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Abstract. This paper investigates the free vi-
bration analysis of the magneto-electro-elastic
(MEE) sandwich plates with functionally graded
carbon nanotube reinforced composite (FG-
CNTRC) core using isogeometric approach
(IGA). The sandwich plate is composed of the
homogeneous MEE face sheets and FG-CNTRC
core with four types of carbon nanotubes (CNTs)
distribution, including CNT-UD, CNT-O, CNT-
V and CNT-X. The external electric voltage and
magnetic potential are applied in the top and bot-
tom layers of the MEE sandwich plate. Employ-
ing the refined plate theory (RPT) and Hamilton
principle, the governing equation for free vibra-
tion of the MEE sandwich plate is derived. The
IGA employs Non-Uniform Rational B-Splines
(NURBS) basic functions to approximate the
displacement fields and the magnetic and elec-
tric potentials in the RPT model. The study
examines and discusses the impact of different
factors on the frequency of the MEE sandwich
plate, including parameters like CNTs distribu-
tions, CNTs volume fraction, external electric
voltage and magnetic potential, and the geomet-
rical parameter of the plate. This research has
revealed several important discoveries regarding
the fabrication of MEE sandwich structures.
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1. Introduction

Magneto-electro-elastic materials are composite
materials that possess the ability to respond
to mechanical, electrical, and magnetic stimuli.
The unique properties of these materials stem
from their ability to undergo mechanical defor-
mation under applied stress, generate electric
charges when subjected to mechanical forces,
and exhibit changes in their magnetic properties
in response to magnetic fields. MEE structures
can actively control vibrations, harvest energy,
and act as sensors, making them versatile
and promising for various industries and fields
of research. Consequently, there has been a
surge in research to understand the mechanical
characteristics of MEE structures in recent
years. Pan and Han [1] found an exact solution
of the multilayered plate made of anisotropic
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and functionally graded (FG) MEE materials.
Based on the Kirchhoff thin-plate theory (KPT)
and analytical method, the static bending of the
MEE thin plate was presented by Liu [2]. The
free vibration of the laminated plate composed
of the homogeneous piezoelectric and piezo-
magnetic layers was introduced by Ramirez
et al. [3] according to the Ritz method. Li et
al. [4] found the analytical natural frequency of
the MEE plate resting on an elastic foundation
using the Mindlin theory. In addition, Ansari
et al. [5] employed the combination of nonlinear
first-order plate theory and nonlocal elasticity
theory to express the buckling and post-buckling
behavior of the magneto-electro-thermo-elastic
(METE) nanoplates. The nonlocal strain
gradient theory (NSGT) and the FSDT were
used by Malikan and coworkers [6] to study
the analytical forced vibration of the MEE
nanoplates. Via the nonlocal elastic theory
and the third-order beam theory, the thermal
buckling of the METE FG nanobeams was
studied by Ebrahimi et al. [7] using the analyt-
ical method. Conversely, Xin and Hu [8] used
the semi-analytical method to investigate the
vibration of the multilayer MEE rectangular
plates under the simply supported boundaries.
With the help of Reddy’s higher-order shear
deformation plate theory (HSDT), the critical
buckling load of the MEE plates was found by
Razavi [9] based on the analytical method. The
vibration analysis of the MEE plates on an
elastic foundation was presented by Shooshtari
and Razavi [10] according to the HSDT and an-
alytical method. The analytical static bending
and vibration responses of the MEE circular
plate, considering the surface effect, were car-
ried out by Yang et al. [11] via the KPT. Solby
and Mukahal [12] used the RPT and analytical
method to present the free vibration of the FG
MEE plate reinforced by graphene platelets and
resting on an elastic foundation. Besides, Arefi
et al. [13] investigated the analytical buckling
and static bending of the multilayered doubly
curved nanoshell with the MEE face sheets
and homogeneous core employing the nonlocal
elasticity theory. Mohammadrezazadeh [14]
found the linear and nonlinear natural fre-
quencies of the MEE composite conical shells
resting on a nonlinear elastic foundation based
on the analytical method. FG-CNTRC mate-

rials posed applications in aerospace, energy,
automobile, medicine, structural...due to their
mechanical, thermal and electrical outstanding
properties. Therefore, many researchers have
paid attention to these materials. Based on the
higher-order shear deformation theory (HSDT),
the analytical nonlinear bending and large
amplitude vibration of FG-CNTRC plates in
thermal environment were studied by Shen [15]
and Wang [16]. A combination of the FSDT
and kp-Ritz method was used by Lei et al. [17]
to calculate the frequency of the laminated
rectangular plates with the FG-CNTRC layers.
Also, Zhang et al. [18] found the analytical
solution of the free vibration of the skew plates
made of FG-CNTRC materials based on the
FSDT. According to the FSDT, Pouresmaeeli et
al. [19] employed Galerkin’s method to present
the vibration of double-curved FG-CNTRC
shell panels. Next, the vibration analysis
of the arbitrarily shape cutout FG-CNTRC
plate was researched by Ansari et al. [20]
utilizing the variational differential quadra-
ture finite element method. According to the
third-order shear deformation plate theory
(TSDT) and Galerkin’s method, the vibration
and dynamic response of the sandwich plates
with FG-CNTRC top and bottom layers are
presented by Dat et al. [21]. Cheshmeh et
al. [22] used HSDT with 12 variables to find
the analytical natural frequency and critical
buckling load of the FG-CNTRC plates in
thermal environment. Due to its reliance on
Non-uniform rational B-splines basic functions,
the IGA can effectively handle higher-order
derivatives of the refined plate theory. These
NURBS basic functions offer versatility in
achieving the desired level of continuity within
the basis functions. Hughes [23] was the first to
propose the IGA along with its computational
expense. According to IGA, Bazilevs et al. [24]
conducted an analysis of wind turbines and
turbomachinery, while Takizawa et al. [25] an-
alyzed computational cardiovascular medicine.
Zhang et al. [26] examined advancements in
the nonlocal operator method, an innovative
approach for solving PDEs and addressing
complex engineering challenges. Besides, ref-
erences [27–29] demonstrate that IGA allows
for investigating microplate size-dependent free
vibration, bending, and buckling. Considering
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the mentioned references, no prior investigation
utilizing the IGA and RPT has been conducted
to study the behaviors of the MEE sandwich
plate with the FG-CNTRC core. This article
addresses the research gap by employing RPT
and IGA to analyze the free vibration of the
MEE sandwich plates with the FG-CNTRC
core. The influence of the CNTs distribution,
CNTs volume fraction, external electric and
magnetic loads and geometries on the natural
frequency of the MEE sandwich plate with
FG-CNTRC core is examined and discussed
in detail. The novel findings offer valuable
insights into the free vibration behaviors of
MEE-FGP plates, potentially contributing to
the design and optimization of these structures
for improved practical performance.

2. The basic equations

2.1. The material properties

Let us consider the sandwich rectangular plate
with length a, width b and thickness h, as shown
in Figure 1. The MEE face sheets of the MEE
sandwich plate comprise piezoelectric (BaTiO3)
and piezomagnetic (CoFe2O4) materials. In this
investigation, the volume fractions of BaTiO3
and CoFe2O4 are taken by 0.5. The material
properties of the MEE face sheets are shown in
Table 1.

Fig. 1: The geometry of the MEE sandwich plate with
the FG-CNTRC core.

Besides, the FG-CNTRC core is made of the
matrix epoxy reinforced by the CNTs with four
CNTs distributions: CNT-UD, CNT-O, CNT-V
and CNT-X. By using the extended rule of mix-
ture [31], the effective material properties of the

Tab. 1: The material properties of the MEE material
[30].

Properties BaTi2O3-CoFe2O4
Elastic (GPa) c11 = c22 = 226;

c12 = 125; c13 = 124;
c33 = 216; c66 = 50.5;
c44 = c55 = 44.2

Piezoelectric (Cm−2) e31 = e32 = −2.2;
e33 = 9.3; e15 = 5.8

Piezomagnetic q15 = q24 = 275;
(N/Am) q31 = q32 = 290.1

q33 = 349.9
Dielectric k11 = k22 = 5.64;
(10−9 C2m−2N−1) k33 = 6.35
Magnetic µ11 = µ22 = −297;
(10−6Ns2/C2) µ33 = 83.5
Magnetoelectric d11 = d22 = 5.367;
(10−12 Ns/VC) d33 = 2737.5
Density (kg/m3) ρf = 5550

FG-CNTRC core layer are presented as follows

Ec11 = η1VCNTE
CNT
11 + VmE

m;
Ec22 = η2

VCNT /ECNT
22 +Vm/Em ;

Gc12 = η3
VCNT /GCNT

12 +Vm/Gm ;

νc12 = VCNT ν
CNT
12 + Vmνm;

ρc = VCNT ρCNT + Vmρm

(1)

where symbol “c” indicates the core layer; ECNT11

and ECNT22 represent the Young modulus of the
CNTs; GCNT12 is the shear modulus of the CNTs;
Em and Gm denote Young’s and shear modulus
of the matrix, respectively; vm and vCNT12 are
Poisson’s ratios of the matrix and CNTs, respec-
tively; ρCNT and ρm represent the mass density
of CNTs and matrix, respectively; η1, η2 and η3
are the CNTs efficiency parameters; VCNT and
Vm are the volume fractions of the CNTs and
matrix, respectively. The material properties of
the matrix and CNTs are given in Table 2 [32].

Furthermore, the relationship between and is
presented as follow

VCNT + Vm = 1 (2)

In this article, four distribution patterns are
employed to reinforce CNTs within the mate-
rial matrix throughout the thickness of the plate.
The CNTs volume fraction VCNT in Eqs. 1 and
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Tab. 2: The material properties of the matrix and
CNTs.

Properties Matrix CNTs
Elastic (GPa) Em = 2.5 ECNT11 = 5645.1

ECNT22 = 7080
GCNT12 = 1946.6

Poisson′sratio νm = 0.34 νCNT12 = 0.175
ratio
Density (kg/m3) ρm = 1160 ρCNT = 1400

2, for various CNTs distributions, is described
as follows

VCNT = V̂CNT CNT−UD;

VCNT (z) =
(
2− 4|z|

hc

)
V̂CNT CNT−O;

VCNT (z) =
(
1 + 2z

hc

)
V̂CNT CNT−V;

VCNT (z) = 4|z|
hc
V̂CNT CNT−X

(3)
where

V̂CNT =
wCNT

wCNT + ρCNT

ρm
(1− wCNT )

(4)

in which wCNT denotes the mass fraction of
CNTs. Besides, the CNTs efficiency parameters
are defined as follows [33]

η1 = 0.137, η2 = 1.022, η3 = 0.715 for V̂CNT = 0.12;

η1 = 0.142, η2 = 1.626, η3 = 1.138 for V̂CNT = 0.17;

η1 = 0.141, η2 = 1.585, η3 = 1.109 for V̂CNT = 0.28

(5)

2.2. The refined plate theory

Employing the RPT [34], the displacement vec-
tor u of the MEE sandwich plate is presented as
follows

u =

 u
v
w

 = u1 + zu2 + f (z) u3 = u0
v0

wb + ws

+ z

 −wb,x
−wb,y

0

+ f (z)

 ws,x
ws,y
0


(6)

in which u0 and v0 denote the in-plane dis-
placement of the middle plane, whereas wb and
ws are the transverse displacements in terms
of their bending and shear components, respec-
tively; symbol “,” stands for the differential op-
erator; f (z) = − 4z3

3h2 denotes the distribution

function. According to [35], the RPT with four
variables is free from the shear locking without
the shear correction factor. This is because of
the second-order distribution of the shear stress
through the plate thickness.

According to the displacement vector in Eq.
(6), the linear strain tensor is formulated by

εεε =

{
εεεb
εεεs

}
=

{
εεεb1 + zεεεb2 + f (z)εεεb3
(1 + f ′ (z))γγγs

}
(7)

in which symbol ”′” represents the derivative
with respect to z, and

εεεb =

 εx
εy
γxy

 ; εεεb1 =

 u0,x
v0,y

u0,y + v0,x

 ;εεεb2 = −

 wb,xx
wb,yy
2wb,xy

 ;

εb3 =

 ws,xx
ws,yy
2ws,xy

 ; εεεs =

{
γxz
γyz

}
; γγγs =

{
ws,x
ws,y

}
(8)

Based on Maxwell’s equation, as elucidated in
reference [36], the electric and magnetic poten-
tials can be assumed as follows{

Φ (x, y, z) = g (z)φ (x, y) + 2z
h φ0;

Ψ (x, y, z) = g (z)ψ (x, y) + 2z
h ψ0

(9)

in which the electric potential, denoted as Φ,
and the magnetic potential, represented as Ψ;
the initial external electric voltage, referred to
as φ0, and the magnetic potential, indicated as
ψ0; g (z) = − cos (πz/h)denotes the distributed
function.

The magnetic and electric fields are obtained
from the electric and magnetic potentials ac-
cording to Eq. (9) as follows

E =

 Ex
Ey
Ez

 =

 −Φ,x
−Φ,y
−Φ,z

 =


−g (z)φ,x
−g (z)φ,y

−g′ (z)φ+ 2φ0

h

 ;

H =

 Hx

Hy

Hz

 =

 −Ψ,x
−Ψ,y
−Ψ,z

 =


−g (z)ψ,x
−g (z)ψ,y

−g′ (z)ψ + 2ψ0

h


(10)

where the components of the electric field,
namely Ex, Ey, and Ez, and the components
of the magnetic field, namely Hx, Hy, and Hz.

2.3. Constitutive equations

For the MEE face sheets, the constitutive re-
lations considering the coupling between elas-
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tic, electric, and magnetic are expressed as fol-
lows [37,38]

σfx
σfy
τfxy
τfxz
τfyz

 =


c̄11 c̄12 0 0 0
c̄12 c̄22 0 0 0
0 0 c̄66 0 0
0 0 0 c̄44 0
0 0 0 0 c̄55




εx
εy
γxy
γxz
γyz

−


0 0 ē31
0 0 ē31
0 0 0
ē15 0 0
0 ē15 0


 Ex

Ey
Ez

−


0 0 q̄31
0 0 q̄31
0 0 0
q̄15 0 0
0 q̄15 0


 Hx

Hy

Hz

 ;


Df
x

Df
y

Df
z

 =

 0 0 0 ē15 0
0 0 0 0 ē15
ē31 ē31 0 0 0




εx
εy
γxy
γxz
γyz

+

 k̄11 0 0
0 k̄22 0
0 0 k̄33

 Ex
Ey
Ez

+

 d̄11 0 0
0 d̄22 0
0 0 d̄33

 Hx

Hy

Hz

 ;


Bfx
Bfy
Bfz

 =

 0 0 0 q̄15 0
0 0 0 0 q̄15
q̄31 q̄31 0 0 0




εx
εy
γxy
γxz
γyz

+

 d̄11 0 0
0 d̄22 0
0 0 d̄33

 Ex
Ey
Ez

+

 µ̄11 0 0
0 µ̄22 0
0 0 µ̄33

 Hx

Hy

Hz


(11)

where σfx , σfy , σfxy, σfxz and σfyz are the stress
components and electric displacements, respec-
tively; Bfx , Bfy and Bfz are the magnetic dis-
placements; c̄ij represents the reduced elastic
coefficient; ēij is the reduced piezoelectric co-
efficients; q̄ij is the reduced piezomagnetic coef-
ficient; k̄ij is the reduced dielectric permittivity;
is the reduced electromagnetic permittivity co-
efficient; is the reduced magnetic permittivity
coefficient. In Eq. (11), the reduced coefficients
are presented as follows

c̄11 = c11 −
c213
c33

; c̄12 = c12 −
c213
c33

;

c̄66 = c66; c̄55 = c55; c̄44 = c44;

ē31 = e31 −
e33c13
c33

; ē15 = e15;

q̄31 = q31 −
q33c13
c33

; q̄15 = q15;

k̄33 = k33 +
e233
c33

; k̄11 = k11;

d̄33 = d33 +
q33e33
c33

; d̄11 = d11;

µ̄33 = µ33 +
q233
c33

; µ̄11 = µ11

(12)

in which the coefficients cij , eij , qij , kij , dij and
µij are taken from Table 1 . The constitutive
equations Eq. (11) in matrix form are reformu-
lated as follows

σσσfb = Cf
uubεεεb −CuebEb − CumbHb;

σσσfs = Cf
uusεεεs −CuesEs −CumHs;

Df
b = CT

uebεεεb +CeebEb +CembHb;

Df
s = CT

uesεεεs +CeesEs +CemsHs;

Bf
b = CT

umbεεεb +CembEb +CmmbHb;

Bf
s = CT

umsεεεs +CemsEs +CmmsHs

(13)

in which

σσσfb =
{
σx σy τxy

}T
; Df

b =
{

0 0 Df
z

}T
;

Bf
b =

{
0 0 Bfz

}T
;Eb =

{
0 0 Ez

}T
;

σσσfs =
{
τxz τyz

}T
; Df

s =
{
Df
x Df

y

}T
;

Bf
s =

{
Bfx Bfy

}T
;Es =

{
Ex Ey

}T
;

Hb =
{

0 0 Hz

}T
;Hs =

{
Hx Hy

}T
(14)

and

Cf
uub =

 c̄11 c̄12 0
c̄12 c̄22 0
0 0 c̄66

 ; Cf
uus =

[
c̄44 0
0 c̄55

]
;

Cueb =

 0 0 ē31
0 0 ē31
0 0 0

 ; Cues =

[
ē15 0
0 ē15

]
;

Cumb =

 0 0 q̄31
0 0 q̄31
0 0 0

 ; Cums =

[
q̄15 0
0 q̄15

]
;

(15)

Ceeb =

 0 0 0
0 0 0
0 0 k̄33

 ; Cees =

[
k̄11 0
0 k̄11

]
;

Cmmb =

 0 0 0
0 0 0
0 0 µ̄33

 ; Cmms =

[
µ̄11 0
0 µ̄22

]
;

Cemb =

 0 0 0
0 0 0
0 0 d̄33

 ; Cems =

[
d̄11 0
0 d̄22

]

The constitutive equations for the FG-
CNTRC core layer are formulated by{

σσσcb = Cc
uubεεεb;

σσσcs = Cc
uusεεεs

(16)
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where

σσσcb =
{
σcx σcy τ cxy

}T
;œc

s =
{
τ cxz τ cyz

}T
;

CCCcuub =

 Q11 Q12 0
Q12 Q22 0
0 0 Q66

 ; Cc
uus =

[
Q44 0
0 Q55

]
(17)

Q11 =
Ec11

1− νc12ν
c
21

; Q22 =
Ec22

1− νc12ν
c
21

;Q12 =
νc21E

c
11

1− νc12ν
c
21

;

Q44 = Gc23; Q55 = Gc13; Q66 = Gc12

2.4. Variational principle

Based on Hamilton’s principle, the governing
equation for free vibration analysis of the MEE
sandwich plate with the FG-CNTRC core is de-
scribed as follow

t∫
0

(δΠ− δV − δK) dt = 0 (18)

where the virtual strain energy is denoted as δΠ,
the virtual work done by the external electric
voltage and magnetic potential is represented as
δV , while the virtual kinetic energy is symbol-
ized by δK.

The expression for the virtual strain energy
δΠ of the MEE sandwich plate is given by

δΠ =

−hc/2∫
−h/2

∫∫
Ω

{
δ”Tb œ

f
b + δ”Tsœ

f
s − δETb D

f
b

−δETsDf
s − δHT

b B
f
b − δHT

s B
f
s

}
dΩ

dz
+

h/2∫
hc/2

∫∫
Ω

{
δ”Tb œ

f
b + δ”Tsœ

f
s − δETb D

f
b

−δETsDf
s − δHT

b B
f
b − δHT

s B
f
s

}
dΩ

dz
+

hc/2∫
−hc/2

∫∫
Ω

(
δ”Tb œ

c
b + δ”Tsœ

c
s

)
dΩ

dz
(19)

The expression for the virtual work δV is taken
by

δV =
∫
Ω
δNT

wNemNwdΩ;

Nem = −2

[
ē31φ0 + q̄31ψ0 0

0 ē31φ0 + q̄31ψ0

]
;

Nw =

{
wb,x + ws,x
wb,y + ws,y

}
(20)

The expression for the virtual kinetic energy δK
is formulated as follow

δK =

∫
Ω

δūT Im̈̄udΩ (21)

where

ū =


u1

u2

u3

 ; u1 =

 u0
v0

wb + ws

 ; u2 = −

 wb,x
wb,y
0

 ;

u3 =

 ws,x
ws,y
0

 ; Im =

 I0 0 0
0 I0 0
0 0 I0

 ; I0 =

 I1 I2 I4
I2 I3 I5
I4 I5 I6

 ;

(I1, I2, I3, I4, I5, I6) =

−hc/2∫
−h/2

ρf (z)
(
1, z, z2, f (z) , zf (z) , f2 (z)

)
dz

+

h/2∫
hc/2

ρf (z)
(
1, z, z2, f (z) , zf (z) , f2 (z)

)
dz

+

hc/2∫
−hc/2

ρc (z)
(
1, z, z2, f (z) , zf (z) , f2 (z)

)
dz

(22)
By inserting the relevant expressions into Eq.
(18), the governing equation of the MEE sand-
wich plate is reformed by∫

Ω

δε̄̄ε̄εTb D̄uubε̄̄ε̄εbdΩ−
∫
Ω

δε̄̄ε̄εTb D̄uebĒbdΩ

−
∫
Ω

δε̄̄ε̄εTb D̄umbH̄bdΩ+

∫
Ω

δγγγTs D̄uusγγγ
T
s dΩ

−
∫
Ω

δγγγTs D̄uesĒsdΩ−
∫
Ω

δγγγTs D̄umsH̄sdΩ

−
∫
Ω

δĒTb D̄
T
uebε̄̄ε̄εbdΩ−

∫
Ω

δĒTb D̄eebĒbdΩ

−
∫
Ω

δĒTb D̄embH̄bdΩ−
∫
Ω

δĒTs D̄
T
uesγγγ

sdΩ

−
∫
Ω

δĒTs D̄eesĒsdΩ−
∫
Ω

δĒTs D̄emsH̄sdΩ

−
∫
Ω

δH̄T
b D̄

T
umbε̄̄ε̄εbdΩ−

∫
Ω

δH̄T
b D̄embĒbdΩ

−
∫
Ω

δH̄T
b D̄mmbH̄bdΩ−

∫
Ω

δH̄T
s D̄

T
umsγγγsdΩ

−
∫
Ω

δH̄T
s D̄emsĒsdΩ−

∫
Ω

δH̄T
s D̄mmsH̄sdΩ

−
∫
Ω

δNT
wNemNwdΩ−

∫
Ω

δūT Im̈̄udΩ = 0

(23)
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where

ε̄̄ε̄εb =

 εεεb1
εεεb2
εεεb3

 ; Ēb = −

 0
0
φ

 ; H̄b = −

 0
0
ψ

 ;

Ēs = −
{
φ,x
φ,y

}
; H̄s = −

{
ψ,x
ψ,y

}
(24)

and

D̄uub =

 Ab Bb Eb

Bb Db Fb

Eb Fb Hb

 ;

(
Ab,Bb,Db,Eb,Fb,Hb

)
=∫ −hc/2

−h/2

(
1, z, z2, f(z), zf(z), f2(z)

)
Cf
uubdz

+

∫ h/2

hc/2

(
1, z, z2, f(z), zf(z), f2(z)

)
Cf
uubdz

+
∫ hc/2

−hc/2

(
1, z, z2, f(z), zf(z), f2(z)

)
Cc
uubdz;

D̄uus =

∫ −hc/2

−h/2
(1 + f ′)

2
Cf
uusdz +

∫ h/2

hc/2

(1 + f ′)
2
Cf
uusdz

+

∫ hc/2

−hc/2

(1 + f ′)
2
Cc
uusdz;

D̄ueb =
{

C1
ueb C2

ueb C3
ueb

}
;(

C1
ueb,C

2
ueb,C

3
ueb

)
=

∫ −hc/2

−h/2
Cueb (1, z, f (z)) g

′ (z) dz

+

∫ h/2

hc/2

Cueb (1, z, f (z)) g
′ (z) dz;

D̄umb =
{

C1
umb C2

umb C3
umb

}
;(

C1
umb,C

2
umb,C

3
umb

)
=

∫ −hc/2

−h/2
Cumb (1, z, f (z)) g

′ (z) dz

+

∫ h/2

hc/2

Cumb (1, z, f (z)) g
′ (z) dz;

D̄ues =

∫ −hc/2

−h/2
Cues (1 + f ′) gdz +

∫ h/2

hc/2

Cues (1 + f ′) gdz;

D̄ums =

∫ −hc/2

−h/2
Cums (1 + f ′) gdz +

∫ h/2

hc/2

Cums (1 + f ′) gdz;

D̄emb =

∫ −hc/2

−h/2
Cembg

′2dz +
∫ h/2

hc/2

Cembg
′2dz;

D̄ems =

∫ −hc/2

−h/2
Cemsg

2dz +
∫ h/2

hc/2

Cemsg
2dz;

D̄eeb =

∫ −hc/2

−h/2
Ceebg

′2dz +
∫ h/2

hc/2

Ceebg
′2dz;

D̄ees =

∫ −hc/2

−h/2
Ceesg

2dz +
∫ h/2

hc/2

Ceesg
2dz;

D̄mmb =

∫ −hc/2

−h/2
Cmmbg

′2dz +
∫ h/2

hc/2

Cmmbg
′2dz;

D̄mms =

∫ −hc/2

−h/2
Cmmsg

2dz +
∫ h/2

hc/2

Cmmsg
2dz

(25)

2.5. The isogeometric
approximation

Using the NURBS basic function [23], the dis-
placement fields are approximated by following

uh (x, y) =

m×n∑
I=1

NI (x, y)qI (26)

in which

NI (x, y) = NI (x, y) I6×6;

qI =
{
u0I v0I wbI wsI φI ψI

}T
(27)

where I6×6 is the identity matrix of size 6 × 6;
NI(x,y) denotes the NURBS basic function.

Inserting Eq. (26) into Eq.(24), the bending
and shear strain are rewritten as follow

ε̄̄ε̄εb =

m×n∑
I=1

{
B̄b1I B̄b2I B̄b3I

}T
qI =

m×n∑
I=1

B̄bIqI ;

γγγs =

m×n∑
I=1

B̄sIqI

(28)
in which

B̄b1I =

 NI,x 0 0 0 0 0
0 NI,y 0 0 0 0

NI,y NI,x 0 0 0 0

 ;

B̄b2I = −

 0 0 NI,xx 0 0 0
0 0 NI,yy 0 0 0
0 0 2NI,xy 0 0 0

 ;

B̄b3I =

 0 0 0 NI,xx 0 0
0 0 0 NI,yy 0 0
0 0 0 2NI,xy 0 0

 ;

B̄sI =

[
0 0 0 NI,x 0 0
0 0 0 NI,y 0 0

]
(29)

Similarly, the electric and magnetic fields are re-
formed as follows

Ēb =

m×n∑
I=1

B̄φbIqI ; Ēs =

m×n∑
I=1

B̄φsIqI ;

H̄b =

m×n∑
I=1

B̄ψbIqI ; H̄s =

m×n∑
I=1

B̄ψsIqI

(30)
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where

B̄φbI =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −NI 0

 ;

B̄φsI =

[
0 0 0 0 −NI,x 0
0 0 0 0 −NI,y 0

]
;

B̄ψbI =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −NI

 ;

B̄ψsI =

[
0 0 0 0 0 −NI,x
0 0 0 0 0 −NI,y

]
(31)

The vector Nw is rewritten by inserting Eq. (26)
into Eq. (20), as follow

Nw =

m×n∑
I=1

B̄wIqI ; B̄wI =

[
NI,x NI,x
NI,y NI,y

]
(32)

Besides substituting Eq. (26) into Eq. (22), the
displacement ū can be rewritten as follows

ū =

 u1

u2

u3

 =

m×n∑
I=1

 N1I

N2I

N3I

qI =

m×n∑
I=1

N̄IqI

(33)
in which

N1I =

 NI 0 0 0 0 0
0 NI 0 0 0 0
0 0 NI NI 0 0

 ;

N2I =

 0 0 −NI,x 0 0 0
0 0 −NI,y 0 0 0
0 0 0 0 0 0

 ;

N3I =

 0 0 0 NI,x 0 0
0 0 0 NI,y 0 0
0 0 0 0 0 0


(34)

Finally, after substituting the Eqs. (28), (30),
(32) and (33) into Eq. (23), the weak form for
free vibration behavior of the MEE sandwich
plate with FG-CNTRC core is reformed by fol-
lowing

(
K− ω2M

)
q̄ = 0 (35)

where

K =

∫
Ω

B̄T
b D̄uubB̄bdΩ−

∫
Ω

B̄T
b D̄uebB̄ebdΩ

−
∫
Ω

B̄T
b D̄umbB̄mbdΩ+

∫
Ω

B̄T
s D̄uusB̄sdΩ

−
∫
Ω

B̄T
s D̄uesB̄esdΩ−

∫
Ω

B̄T
s D̄umsB̄msdΩ

−
∫
Ω

B̄T
ebD̄

T
uebB̄bdΩ−

∫
Ω

B̄T
ebD̄eebB̄ebdΩ

−
∫
Ω

B̄T
ebD̄embB̄mbdΩ−

∫
Ω

B̄T
esD̄

T
uesB̄sdΩ

−
∫
Ω

B̄T
esD̄eesB̄esdΩ−

∫
Ω

B̄T
esD̄emsB̄msdΩ

−
∫
Ω

B̄T
mbD̄

T
umbB̄bdΩ−

∫
Ω

B̄T
mbD̄embB̄ebdΩ

−
∫
Ω

B̄T
mbD̄mmbB̄mbdΩ−

∫
Ω

B̄T
msD̄

T
umsB̄sdΩ

−
∫
Ω

B̄T
msD̄emsB̄esdΩ−

∫
Ω

B̄T
msD̄mmsB̄msdΩ;

(36)

M =

∫
Ω

N̄T ImN̄dΩ; q = q̄eiωt

in which the stiffness matrix and mass matrix
are denoted as K and M, respectively; the nat-
ural frequency and mode shapes are represented
as ω and q̄ , respectively.

3. Numerical results

Let’s consider the MEE sandwich rectangular
and circular plates with different boundary con-
ditions (BCs). The Dirichlet BCs of the rectan-
gular plate are presented as follows

• Fully simply supported (SSSS):
(u0, v0, wb, ws)|x=0,a;y=0,b = 0

• Fully clamped (CCCC):{
(u0, v0, wb, ws)|x=0,a;y=0,b = 0

(wb,n, ws,n)|x=0,a;y=0,b = 0

In addition, the BCs of the circular are taken by

• Simply supported (SS):
u0 = v0 = wb = ws = 0 at the boundary
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• Clamped (CC):
u0 = v0 = wb = ws = wb,n = ws,n = 0 at
the boundary

3.1. Comparison results

In order to assess the accuracy and consis-
tency of the present method, the free vibra-
tion of the homogeneous MEE square plate with
the material properties given in Table 1 is ex-
amined. The plate is modeled by 5×5, 7×7,
9×9 and 11×11 cubic NURBS elements. The
first three non-dimensional natural frequencies
ω̄ = ωR2

√
ρ/c̄11 of the SSSS homogeneous MEE

square plate with various mesh sizes are pre-
sented in Table 3. The frequencies are con-
trasted with the ones provided by Abazid tet
al. [39]. The comparison We can see from Ta-
ble 3 that the present numerical results match
very well with those given in the literature. In
addition, it can be seen that the disparity be-
tween the mesh levels is inconsequential. Hence,
the following analysis will involve utilizing an
11×11 element mesh. Next, the free vibration of
the MEE sandwich plate with FG-CNTRC core
with the material properties of the MEE face
sheets and FG-CNTRC core are taken accord-
ing to reference [40]. Table 4 shows the first four
natural frequencies of the MEE sandwich plate
with various CNTs distributions. The numerical
results are compared with the findings presented
in reference [40]. As we see from Table 4 , the
present numerical results are in good agreement
with those in the literature. The comparison re-
sults in Table 3 and Table 4 show that the cur-
rent method is accurate and advantageous for
the free vibration of the MEE sandwich plate
with the FG-CNTRC core.

3.2. Parametric study

Firstly, the free vibration of the MEE sandwich
rectangular plate with FG-CNTRC core with
the material properties is given in Table 1 and
Table 2 is considered in this subsection. The
dimensionless natural frequency is taken by

ϖ = ωa2
√
ρm/Em (37)

Table 5 presents the influence of the initial ex-
ternal electric voltage φ0, CNTs volume fraction
and CNTs distribution on the first dimensionless
natural frequency of the MEE sandwich square
plates. While the first nondimensional natu-
ral frequency with various value of the external
magnetic potential, CNTs volume fractions and
CNTs distributions is tabulated in Table 6. It
can be seen from Table 5 and Table 6 that an in-
crease in the electric voltage leads to a decrease
in the frequency of the MEE sandwich plate,
while a rise in the magnetic potential increases
the frequency. The reason is that the negative
electric voltage and positive magnetic potential
create compressive force, increasing the plate’s
stiffness. While the positive electric voltage and
negative magnetic potential create the tensile
force, decreasing the plate’s stiffness. Besides,
the dimensionless natural frequency increases as
the CNTs volume fraction increases. Among
the CNTs distributions, the CNT-X distribution
provides the highest natural frequency, followed
by CNT-UD, CNT-O and CNT-V distributions.
Next, the effect of the length-to-thickness ratio
on the first five dimensionless natural frequen-
cies of the MEE sandwich plate CNT-X distribu-
tion is expressed in Table 7. We can see in Table
7 that as the length-to-thickness ratio increases,
the dimensionless natural frequencies reduce. In
addition, Figure 2 plots the first six mode shapes
of the SSSS MEE sandwich square plate with
CNT-V distribution.

Moving forward, we investigate the free vibra-
tion of the MEE sandwich circular plate with
FG-CNTRC core under the simply supported
(SS) and clamped (CC) boundaries. The di-
mensionless natural frequency is taken by. The
impact of the initial electric voltage and mag-
netic potential on the first dimensionless natural
frequency of the MEE sandwich circular plates
is shown in Table 8 and Table 9, respectively.
The results in Table 8 and Table 9 indicate that
the negative electric voltage and positive mag-
netic potential enrich the stiffness of the MEE
sandwich circular plates, while the positive elec-
tric voltage and negative magnetic potential re-
duce the natural frequency. Furthermore, the
first five dimensionless natural frequencies of the
MEE sandwich plate with CNT-X distribution
under SS and CC boundaries with different val-
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ues of the radius-to-thickness ratio are expressed
in Table 10. According to Table 10, a rise in the
radius-to-thickness ratio decreases the frequen-
cies of the MEE sandwich circular plate. Finally,
the first six mode shapes of the SS MEE sand-
wich circular plate with CNT-V distribution are
plotted in Figure 3.

Tab. 3: The first three non-dimensional natural fre-
quencies ω of the SSSS MEE square plate a/h =
15, hc = 0, φ0 = ψ0 = 0.

Theory Meshes Mode
1 2 4

Ref. [39] 0.3698 0.9247 1.4568
5x5 0.3830 0.9343 1.4588
7x7 0.3830 0.9332 1.4573

Present 9x9 0.3830 0.9330 1.4570
11x11 0.3830 0.9330 1.4569

Fig. 2: The first six mode shapes of the SSSS MEE
sandwich square plate with CNT-V distribu-
tion (V̂CNT = 0.28, a/h = 10, hc = 8hf , φ0 =
2V, ψ0 = 0.2A).

4. Conclusions

The free vibration of the MEE sandwich plates
with FG-CNTRC core using the RPT and IGA

Fig. 3: The first six mode shapes of the SS MEE sand-
wich circular plate with CNT-V distribution
(R/h = 10, hc = 8hf , φ0 = 2V, ψ0 = 0.2A).

is investigated in this article. The sandwich
plate is composed of the homogeneous MEE face
sheet and the FG-CNTRC core with various
CNTs distributions and CNTs volume fractions.
The current method’s validity has been verified
by comparing it with previous references. The
impact of the CNTs distribution, CNTs volume
fraction, external electric and magnetic loads
and geometrical parameters on the natural fre-
quency of the MEE sandwich plate with FG-
CNTRC core is studied and discussed. The re-
sults of this article show that:

• The stiffness of the MEE sandwich plate in-
creases with an increase of the CNTs volume
fraction.

• The CNT-X distribution provides the high-
est plate’s stiffness, followed by CNT-UD,
CNT-V and CNT-O distributions.

• The natural frequency of the MEE sand-
wich plate is enriched with the negative
electric voltage and positive magnetic po-
tential. With the positive electric voltage
and negative magnetic potential, the fre-
quency decreases.

• The MEE sandwich plate’s stiffness is re-
duced by a rise of the length-to-thickness
and radius-to-thickness ratios.
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