prehensive model of a DDWMR in term of a
general MIMO state-space representation. The
parameters of the left and the right motor-wheel
parts of the robot are not the same that make
the model more practical and more generality.
With the proposed MIMO state space model,
modern techniques for analysis and control sys-
tem design for MIMO systems can be applied for

DDWMRs particularly as well as mobile robots
in general. In additional, the proposed model
can also be utilized as a benchmark model for
evaluating novel MIMO control techniques be-
side well-known MIMO models such as continu-
ously stirred tank reactor (CSTR) system.

The subsequent sections of this document are
structured as follows. Section 2. provides a de-
velopment of the mathematical model of the pro-
posed DDWMR system. In section 3. , the pro-
posed model is analyzed for stability, controlla-
bility, observability and interaction. The fourth
section 4. outlines the design of the state feed-
back controller for the DDWMR system based
on pole placement technique. Simulation results
and discussion is presented in section 5. . Some
conclusions are drawn in the final section.

2. Mathematical model

2.1. Differential Equations

The dynamic diagram of the proposed DDWMR
is illustrated in D. In which FL and FR are
traction forces at the ground contact points CL

and CR of the driving wheels; TL and TR are
the torque at the output shaft of the left and
the right motor.

Assuming that the center of gravity (CoG) is
at the intersection of the line linking the centers
of the wheels, the robot’s dynamic equations are

FR + FL = m
dV

dt

FR − FL =
Jz
W

dωz

dt

(1)

where m is the total weight of all the robot sys-
tem, Jz is the moment of inertia of the robot
with respect to the z-axis, V is the longitudinal
velocity and wz is the angular velocity of the
robot at the CoG.

Using the rolling without slipping assumption,
the relationship between the robot velocities and
the motor angular speed are given by

V =
RwR

2igR
ωR +

RwL

2igL
ωL

ωz =
RwR

2WigR
ωR − RwL

2WigL
ωL

(2)
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(a)

(b)

Fig. 1: Dynamic diagram of the system: (a) DDWMR
and (b) the wheels.

where 2W is the distance from the right- to left-
wheel’s ground contact point, RwR, RwL are the
wheel radius; ωR and ωL are the angular speed
of the right and the left wheel respectively.

The angular speeds of the motors are deter-
mined by the dynamic of the motor-wheel sys-
tems, given by:

JwR
dωR

dt
= TR − FR

igRηgR
RwR −BmRωR

JwL
dωL

dt
= TL − FL

igLηgL
RwL −BmLωL

(3)

where JwR, JwL are the moments of inertia of
the wheel and motor, BmR, BmL are the viscous
coefficients of the motors, igR, igL and ηgR, ηgL
are the gearbox ratio and efficiency of the right
and the left motor, respectively.

The output torques of the PMDC motors are
proportional to their armature currents as

TR = KtRiaR

TL = KtLiaL
(4)

where KtR and KtL are the torque constant of
the right and the left motor, respectively.

diaR
dt

= −RaR

LaR
iaR − KtR

LaR
ωR +

1

LaR
VaR

diaL
dt

= −RaL

LaL
iaL − KtL

LaL
ωL +

1

LaL
VaL

(5)

where RaR, RaL and LaR, LaL are the resistance
and inductance of the armature win-dings, VaR

and VaL are the voltages applied to the armature
winding of the motors.

Substitute Eq.(2) into Eq.(1) and solving for
FR and FL we have

FR =
(

mRwR

4igR
+ JzRwR

4W 2igR

)
dωR

dt +
(

mRwL

4igL
− JzRwL

4W 2igL

)
dωL

dt

FL =
(

mRwR

4igR
− JzRwR

4W 2igR

)
dωR

dt +
(

mRwL

4igL
+ JzRwL

4W 2igL

)
dωL

dt

(6)

Substitute Eq.(4) and Eq.(6) into Eq.(3) then
we can obtain dωR/dt and dωL/dt. Integrated
with Eq.(5) the differential equations of the
DDWMR can be expressed as

diaR
dt

= k1RiaR + k2RωR + k3RVaR

dωR

dt
= k4RiaR − k5RωR − k6RiaL + k7RωL

diaL
dt

= k1LiaL + k2LωL + k3LVaL

dωL

dt
= −k6LiaR + k7LωR + k4LiaL − k5LωL

(7)
where

k1R = RaR

LaR
, k2R = KtR

LaR
, k3R = 1

LaR

k4R = CL

CRCL−CRLCLR
KtR, k5R = CL

CRCL−CRLCLR
BmR

k6R = CLR

CRCL−CRLCLR
KtL, k7R = CLR

CRCL−CRLCLR
BmL

k1L = RaL

LaL
, k2L = KtL

LaL
, k3L = 1

LaL

k4L = CR

CRCL−CRLCLR
KtL, k5L = CR

CRCL−CRLCLR
BmL

k6L = CRL

CRCL−CRLCLR
KtR, k7L = CRL

CRCL−CRLCLR
BmR

CR = JwR + RwR

igRηgR

(
mRwR

4igR
+ JzRwR

4W 2igR

)
CLR = RwR

igRηgR

(
mRwL

4igL
− JzRwL

4W 2igL

)
CL = JwL + RwL

igLηgL

(
mRwL

4igL
+ JzRwL

4W 2igL

)
CRL = RwL

igLηgL

(
mRwR

4igR
− JzRwR

4W 2igR

)
Detail about modeling and simulation of each

component can be found in our previous work
[21].
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2.2. State Space Representation

Let’s x =
[
iaR ωR iaL ωL

]T , y =[
V ωz

]T , u =
[
VaR VaL

]T are state, out-
put, and input vectors, the general DDWMR
model can be expressed in term of matrix as

ẋ = Ax+Bu

y = Cx+Du
(8)

where

A =


−k1R −k2R 0 0
k4R −k5R −k6R k7R
0 0 −k1L −k2L

−k6L k7L k4L −k5L



B =


k3R 0
0 0
0 k3L
0 0


C =

[
0 k8R 0 k8L
0 k9R 0 −k9L

]
D =O2×2

k8R = RwR

2igR
, k9R = RwR

2WigR

k8L = RwL

2igL
, k9L = RwL

2WigL

(9)

It can be seen that the DDWMR is expressed
in term of a standard multi-input-multi-output
(MIMO) system. The system consists of two in-
puts: the voltages applied to the armature wind-
ings of the left and the right motor. The outputs
are the linear and the angular speed of the robot
while the states consist of the angular speed and
the armature current of the motors. The inter-
esting point is the parameters of the left and
the right parts are not identical which is more
generality.

3. Numerical analysis

To study the MIMO characteristic of the
DDWMR, the system is first evaluated with nu-
merical values listed in Table 1. Noticed that the
parameters of the left and the right motor-wheel
systems are not the same. The proposed model
has more generality characteristic than all pub-
lished works where the left and the right motor-
wheel was typically assumed identical. The gen-

eral DDWMR model in Eq.(8) with parameters
in Table 1 had the following component matri-
ces:

A =


−43.04 −36.54 0 0
76.83 −1.609 −14.22 0.2427
0 0 −87.34 −40.44

−23.52 0.4926 31.1 −0.5308



B =


57.97 0
0 0
0 78.43
0 0


C =

[
0 0.0169 0 0.0206
0 0.0844 0 −0.1031

]
D =O2×2

(10)
The MATLAB ’ss2tf’ function could be used to
determine the transfer function of the general
DDWMR model in Eq.(10):

GVaRV = V
VaR

= 47s2+4143s+84313
s4+133s3+8104s2+310485s+3226630

GVaRωz
= ωz

VaR
= 516s2+45276s+421564

s4+133s3+8104s2+310485s+3226630

GVaLV = V
VaL

= 31s2+1425s+124469
s4+133s3+8104s2+310485s+3226630

GVaLωz
= ωz

VaL
=

−(346s2+15226s+622344)
s4+133s3+8104s2+310485s+3226630

(11)

3.1. Pole and zero analysis

The poles of the general open-loop DDWMR
system which also equal to the eigenvalues of
the state space A matrix were p1,2 = −23.302±
49.947i, p3 = −70.942 and p4 = −14.973. Fig.
2 showed the poles and zeros of the DDWMR
transfer functions. All these poles were in the
open left-half plane so the open-loop DDWMR
system was stable. The natural frequencies
were computed to be 14.973, 70.942 and 55,115
[rad/s], and the damping ratios were calculated
to be 0.423 and 1.

3.2. Observability and
controllability analysis

The controllability matrix of the general
DDWMR system was calculated as [22]:
Co =

[
B AB A2B A3B

]
Co =


58 0 −2495 0 −55359 40759 9660245 −5401341
0 0 4454 −1116 −199191 99823 −4702245 −4187945
0 78 0 −6850 55145 499648 −7307696 −34947774
0 0 −1363 2440 61599 −214915 2886441 14745622


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Tab. 1: Specifications of the general DDWMR model.

Symbol Description Value Units
Jz Moment of inertia of robot body 0.35 kg.m2

mb Robot body mass 15 kg
W Half wheel base length 0.2 m

mwR Right wheel mass 2.55 kg
mwL Left wheel mass 3.45 kg
JwR Right wheel inertia 0.8e−3 Kg.m2

JwL Left wheel inertia 1.8e−3 Kg.m2

igR Right gearbox ratio 2 -
igL Left gearbox ratio 2 -
ηgR Right gearbox efficiency 97.75 %
ηgL Left gearbox efficiency 72.25 %
RwR Right wheel radius 0.0675 m
RwL Left wheel radius 0.0825 m
BmR Right motor viscous coefficient 0.0132 N.m.s/rad
BmL Left motor viscous coefficient 0.0088 N.m.s/rad
KtR Right motor torque constant 0.6303 N.m/A
KtL Left motor torque constant 0.5157 N.m/A
LaR Right motor armature winding inductance 0.0172 H
LaL Left motor armature winding inductance 0.0127 H
RaR Right motor armature winding resistance 0.7424 Ω
RaL Left motor armature winding resistance 1.1136 Ω

Fig. 2: Pole-Zero Map of the general DDWMR system.

The controllability matrix had full rank so the
DDWMR system was controllable.

The observability matrix of the general
DDWMR system was generated as [23]:

Ob =
[
C CA CA2 CA3

]T

Ob =



0 0.017 0 0.021
0 0.084 0 −0.103

0.811 −0.017 0.401 −0.007
8.908 −0.187 −4.408 0.075
−36.1 −29.6 −35.0 −16.2
−399 −325 390 178
−342 1357 2977 1419
−11979 15207 −23894 −15945


The rank of Ob was equal to the number of
states so the system was observable.

3.3. Relative Gain Array
(RGA)

Let G represent the transfer function of the gen-
eral DDWMR system, from Eq. (11), we had

G =

[
GVaRV GVaLV

GVaRωz
GVaLωz

]
(12)

The RGA of the non-singular square complex
matrix G was a square complex matrix defined
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as [22]

RGA(G) = Λ (G)
∆
= G×

(
G−1

)T (13)

For the 2×2 DDWMR transfer matrix, the RGA
was

RGA(G) =

[
λ11 λ12

λ21 λ22

]
=

[
λ11 1− λ11

1− λ11 λ11

]
(14)

where
λ11 =

1

1− GVaLV GVaRωz

GVaRV GVaLωz

The RGA of a transfer matrix is generally
computed as a function of frequency and pro-
vides a measure of interactions. Fig. 3
showed the frequency-dependent RGA for gen-
eral DDWMR. At low and high frequency,
Λ (0) = Λ (j∞) = 1

2I, there was a high degree of
interaction [23] and it was impossible to control
the V , and ωz by only VaR or VaL. At intermedi-
ate frequencies, the RGA off-diagonal elements
were slightly greater than 0.5. For example, at
frequency ω = 31.623 rad/s, the RGA matrix
became

Λ =

[
0.3355 + 0.0572i 0.6645− 0.0572i
0.6645− 0.0572i 0.3355 + 0.0572i

]
Nevertheless, the regulation of variables V and
ωz solely through the manipulation of variables
VaR or VaL remained unattainable Moreover,

Fig. 3: Magnitude of RGA for general DDWMR.

when considering the angular velocity of the mo-
tors as outputs, the system could be represented
in the form of transfer functions, as stated be-
low:

ωR = GRRVaR +GLRVaL

ωL = GRLVaR +GLLVaL
(15)

where the component transfer functions in the
general model case are:

GRR = ΩR(s)
VaR(s) =

4454s2+391056s+4996312
s4+133s3+8104s2+310485s+3226630

GRL = ΩL(s)
VaR(s) =

−1363s2−119088s
s4+133s3+8104s2+310485s+3226630

GLR = ΩR(s)
VaL(s) =

−1116s2−48012s
s4+133s3+8104s2+310485s+3226630

GLL = ΩL(s)
VaL(s) =

2440s2+108368s+6034851
s4+133s3+8104s2+310485s+3226630

(16)
Eq. (16) demonstrated that the speed of the
right wheel is dependent not only on the voltage
supplied to the right motor, but also the voltage
supplied to the left motor, and vice versa. The
interesting point is that, for a general DDWMR,
the effect of the left armature voltage to the right
angular speed is not the same as the effect of
the right armature voltage to the left angular
speed. This coupling phenomenon is a common
problem in practice that makes controller design
challenging.

4. Controller design

The location of the pole can be used to deter-
mine whether or not a system is stable. A stable
system has a pole located to the left of the imagi-
nary axis, whereas an unstable system has a pole
located to the right of the imaginary axis. In or-
der for the system to become stable, a control
method is required to move the pole, which is
to the right of the imaginary axis, to the left of
the imaginary axis. Pole placement is a method
of control that can position the pole appropri-
ately. Conventional control techniques, such as
pole placement, can also be used with MIMO
systems, such as the DDWMR model used in
this research. Using gain feedback, the system’s
desired design criteria can be met. The follow-
ing is a diagram of the pole placement control
system [21] In this method, the controlling law
is:

u = r−KCx (17)

In an effort to prevent steady-state errors caused
by step references, this study adds two more in-
tegrators in series with the plant. The control
framework is depicted in Fig. 5. We can model
the addition of these integrators by augmenting
our state equations with two extra states for the
integral of the errors, which we will identify with
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Fig. 4: Pole placement control system block diagram.

B 1/s C

A

K1

r u yx_ +

+
_K21/s

_
+ we

Fig. 5: Pole placement with integral control block dia-
gram.

the variable w . This adds two extra state equa-
tions, where the derivative of these states are
then just the errors e = w = r − y . These
equations will be placed at the bottom of our
matrices. The reference r , therefore, now ap-
pears as additional inputs to our system. The
output of the system remains the same.[

ẋ
ẇ

]
=

[
A4×4 04×2

−C2×4 02×2

] [
x
w

]
+

[
B4×2

02×2

]
u+

[
04×2

I2×2

]
r,

y =
[
C2×4 02×2

] [ x
w

]
.

(18)

The control law is:

u = −K1x−K2w (19)

5. Simulation results and
discussions

5.1. Open-loop step responses

In order to evaluate the performance of the pro-
posed general DDWMR model, a nominal model
of DDWMR (nominal DDWMR) is used. In the
nominal DDWMR, the left- and the right-wheel-
motor are identical. In this case the constants

for the left and the rights become identical. The
system matrices become:

Anom =


−61.87 −38.2 0 0
49.06 −0.94 −18.32 0.35
0 0 −61.87 −38.2

−18.32 0.35 49.06 −0.94

 ,

Bnom =


66.67 0
0 0
0 66.67
0 0

 ,

Cnom =

[
0 0.01875 0 0.01875
0 0.09375 0 −0.09375

]
,

Dnom=O2×2.
(20)

The transfer functions of the nominal DDWMR
model were:

GVaRV _nom = V
VaR

= 38s2+2427s+101977
s4+126s3+7809s2+242215s+3213099

GVaRωz_nom = ωz

VaR

= 421s2+26301s+509887
s4+126s3+7809s2+242215s+3213099

GVaLV _nom = V
VaL

= 38s2+2427s+101977
s4+126s3+7809s2+242215s+3213099

GVaLωz_nom = ωz

VaL

=
−(421s2+26301s+509887)

s4+126s3+7809s2+242215s+3213099

(21)

It can be seen that the effect of the left and
the right armature voltages to the linear speed
of the robot is the same while that effect to the
angular speed is opposite. It is obvious because
the right armature voltage causes the robot ro-
tates counter clockwise while the left armature
voltage causes the robot rotates clockwise.

The dissimilarity in the parameters of the mo-
tor and wheel components between the right and
left sides of the general DDWMR resulted in dis-
tinct variations in the responses and quality met-
rics, including rise time, settling time, steady
state, peak time, peak overshoot between the
two sides of the general model in comparison to
the nominal model. Fig. 6 illustrates the im-
pact of the stochastic parameters in the general
DDWMR model on the output of the system.
Specifically, the general DDWMR model has dis-
tinct rise times and steady-state values for the
output signals longitudinal velocity V and yaw
rate ωz for the same input signal as a unit step
voltage for two motors. The rise time of the V
response caused by VaL is three times that of
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V caused by VaR , and the steady state of V
caused by VaL is approximately 1.5 times that
of V caused by VaR. Similarly, the rise time
of the ωz response induced by VaL is 7 times
that of the ωz response induced by VaR, and the
steady state of the ωz response induced by VaL

is nearly 1.5 times that of the ωz response in-
duced by VaR. In addition, ωz’s response to VaL

is a first-order system response, whereas ωz’s re-
sponse to VaR is a second-order system response.
The general model response’s quality criteria are
listed in Table 2.

5.2. Closed-loop step responses

With 1[m/s] longitudinal velocity V and 1[ra-
dian/s] yaw rate ωZ of the step references, the
design criteria were the following:

• Settling time less than 0.1 seconds.

• Overshoot less than 2%.

• No steady-state error.

For the simulation of the system’s response,
the general DDWMR model was selected so that
the effect of properly constructing the system’s
general model could be observed with clarity. In
the simulation, two controllers were employed,
one based on the nominal DDWMR model and
the other on the general DDWMR model.

The Minimum ITAE Standard Forms [24]
were utilized to calculate the desired characteris-
tic polynomial of the system based on the afore-
mentioned design specifications. ω0 was calcu-
lated to be 51.3 [rad/s] and was then replaced
into the fourth order ITAE equation:

∆ = s4 + 2.41ω0s
3 + 4.93ω2

0s
2 + 5.14ω3

0s+ ω4
0

(22)
The fourth order desired characteristics polyno-
mial was

∆ = s4 + 124s3 + 12975s2 + 693993s+ 6926639
(23)

After obtaining the desired characteristic
equation, the controller gain matrix that would
generate the desired pole positions was deter-
mined using the MATLAB command ’place’.

Fig. 6: Comparison of the open-loop step response of
the nominal and general DDWMR VaR, VaL to
V , ωz .

The controller gain matrix calculated from the
nominal DDWMR model was

KC =

[
−0.1808 0.2933 −0.7739 −1.2434
0.8431 0.1258 0.1511 0.0579

]
(24)
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Tab. 2: Transient qualities of general DDWMR.

From VaR to V VaL to V From VaR to ωz From VaL to ωz

Rise time [s] 0.057 0.153 0.021 0.148
Settling time [s] 0.219 0.28 0.223 0.27
Steady state [m/s] 0.0261 0.0386 0.131 -0.193
Peak time [s] - - 0.059 -
Peak overshoot [%] 0 0 52.8 0

The remaining controller gain matrix calculated
from the general DDWMR model was

KC =

[
0.2119 0.8089 0.7300 0.0126
−0.2579 −0.5592 −0.2699 −0.0318

]
(25)

The controller gain matrices presented above
(PP controllers) were applied to the system di-
agram in Fig. 4. The closed-loop responses of
longitudinal velocity and yaw rate to step ref-
erences and right and left motor speed control
signals were shown in Fig. 7. As demonstrated
by the simulation results, the control signals em-
anating from the PP controllers were not con-
gruent, the specified requirements were not met;
specifically, the steady-state errors were exces-
sively large.

In order to suppress the steady-state error in
the system responses, the system diagram de-
picted in Fig. 5 was utilized. Apply the ITAE
Minimum Standard Forms we obtained:

∆ = s6 + 3.93ω0s
5 + 11.68ω2

0s
4 + 18.56ω3

0s
3

+19.3ω4
0s

2 + 8.06ω5
0s+ ω6

0

(26)
the sixth order desired characteristic polyno-
mial:

∆ = s6 + 202s5 + 30740s4 + 2505935s3

+133684131s2 + 2864100332s+ 18229880548
(27)

and the relevant gain matrices for the controller
calculated from the nominal DDWMR model
were derived as follows:

K1 =

[
0.6033 1.8851 −0.4502 −0.4667
0.6346 1.9798 0.5367 3.3813

]
K2 =

[
−298.55 −200.61
−2363.50 298.51

]
(28)

The remaining controller gain matrices calcu-
lated from the general DDWMR model were

K1 =

[
0.9169 1.4754 −0.2594 −1.2388
0.4541 1.2144 0.2032 3.6363

]
K2 =

[
−273.05 −367.16
−1316.20 282.93

]
(29)

We simulated system responses by applying
the controller in Eq. (28), (29) to the general
model. The simulation outcomes were depicted
in Fig. 8. The legend depicted in Fig. 8 com-
prised three distinct components. The initial
section described the system model used for sim-
ulation, which was the general model. The fol-
lowing section elaborated on the controller de-
rived from the nominal or general model. Lastly,
the third segment represented the case-specific
root mean square error (RMSE).

The findings indicated that the closed-loop re-
sponses of the system attained a steady state
of zero without any overshooting. The settling
time failed to satisfy the specified design criteria.
In contrast to open-loop responses, the settling
time had been significantly enhanced in closed-
loop responses due to the considerably larger re-
quired steady-state value.

Furthermore, the results demonstrated that
the response of the longitudinal velocity V
when utilizing the controller constructed from
the nominal model has a faster reaction speed
and a smaller RMSE than when employing the
controller developed from the General model.
However, when the yaw rate ωz changes, the
response of the longitudinal velocity V when
using the controller build from the nominal
model is more affected. In contrast, the yaw
rate ωz response when using a controller de-
signed from the general model has a slower
reaction rate and a larger RMSE than when
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Fig. 7: Responses of the general DDWMR closed loop
system with controllers designed by the pole
placement method.

using a controller created from the nominal
model. Changes in longitudinal velocity V
have a significant impact on the yaw rate ωz

response of a controller based on a nominal
model. Simulation results indicated that the
use of the controller developed from the general
DDWMR model was superior to that of the
controller created from the nominal DDWMR
model.

6. Conclusion

This study presents the DDWMR in a stan-
dard MIMO system for the first time, assum-
ing that the driving wheels roll without slip-
ping. Two DDWMR models are proposed: a
nominal version with identical left and right mo-
tor wheel systems and a more comprehensive
general model allowing for different parameters.
These models are carefully analyzed, evaluated,
and simulated, demonstrating their versatility in
allowing for the application of conventional or
modern control methods. The study showcases
the simplicity of controller design for the gen-
eral asymmetric DDWMR system and demon-
strates that the controller rooted in the general
DDWMR model exhibits superior performance
compared to its nominal counterpart. The pro-
posed model has potential as a benchmark plat-
form for evaluating the effectiveness of MIMO
control techniques in future research and educa-
tional contexts. Overall, this study offers valu-
able insights into the development and applica-
tion of DDWMR models in MIMO systems.
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