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Abstract. In this paper, a novel second or-
der sliding mode control approach is extended to
a class of complex interconnected systems with
mismatched interconnections and unknown per-
turbations. The key contribution of this paper is
to cancel two common restrictions clogging the
application of the variable structure control to
complex interconnected systems: 1) all of state
variables must be accessible; 2) the control input
is affected by chattering problems. First, a novel
reduced-order sliding mode estimator (ROSME)
is proposed to estimate the unmeasurable vari-
ables. Second, based on Moore-Penrose inverse
technique and ROSME tool, a new decentral-
ized chattering-free second order robustness slid-
ing mode controller (CSORSMC) is developed to
force the system states to stay in a sliding sur-
face from the initial period instance and atten-
uate the chattering phenomenon in the control
signal. Besides, a novel appropriate linear ma-
trix inequality (LMI) requirement is proved such
that the plant in sliding mode is asymptotically
stable. Lastly, a mathematical model including
two subsystems is simulated which confirms the
usefulness and advantages of proposed technique.

Keywords: Sliding mode control, reduced-
order sliding mode estimator, chattering-

free, complex interconnected systems,
without reaching phase.

1. Introduction

Variable structure control with sliding mode,
also called sliding mode control (SMC), is a
striking and robust control method for control-
ling of uncertain dynamical plants [1, 2]. Its
advantages include the simple controller execu-
tion, insensitivity to the perturbations, and im-
mense robustness to the uncertainties etc. [3–5].
Owing to these benefits, SMC is wonderfully
employed for many practical control systems
such as induction machines, the pitch angle of
an aircraft, fuel cells, mechanical systems, so-
lar photovoltaic energy systems, nuclear reac-
tor, etc. [6–10]. Even good performance of slid-
ing mode, in general, there are still two assign-
ments that should be regarded for SMC design:
This includes: 1) design a decentralized second
order controller utilizing only output variables:
in many existing researches, the state variables
have to be accessible. This is worthless in prac-
tical control plants; 2) attenuate the undesirable
high-frequency vibrations and consider the gen-
eral systems: A new SMC strategy not only en-

210 © 2023 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 7 | ISSUE: 4 | 2023 | December

sures the asymptotic stability of the complex in-
terconnected systems but also reduces the chat-
tering phenomenon in control signal by using the
second order sliding mode technique.

For solving the decentralized output feedback
control design problem in the above first task,
many studies have been proposed in the pa-
pers [11–16]. In [11], a decentralized state feed-
back control law was sketched for the linear
uncertain interconnected systems by using lin-
ear matrix inequality (LMI). In [12], an adap-
tive robust state feedback controller with a
pretty simpler construction was suggested for a
class of large-scale non-linear dynamical plants
with non-linear interconnection terms and time-
varying delayed state disturbances. Based on
the backstepping approach and neural network
technique, an adaptive neural network track-
ing control signal was established in [13] for in-
terconnected nonlinear time-delay plants with
external perturbations. Nevertheless, these re-
searches have assumed that the variables of the
plant are obtainable. This is invalid in the prac-
tical control systems. In order to resolve this
weakness, the authors in the studies [14–16] have
used the output feedback technique. In [14],
an observer-based adaptive output feedback con-
troller was constructed for a class of large-scale
non-linear time delay plants by using Lyapunov-
Krasovskii functional. In [15], a decentralized
switched control strategy was investigated based
on the K-filters and the backstepping design
technique for a class of uncertain nonlinear in-
terconnected plants. By utilizing the approx-
imation ability of radial basis function neural
networks, an observer-adaptive backstepping de-
centralized controller was developed in [16] for
a class of powerfully interconnected nonlinear
plants tolerating stochastic perturbations. Nev-
ertheless, these works could not reduce the chat-
tering influence in signal input. The chatter-
ing is one of undesirable impacts in applica-
tions of practical control (e.g., high heat losses
in electrical power circuits, rebound in mechan-
ical structures); it can lead to low control pre-
cision, abortive reduction or even humiliation of
the plant performances being applied to. This
also is the second task of our research.

For achieving the chattering mitigation in the
second task, there are so many approaches to in-

hibit the negative effects of the chattering in the
control plants such as [17–22]. By applying the
backstepping-link technique, a second order slid-
ing mode controller (SOSMC) was constructed
in [17] for nonlinear constrained systems. In [18],
a SOSMC was designed based on LMI technique
for stabilizing the control of the uncertain plants
with external perturbations, time-varying uncer-
tainties, and nonlinearities. In [19], a second
order sliding mode controller was built for the
nonlinear plants by using a barrier Lyapunov
function and the totaling a power integrator ap-
proach. By using this method, a SOSMC was
investigated for the non linear plants with an
asymmetric output restriction [20]. Recently, an
adaptive second order controller was developed
in [21] for the nonlinear system by means of the
Lyapunov approach. In [22], an output feed-
back control signal was established to diminish
the undesirable high-frequency vibrations for a
class of uncertain switched plants by utilizing
tanh function. Unfortunately, these studies have
some solemn restrictions, where it is essential
that the exogenous disturbances must be con-
strained by positive scalars and the full state
information must be available. In addition, the
existing works could not be applied for the sta-
bility of complex interconnected plants with the
mismatched uncertainties in state matrix and in-
terconnections.

Inspired by the above-mentioned analysis, in
this paper, we challenge to address a novel de-
centralized chattering-free second order robust-
ness sliding mode controller (CSORSMC) for
a class of mismatched uncertain interconnected
systems via the Moore-Penrose inverse tech-
nique. Firstly, a reduced-order sliding mode
estimator (ROSME) is proposed to guess im-
measurable variables of the plants. Secondly,
a new CSORSMC is established by employing
only output information and estimated state
variables. Then, a creating LMI stipulation
to ensure the complex interconnected systems
with mismatched uncertainties in interconnec-
tions and state matrix in sliding mode is asymp-
totically stable. Finally, the theory will also be
applied to two subsystems that revised from the
study [22]. These numerical simulations demon-
strate efficiency and feasibility of the theoretical
results.
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The remainder of this research is arranged as
follows: The plant’s mathematical model, pre-
liminaries and a regular form are considered in
Section II. The main achievements of the paper
are represented in Section III, which comprises
a new ROSME, the system’s asymptotic stabil-
ity analysis and the design of a decentralized
CSORSMC. The practicability of the proposed
method is explained in Section IV with simula-
tion example by MATLAB software. To end this
work, a conclusion is made in Section V.

2. Model description of
the system

In this paper, a general mathematical model of
mismatched uncertain interconnected schemes is
portrayed as

ẋi(t) =
[
Āii +∆Āii(t)

]
xi(t) + B̄i [ui(t) + ψi(xi(t), t)]

+
L∑

j=1
j ̸=i

[
H̄ij +∆H̄ij(t)

]
xj(t),

yi(t) = C̄ixi(t),

(1)
where xi(t) ∈ Rni , ui(t) ∈ Rmi , yi(t) ∈ Rpi are
respectively the system states, the control sig-
nals, and the the ith subsystem’s output. The
indexes ni,mi, pi are the number of the sys-
tem states, control inputs, and output channels,
respectively. The symbols j, L,

∑
are respec-

tively the indexes of the interconnection sub-
system, the subsystems number and the sum
of the interconnection subsystems. The matri-
ces Āii, B̄i, H̄ij , C̄i are constant matrices with
suitable dimensions. The sign ψi(xi(t), t) is
the exogenous disturbance of the plant. The
matrix ∆Āii(t)xi(t) shows the mismatched pa-
rameter uncertainty of the plant for each iso-

lated subsystem. The terms
L∑

j=1,j ̸=i

H̄ijxj(t) and

L∑
j=1,j ̸=i

∆H̄ij(t)xj(t) indicate the mismatched

uncertain interconnections in the dynamic equa-
tions of the ith subsystem.

With the purpose of the CSORSMC design
for the plant, the following assumptions will be
introduced:

Assumption 1: The amount of control sig-
nals is smaller than or equal to the amount
of the output channels, that is, mi ≤ pi and
pi < ni. The input matrices and are full rank
and rank(C̄iB̄i) = mi.

Assumption 2: The pairs (Āii, B̄i) and
(Āii, C̄i) are entirely controllable and observ-
able, respectively.

Assumption 3: For the state matrix of
each isolated subsystem, the mismatched pa-
rameter uncertainty ∆Āii(t) has to gratify
D̄iiΞi(xi(t), t)Ēii, where Ξi(xi(t), t) is uniden-
tified but constrained by ∥Ξi(xi(t), t)∥ ≤ 1 for
all (xi, t) ∈ Rni ×R.

Assumption 4: The mismatched uncer-
tain interconnection ∆H̄ij(t) must fulfill
F̄ijΞij(xj(t), t)Ḡij , where Ξij(xj(t), t) is uniden-
tified but constrained by ∥Ξij(xj(t), t)∥ ≤ 1 for
all (xj , t) ∈ Rni ×R.

In order to create a novel attenuated-
chattering single phase output feedback control
algorithm, a single-phase sliding manifold func-
tion is defined as:

σi(yi(t), t) = ṡi(yi(t), t) + X̃isi(yi(t), t) , (2)

where si(yi(t), t) = s̄i(yi, t)− s̄i(yi, 0) exp(−υit),
ṡi(yi(t), t) is the time derivative of the term
si(yi(t), t), s̄i(yi, t) = Tixi = PiC̄ixi = Piyi,
X̃i ∈ Rmi×mi is any diagonal matrix and υi is
positive constant. In addition, Ti is switching
matrix and Pi is chosen matrix such that the
expression Ti = PiC̄i is solvable.

To get the regular form of the mismatched
uncertain interconnected systems (1), the con-
tributed results in the paper [23,24] will be uti-
lized. There are symmetric matrices exist Mi

and Ni satisfy the two following the LMIs:

RiMiRi +BiNiB̄
T
i > 0 ,

B̄⊥T
i

(
ĀiRiMiRi +RiNiRiĀ

T
i

)
B̄⊥

i < 0,
(3)

where Ri and Rj are ni×ni symmetric matrices
such that:

Ri = IiifB̄
⊥T
i D̄ii = 0,

Ri = Ii − Ēg
iiĒiiifB̄

⊥T
i D̄ii ̸= 0,

and

Rj = IjifB̄
⊥T
i F̄ij = 0,

Rj = Ij − Ḡg
ijḠijifB̄

⊥T
i F̄ij ̸= 0,

(4)
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where the Moore-Penrose inverse of the matrices
Ēii and Ḡij are Ēg

ii and Ḡg
ij respectively, and

basis of the null space of the matrix B̄i is B̄⊥
i .

The sliding matrix Ti is parameterized by
Ti = ΓiB̄

T
i S

−1
i where Γi is any mi × mi non-

singular matrix and Si = RiMiRi + BiNiB̄
T
i .

Now, in order to achieve the regular type of the
original systems (1), the transformation matrix
Πi is suggested as:

Πi =

[
B̄⊥T

i

ΓiB̄
T
i S

−1
i

]
and[
ξi
σi

]
= Πixi,

(5)

where the variable ξi is immeasurable and the
switching manifold function σi is measurable.
The transformation matrix’s inverse Πi is Π−1

i =
[SiB̄

⊥
i (B̄⊥T

i SiB̄
⊥
i )−1B̄i(TiB̄i)

−1]. Now, by us-
ing the transformation matrix (5), we can get:

ξ̇i =
[
Ãii11 +∆Ãii11

]
ξi +

[
Ãii12 +∆Ãii12

]
σi

+
L∑

j=1
j ̸=i

[
H̃ij11 +∆H̃ij11

]
ξj +

L∑
j=1
j ̸=i

[
H̃ij12 +∆H̃ij12

]
σj ,

σ̇i =
[
Ãii21 +∆Ãii21

]
ξi +

[
Ãii22 +∆Ãii22

]
σi

+
(
TiB̄i

)
[ui(t) + ψi(xi(t), t)]

+
L∑

j=1
j ̸=i

[
H̃ij21 +∆H̃ij21

]
ξj +

L∑
j=1
j ̸=i

[
H̃ij22 +∆H̃ij22

]
σj ,

(6)
where

Ãii11 +∆Ãii11 = B̄⊥T
i

[
Āi + D̄iΞiĒi

]
SiB̄

⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
,

Ãii12 +∆Ãii12 = B̄⊥T
i

[
Āi + D̄iΞiĒi

]
B̄i

(
TiB̄i

)−1
,

Ãii21 +∆Ãii21 = ΓiB̄
T
i S

−1
i

[
Āi + D̄iΞiĒi

]
SiB̄

⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
,

Ãii22 +∆Ãii22 = ΓiB
T
i S

−1
i

[
Āi + D̄iΞiĒi

]
B̄i

(
TiB̄i

)−1
,

H̃ij11 +∆H̃ij11 = B̄⊥T
i

[
H̄ij + F̄ijΞijḠij

]
SiB̄

⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
,

H̃ij12 +∆H̃ij12 = B̄⊥T
i

[
H̄ij + F̄ijΞijḠij

]
B̄i

(
TiB̄i

)−1
,

H̃ij21 +∆H̃ij21 = Ti
[
H̄ij + F̄ijΞijḠij

]
SiB̄

⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
,

H̃ij22 +∆H̃ij22 = Ti
[
H̄ij + F̄ijΞijḠij

]
B̄i

(
TiB̄i

)−1
,

ξi = B̄⊥T
i xi.

(7)
We generally consider the mismatching condi-
tion case of the interconnected uncertain sys-
tems (1). According to the possessions of the
Moore-Penrose inverse technique and attain-

ments in paper [25], we may simply acquire:

∆Ãii11 = B̄⊥T
i D̄iΞiĒiSiB̄

⊥
i (B̄⊥T

i SiB̄
⊥
i )−1 = 0,

∆Ãii21 = ΓiB̄
T
i S

−1
i D̄iΞiĒiSiB̄

⊥
i (B̄⊥T

i SiB̄
⊥
i )−1 = 0,

∆H̃ij11 = B̄⊥T
i F̄ijΞijḠijSiB̄

⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
= 0,

∆H̃ij21 = TiF̄ijΞijḠijSiB̄
⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
= 0.

(8)
By combining the Eqs. (6) and (8), the regular
system may be characterized by the following:

ξ̇i = Ãii11ξi +
[
Ãii12 +∆Ãii12

]
σi

+

L∑
j=1
j ̸=i

{
H̃ij11ξj +

[
H̃ij12 +∆H̃ij12

]
σj

}
,

σ̇i = Ãii21ξi +
[
Ãii22 +∆Ãii22

]
σi

+
(
TiB̄i

)
[ui(t) + ψi(xi(t), t)]

+

L∑
j=1
j ̸=i

{
H̃ij21ξj +

[
H̃ij22 +∆H̃ij22

]
σj

}
.

(9)

3. Main results

3.1. Establishment of a novel
reduced order sliding mode
estimator for systems:

In this part, we will suggest a new ROSME
which supports to construct a CSORSMC for
the uncertain interconnected plants (1). The
ROSME is suggested to guess the immeasurable
states of the plants.

˙̂ξi(t) = Ãii11ξ̂i(t) + Ãii12σi(t) , (10)

where ξ̂i(t) is the estimate of ξi(t). The block
diagram of ith subsystem being structured by
ROSME (10) is showed in Figure 1. We define an
error change between the the estimate variables
and real states as ξ̃i(t) = ξ̂i(t)− ξi(t). Next, by
merging the first of Eq. (6), results (8), and Eq.
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(10) lead to the estimator error dynamics as

˙̃ξi(t) = Ãii11ξ̃i(t)−∆Ãii12σi

−
L∑

j=1
j ̸=i

{
H̃ij11ξj +

[
H̃ij12 +∆H̃ij12

]
σj

}
.

(11)
Based on the Eq. (7) and the property

L∑
j=1
j ̸=i

{
H̃ij11ξj +

[
H̃ij12 +∆H̃ij12

]
σj

}

=

L∑
j=1
j ̸=i

{
H̃ji11ξi +

[
H̃ji12 +∆H̃ji12

]
σi

}
,

(12)

we have

˙̃ξi(t) = Ãii11ξ̃i(t)− B̄⊥T
i D̄iΞi(xi, t)ĒiB̄i

(
TiB̄i

)−1
σi

−
L∑

j=1
j ̸=i

{
H̃ji11ξi +

[
H̃ji12 + B̄⊥T

j F̄jiΞjiḠjiB̄j

(
TjB̄j

)−1
]
σi

}
.

(13)
To determine the upper limit of the estimator

Fig. 1: The block diagram of the plant with ROSME
(10).

error, the following theorem will be proposed as

Theorem 1. The norm of approximation er-
ror

∥∥∥ξ̃i(t)∥∥∥ in the observer error equation (13) is
limited by ϖi(t) for t ≥ 0 The term ϖi(t) is the
result of

ϖ̇i(t) = µi(t)ϖi(t)

+ γi

∥∥B̄⊥T
i D̄i

∥∥∥∥∥ĒiB̄i

(
TiB̄i

)−1
∥∥∥× ∥σi(t)∥+

L∑
j=1
j ̸=i

∥∥∥H̃ji11

∥∥∥∥∥∥ξ̂i(t)∥∥∥

+
L∑

j=1
j ̸=i

[∥∥∥H̃ji12

∥∥∥+
∥∥B̄⊥T

j F̄ji

∥∥ ∥∥∥ḠjiB̄j

(
TjB̄j

)−1
∥∥∥] ∥σi∥


(14)

where µi(t) = λmaxi
+ γi

L∑
j=1,j ̸=i

∥∥∥H̃ji11

∥∥∥ < 0,

λmaxi is a maximum eigenvalue of the matrix

Ãii11, γi is positive constant, ξ̂i(t) is the unmea-
surable state estimator defined in the Eq. (10)
and an initial condition of the approximation er-
ror ϖi(0) ≥ γi

∥∥∥ξ̃i(0)∥∥∥.

Proof of Theorem 1. Following the
recent study [25], the matrix Ãii11 =

B̄⊥T
i ĀiSiB̄

⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1 is stable matrix.

Thus, we have
∥∥∥exp(Ãii11t

)∥∥∥ ≤ γi exp (λmaxi
t),

where γi is positive scalars, and solving (13) to
yield

∥∥∥ξ̃i(t)∥∥∥ ≤
∥∥∥exp(Ãii11t

)∥∥∥∥∥∥ξ̃i(0)∥∥∥+

∫ t

0

∥∥∥exp [Ãii11(t− τ)
]∥∥∥

×
{∥∥∥B̄⊥T

i D̄iΞi(xi, t)ĒiB̄i

(
TiB̄i

)−1
∥∥∥ ∥σi(τ)∥

+
L∑

j=1
j ̸=i

[∥∥∥H̃ji11

∥∥∥ ∥ξi(τ)∥+ (∥∥∥H̃ji12

∥∥∥
+
∥∥∥B̄⊥T

j F̄jiΞjiḠjiB̄j

(
TjB̄j

)−1
∥∥∥) ∥σi(τ)∥

]}
dτ,

≤ γi

∥∥∥ξ̃i(0)∥∥∥ exp (λmaxit) +

∫ t

0

γi exp [λmaxi(t− τ)]

×
{∥∥B̄⊥T

i D̄i

∥∥∥∥∥ĒiB̄i

(
TiB̄i

)−1
∥∥∥ ∥σi(τ)∥

+
L∑

j=1
j ̸=i

[∥∥∥H̃ji11

∥∥∥ ∥ξi(τ)∥ +
(∥∥∥H̃ji12

∥∥∥
+

∥∥B̄⊥T
j F̄ji

∥∥∥∥∥ḠjiB̄j

(
TjB̄j

)−1
∥∥∥) ∥σi(τ)∥

]}
dτ.

(15)
Now, the inequation (15) are multiplied by
exp(−λmaxit) for both sides and we get

∥∥∥ξ̃i(t)∥∥∥ exp (−λmaxi
t)

≤ γi

∥∥∥ξ̃i(0)∥∥∥+

∫ t

0

γi exp (−λmaxiτ)
{∥∥B̄⊥T

i D̄i

∥∥ ∥∥∥ĒiB̄i

(
TiB̄i

)−1
∥∥∥

× ∥σi(τ)∥+
L∑

j=1
j ̸=i

[∥∥∥H̃ji11

∥∥∥(∥∥∥ξ̂i(τ)∥∥∥+
∥∥∥ξ̃i(τ)∥∥∥)+

(∥∥∥H̃ji12

∥∥∥
+

∥∥B̄⊥T
j F̄ji

∥∥∥∥∥ḠjiB̄j

(
TjB̄j

)−1
∥∥∥) ∥σi(τ)∥

]}
dτ

≤ γi

∥∥∥ξ̃i(0)∥∥∥+

∫ t

0

γi exp (−λmaxi
τ)

L∑
j=1
j ̸=i

∥∥∥H̃ji11

∥∥∥∥∥∥ξ̃i(τ)∥∥∥
+

∫ t

0

γi exp (−λmaxi
τ)

[∥∥B̄⊥T
i D̄i

∥∥∥∥∥ĒiB̄i

(
TiB̄i

)−1
∥∥∥ ∥σi(τ)∥

+

L∑
j=1
j ̸=i

∥∥∥H̃ji11

∥∥∥∥∥∥ξ̂i(τ)∥∥∥+

L∑
j=1
j ̸=i

(∥∥∥H̃ji12

∥∥∥+
∥∥B̄⊥T

j F̄ji

∥∥
×
∥∥∥ḠjiB̄j

(
TjB̄j

)−1
∥∥∥) ∥σi(τ)∥

]
dτ.

(16)
Shift exp(−λmaxi

t) to the right-hand side index
of above equation and use the Lemma in study
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[26], it tracks that

∥∥∥ξ̃i(t)∥∥∥ ≤ γi

∥∥∥ξ̃i(0)∥∥∥ exp

λmaxi

+ γi

L∑
j=1
j ̸=i

∥∥∥H̃ji11

∥∥∥
 t



+

∫ t

0

γi exp


λmaxi

+ γi

L∑
j=1
j ̸=i

∥∥∥H̃ji11

∥∥∥
 (t− τ)



×

∥∥B̄⊥T
i D̄i

∥∥∥∥∥ĒiB̄i

(
TiB̄i

)−1
∥∥∥ ∥σi(τ)∥+ L∑

j=1
j ̸=i

∥∥∥H̃ji11

∥∥∥∥∥∥ξ̂i(τ)∥∥∥

+

L∑
j=1
j ̸=i

(∥∥∥H̃ji12

∥∥∥+
∥∥B̄⊥T

j F̄ji

∥∥∥∥∥ḠjiB̄j

(
TjB̄j

)−1
∥∥∥) ∥σi(τ)∥

 dτ,

≤ ϖi(0) exp


λmaxi + γi

L∑
j=1
j ̸=i

∥∥∥H̃ji11

∥∥∥
 t



+

∫ t

0

γi exp


λmaxi + γi

L∑
j=1
j ̸=i

∥∥∥H̃ji11

∥∥∥
 (t− τ)


×

[∥∥B̄⊥T
i D̄i

∥∥∥∥∥ĒiB̄i

(
TiB̄i

)−1
∥∥∥ ∥σi(τ)∥

+

L∑
j=1,j ̸=i

∥∥∥H̃ji11

∥∥∥∥∥∥ξ̂i(τ)∥∥∥+

L∑
j=1
j ̸=i

(∥∥∥H̃ji12

∥∥∥
+
∥∥B̄⊥T

j F̄ji

∥∥∥∥∥ḠjiB̄j

(
TjB̄j

)−1
∥∥∥) ∥σi(τ)∥

]
dτ = ϖi(t),

(17)
where ϖi(t) gratifies (14). From now, we can
conclude that

∥∥∥ξ̃i(t)∥∥∥ ≤ ϖi(t) for all time. Ac-
cordingly, the proof of Theorem 1 is completed.

Now, we are in situation to derive necessary
conditions by LMI such that the closed-loop sys-
tem (1) is asymptotically stable in the sliding
mode.

3.2. Stability analysis in
single-phase sliding mode

In this section, the asymptotic stability of the
overall systems in the sliding mode will be
demonstrated by using the well-known LMI ap-
proach, Schur complement formula, and the Lya-
punov function.

Theorem 2. Regard the mismatched uncer-
tain interconnected systems (1) with assump-
tions 1-4 and the switching manifold surface

σi(yi(t), t) = 0. If there exist symmetric matrix

 Θi ẼT
i

⌢

QiD̃i

Ẽi −φ−1
i1 Ii 0

D̃T
i

⌢

Qi 0 −φi1Ii

 < 0 (18)

where Θi = ÃT
ii11

⌢

Qi +
⌢

QiÃii11 +
L∑

j=1,j ̸=i

[
H̃T

ji11

⌢

Qi +
⌢

QiH̃ji11 the scalar φi1 > 0,

and
⌢

Qi ∈ R(ni−mi)×(ni−mi) is any positive
definite matrix, then the overall plants (6)
with the subsequent (ni − mi) reduced-order
dynamics is asymptotically stable in the sliding
mode.

Proof of Theorem 2. By using the switch-
ing manifold surface σi(yi(t), t) = 0, the sliding
motion is offered by the following motion dy-
namics:

ξ̇i =
[
Ãii11 + D̃iΞiẼi

]
ξi+

L∑
j=1
j ̸=i

[
H̃ij11 + F̃ijΞijG̃ij

]
ξj ,

(19)
where D̃i = fB̄

⊥T
i D̄i, Ẽi =

ĒiSiB̄
⊥
i (B̄⊥T

i SiB̄
⊥
i )−1, F̃ij = B̄⊥T

i F̄ij ,
G̃ij = ḠijSiB̄

⊥
i (B̄⊥T

i SiB̄
⊥
i )−1. Be-

cause
L∑

j=1,j ̸=i

[
H̃ij11 + F̃ijΞijG̃ij

]
ξj =

L∑
j=1,j ̸=i

[
H̃ji11 + F̃jiΞjiG̃ji

]
ξi, the sliding

motion (19) can be represented by:

ξ̇i =
[
Ãii11 + D̃iΞiẼi

]
ξi+

L∑
j=1
j ̸=i

[
H̃ji11 + F̃jiΞjiG̃ji

]
ξi.

(20)
Now, by applying the Lyapunov function to
above sliding motion dynamics, we have

V =

L∑
i=1

ξTi
⌢

Qiξi. (21)
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By differentiating V with respect time and com-
bining with motion dynamics (20), we achieve

V̇ =

L∑
i=1

{
ξTi

[
ÃT

ii11

⌢

Qi +
⌢

QiÃii11 + ẼT
i Ξ

T
i (xi, t)D̃

T
i

⌢

Qi

+
⌢

QiD̃iΞi(xi, t)Ẽi

]
ξi

}
+

L∑
i=1

L∑
j=1
j ̸=i

ξTi

[
H̃T

ji11

⌢

Qi

+
⌢

QiH̃ji11 + G̃T
jiΞ

T
jiF̃

T
ji

⌢

Qi +
⌢

QiF̃jiΞjiG̃ji

]
ξi.

(22)
Applying Lemma 1 in paper [27] to the Eq. (22),
we obtain:

V̇ ≤
L∑

i=1

{
ξTi

[
ÃT

ii11

⌢

Qi +
⌢

QiÃii11 + φ−1
i1

⌢

QiD̃iD̃
T
i

⌢

Qi

+ φi1Ẽ
T
i Ẽi +

L∑
j=1
j ̸=i

(
H̃T

ji11

⌢

Qi +
⌢

QiH̃ji11

+ φ−1
i2

⌢

QiF̃jiF̃
T
ji

⌢

Qi + φi2G̃
T
jiG̃ji

)]
ξi

}
.

(23)
By using Schur complement formula [28] to
above equality, we get:

ÃT
ii11

⌢

Qi +
⌢

QiÃii11 +
L∑

j=1
j ̸=i

[
H̃T

ji11

⌢

Qi +
⌢

QiH̃ji11 + φ−1
i2

⌢

QiF̃jiF̃
T
ji

⌢

Qi

+ φi2G̃
T
jiG̃ji

]
+ φi1Ẽ

T
i Ẽi + φ−1

i1

⌢

QiD̃iD̃
T
i

⌢

Qi < 0.

(24)
Based on the Eqs. (23) and (24), we can con-
clude V̇ < 0, which further indicates that the
dynamics of motion (19) is asymptotically sta-
ble. The proof of Theorem 2 is finished.

In order to continue a novel attenuated-
chattering single-phase output feedback control
algorithm which uses second order sliding mode
control method, we will show it in following sec-
tion.

3.3. Design a CSORSMC for
reducing the chattering
phenomenon

In the above section, Theorem 2 has been estab-
lished for estimating error upper bound of the
ROSME. Now, by using this theorem, we will
suggest a decentralized CSORSMC to keep the
system’s state trajectory moving along switching

manifold surface from the zero-reaching time.
Firstly, by differentiating the switching manifold
function σi(yi(t), t) with respect time, we have

ṡi = TiĀiSiB̄
⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
ξi(t) + TiĀiB̄i

(
TiB̄i

)−1
σi

+
(
TiB̄i

)
ui(t) +

L∑
j=1
j ̸=i

[
TiH̄ijSjB̄

⊥
j

(
B̄⊥T

j SjB̄
⊥
j

)−1

×ξj(t) + TiH̄ijB̄j

(
TjB̄j

)−1
σj(t)

]
+ ϑi(t) + υiPiyi(0) exp(−υit),

(25)
where

ϑi(t) = Ti∆Āi(t)SiB̄
⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
ξi(t)

+ Ti∆Āi(t)B̄i

(
TiB̄i

)−1
σi +

(
TiB̄i

)
ψi(xi(t), t)

+
L∑

j=1
j ̸=i

[
Ti∆H̄ij(t)SjB̄

⊥
j

(
B̄⊥T

j SjB̄
⊥
j

)−1
ξj (t)

+ Ti∆H̄ij(t)B̄j

(
TjB̄j

)−1
σj(t)

]
.

(26)
The key idea of the second order sliding mode
is to execute the second order derivative of the
sliding variable s̈i(yi(t), t) rather than the first
derivative as in conventional sliding mode. The
switching variable in the second order derivative
is calculated as

s̈i = TiĀiSiB̄
⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
ξ̇i + TiĀiB̄i

(
TiB̄i

)−1
σ̇i(t)

+
(
TiB̄i

)
u̇i(t) +

L∑
j=1
j ̸=i

[
TiH̄ijSjB̄

⊥
j

(
B̄⊥T

j SjB̄
⊥
j

)−1
ξ̇j

+TiH̄ijB̄j

(
TjB̄j

)−1
σ̇j(t)

]
+ ϑ̇i − υ2i Piyi(0) exp(−υit).

(27)
The sliding function and its derivative are re-
spectively showed as

σi(t) = TiĀiSiB̄
⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
ξi(t)

+ TiĀiB̄i

(
TiB̄i

)−1
σi(t)

+
L∑

j=1
j ̸=i

[
TiH̄ijSjB̄

⊥
j

(
B̄⊥T

j SjB̄
⊥
j

)−1
ξj (t)

+ TiH̄ijB̄j

(
TjB̄j

)−1
σj(t)

]
+ ϑi(t)

+
(
TiB̄i

)
ui(t) + υiPiyi(0) exp(−υit)

+ X̃i [s̄i(yi, t)− s̄i(yi, 0) exp(−υit)] ,

(28)
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and

σ̇i(t) = TiĀiSiB̄
⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
ξ̇i(t)

+ TiĀiB̄i

(
TiB̄i

)−1
σ̇i(t)

+

L∑
j=1
j ̸=i

[
TiH̄ijSjB̄

⊥
j

(
B̄⊥T

j SjB̄
⊥
j

)−1
ξ̇j (t)

+ TiH̄ijB̄j

(
TjB̄j

)−1
σ̇j(t)

]
+ ϑ̇i(t)

+
(
TiB̄i

)
u̇i(t) + X̃i̇̄si(yi, t) +

[
X̃iυi − υ2i

]
× s̄i(yi, 0) exp(−υit).

(29)

Secondly, an unknown external disturbance
ϑ̇i(t) is surmised to be constrained and to satisfy
the following requirement:

∥∥∥ϑ̇i(t)∥∥∥ ≤
k∑

k=0

[
βki ∥yi∥ (∥xi∥)k

]
(30)

where βki, i = 1, 2..., k is unknown positive
scalar and k is the disturbance order. The posi-
tive integer r is found by the designer in con-
formity with the information about the order
of the distractions. For example, if the per-
turbation order is 2, then

∥∥∥ϑ̇i(t)∥∥∥ ≤ β0i ∥yi∥ +

β1i ∥yi∥ (∥xi∥) + β2i ∥yi∥ (∥xi∥)2. By substitut-
ing (5) into (30) and using ∥ξi(t)∥ ≤

∥∥∥ξ̂i(t)∥∥∥ +

ϖi(t), the inequality (30) can be written as

∥∥∥ϑ̇i(t)∥∥∥ ≤
k∑

k=0

[βki ∥yi∥
(∥∥∥SiB̄

⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
∥∥∥

×
(∥∥∥ξ̂i(t)∥∥∥+ϖi(t)

)
+

∥∥∥B̄i

(
TiB̄i

)−1
∥∥∥ ∥σi∥)k

]
.

(31)

Now, a CSORSMC is designed based on the
attained consequences in Theorem 1 and 2 for
dropping the chattering phenomenon in control
signal and stabilizing the mismatched uncertain
interconnected plants (1). This is main attain-
ment of this research.

To impose the state variables of the closed-
loop plants (6) upon the indicated sliding mani-
fold (2) from the zero reaching time, a new out-

put feedback control signal is suggested as

u̇i(t) = −
(
TiB̄i

)−1
{
η̃i ∥σi∥+ δ1i

∥∥∥Ãii11

∥∥∥ [∥∥∥ξ̂j∥∥∥+ϖj

]
+

⌢
ε1i ∥σi∥+

⌢
ε2i ∥σ̇i∥+

∥∥∥X̃i

∥∥∥ ∥Pi∥ ∥ẏi∥

+

L∑
j=1
j ̸=i

[
⌢
ε3i

(∥∥∥ξ̂i∥∥∥+ϖi

)
+

⌢
ε4i ∥σi∥+

⌢
ε5i ∥σ̇i∥

]

+
∥∥∥ϑ̇i∥∥∥+

∥∥∥[X̃iυi − υ2i

]∥∥∥ ∥Pi∥ ∥yi(0)∥ exp(−υit)
}

× sign(σi(t)),
(32)

where δ1i =
∥∥∥TiĀiSiB̄

⊥
i (B̄⊥T

i SiB̄
⊥
i )

−1
∥∥∥ , δ2i =∥∥TjH̄jiSiB̄

⊥
i ×(B̄⊥T

i SiB̄
⊥
i )

−1
∥∥∥, η̃i is positive

constant,
∥∥∥ϑ̇i(t)∥∥∥ is external disturbance de-

fined as (31) and ⌢
ε1i,

⌢
ε2i,

⌢
ε3i,

⌢
ε4i,

⌢
ε5i are con-

trol gains that will determine later.

Theorem 3. Regard the uncertain inter-
connected plants with exogenous perturbations
(1), suggest that the assumptions 1-4 are grati-
fied. Then, the state variables of the closed-loop
plants will hit the switching manifold surface
σi(yi(t), t) = 0 from the moment process under
the control law (32) when scalar gains satisfy the
following settings

⌢
ε1i ≥ δ1i

[∥∥∥Ãii12

∥∥∥+
∥∥B̄⊥T

i D̄i

∥∥∥∥∥ĒiB̄i

(
TiB̄i

)−1
∥∥∥] ,

⌢
ε2i ≥

∥∥∥TiĀiB̄i

(
TiB̄i

)−1
∥∥∥ ,

⌢
ε3i ≥ δ1i

∥∥∥H̃ji11

∥∥∥+ δ2i

(∥∥∥Ãii11

∥∥∥+
∥∥∥H̃ji11

∥∥∥) ,
⌢
ε4i ≥ δ1i

(∥∥∥H̃ji12

∥∥∥+
∥∥B̄⊥T

j F̄ji

∥∥∥∥∥ḠjiB̄j

(
TjB̄j

)−1
∥∥∥) ,

+ δ2i

(∥∥∥Ãii12

∥∥∥+
∥∥B̄⊥T

i D̄i

∥∥ ∥∥∥ĒiB̄i

(
TiB̄i

)−1
∥∥∥)

+ δ2i

(∥∥∥H̃ji12

∥∥∥+
∥∥B̄⊥T

j F̄ji

∥∥∥∥∥ḠjiB̄j

(
TjB̄j

)−1
∥∥∥)

⌢
ε5i ≥

∥∥∥TjH̄jiB̄i

(
TiB̄i

)−1
∥∥∥ .

(33)

Proof of Theorem 3. Cogitate the candi-
date Lyapunov functional as

Vi =

L∑
i=1

∥σi(yi(t), t)∥, (34)
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where direct differentiation of Vi results

V̇i(σi) =
L∑

i=1

σi(t)

∥σi(t)∥

{
TiĀiSiB̄

⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1

× ξ̇i(t) + TiĀiB̄i

(
TiB̄i

)−1
σ̇i(t)

+
L∑

j=1
j ̸=i

[
L∑

i=1

[
TiH̄ijSjB̄

⊥
j

(
B̄⊥T

j SjB̄
⊥
j

)−1
ξ̇j(t)

+TiH̄ijB̄j

(
TjB̄j

)−1
σ̇j(t)

]
+ ϑ̇i(t) +

(
TiB̄i

)
u̇i(t) + X̃i̇̄si(yi, t)

+
[
X̃iυi − υ2i

]
s̄i(yi, 0) exp(−υit)

}
≤

L∑
i=1

{∥∥∥TiĀiSiB̄
⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
∥∥∥∥∥∥ξ̇i(t)∥∥∥

+
∥∥∥TiĀiB̄i

(
TiB̄i

)−1
∥∥∥ ∥σ̇i(t)∥

+

L∑
j=1
j ̸=i

[∥∥∥TjH̄jiSiB̄
⊥
i

(
B̄⊥T

i SiB̄
⊥
i

)−1
∥∥∥

×
∥∥∥ξ̇i(t)∥∥∥+

∥∥∥TjH̄jiB̄i

(
TiB̄i

)−1
∥∥∥ ∥σ̇i(t)∥]

+
∥∥∥ϑ̇i(t)∥∥∥+

σT
i

∥σi∥
(
TiB̄i

)
u̇i(t)

+
∥∥∥X̃i

∥∥∥ ∥̇̄si(yi, t)∥+ ∥∥∥[X̃iυi − υ2i

]∥∥∥
×∥s̄i(yi, 0)∥ exp(−υit)} .

(35)
Since

∥∥∥ξ̇i∥∥∥ ≤
∥∥∥Ãii11

∥∥∥ [∥∥∥ξ̂j(t)∥∥∥+ϖj(t)
]
+
[∥∥∥Ãii12

∥∥∥
+
∥∥B̄⊥T

i D̄i

∥∥ ∥∥∥ĒiB̄i

(
TiB̄i

)−1
∥∥∥] ∥σi(t)∥

+
L∑

j=1
j ̸=i

{∥∥∥H̃ji11

∥∥∥ [∥∥∥ξ̂i(t)∥∥∥+ϖi(t)
]

+
[∥∥∥H̃ji12

∥∥∥+
∥∥B̄⊥T

j F̄ji

∥∥
×

∥∥∥ḠjiB̄j

(
TjB̄j

)−1
∥∥∥] ∥σi(t)∥} ,

(36)

we have

V̇i(σi) ≤
L∑

i=1

{
η̃i ∥σi(t)∥+ δ1i

∥∥∥Ãii11

∥∥∥ [∥∥∥ξ̂j(t)∥∥∥+ϖj(t)
]

+
⌢
ε1i ∥σi∥+

⌢
ε2i ∥σ̇i∥+

L∑
j=1
j ̸=i

[
⌢
ε3i

(∥∥∥ξ̂i(t)∥∥∥+ϖi(t)
)

+
⌢
ε4i ∥σi∥+

⌢
ε5i ∥σ̇i∥

]
+
∥∥∥ϑ̇i∥∥∥+

σT
i(t)

∥σi(t)∥
(
TiB̄i

)
u̇i(t)

+
∥∥∥X̃i

∥∥∥ ∥̇̄si∥+ ∥∥∥[X̃iυi − υ2i

]∥∥∥ ∥s̄i(yi, 0)∥ exp(−υit)} ,
(37)

where the control gains ⌢
ε1i,

⌢
ε2i,

⌢
ε3i,

⌢
ε4i and ⌢

ε5i
are detailed in (33). Now, by replacing the
control signal (32) into (37), we can see that

V̇i(σi) =
L∑

i=1

η̃i ∥σi(t)∥, η̃i is positive constant.

Thus, the state variables of the system arrive
the sliding manifold from the zero-reaching time
for all t ≥ 0. Proof of Theorem 3 is finished.

4. Numerical simulation

In this part, the above proved attainments are
verified by the numerical example that improved
from the research [22]. The mathematical sim-
luation of the mismatched uncertain intercon-
nected plants (1) is characterized as.

Subsystem I: i = 1, j = 2, n1 = 3,m1 = 2, and
the dynamics is given as

ẋ1(t) =
[
Ā1 + D̄1Ξ1(x1(t), t)Ē1

]
x1(t)

+ B̄1 [u1(t) + ψ1(x1(t), t)
]

+
[
H̄12 + F̄12Ξ12(x2(t), t)Ḡ12

]
x2(t),

y1(t) = C̄1x1(t),

(38)

where Ā1 =

 −1 1 0
0 1 −1
−1 1 −0.75

 , B̄1 = 0
1
0

 , H̄12 =

 −0.2 0 −0.1
0.1 0 0
0.2 0.1 0

, and

C̄1 =

[
1 1 −1
0 0 1

]
. To display the usefulness

of the suggested decentralized CSORSMC,
it is assumed that the exogenous perturba-
tion is

∥∥∥ϑ̇1(t)∥∥∥ ≤ 0.01 ∥y1∥ + 0.21 ∥y1∥ ×
(∥x1∥) + 0.04 ∥y1∥ (∥x1∥)2 the mismatched
uncertainty in state matrix and the interconnec-
tion respectively are D̄1Ξ1(x1(t), t)Ē1, where
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D̄1 =

 0
0
1

 ,Ξ1(x1(t), t) = 0.1 sin(0.1t), Ē1 =[
1 1 0

]
, and F̄12Ξ12(x2(t), t)Ḡ12,

where F̄12 =

 0
1
0

 ,Ξ12(x2(t), t) =

0.3 sin(0.1t), Ḡ12 =
[
1 1 0

]
.

Subsystem II: i = 2, j = 1, n2 = 3,m2 = 2
and the dynamics is given as

ẋ2(t) =
[
Ā2 + D̄2Ξ2(x2(t), t)Ē2

]
x2(t)

+ B̄2 [u2(t) + ψ2(x2(t), t)
]

+
[
H̄21 + F̄21Ξ21(x1(t), t)Ḡ21

]
x1(t),

y2(t) = C̄2x2(t),

(39)

where Ā2 =

 −0.1 1 0.2
1 1 −1
0.5 1 0.1

 , B̄2 = 0
1

−0.5

 , H̄21 =

 −0.2 0 −0.1
0.1 0 0
0.2 0.1 0

,

and C̄2 =

[
1 1 0
0 0 1

]
. To display

the usefulness of the suggested decen-
tralized CSORSMC, it is assumed that
the exogenous perturbation is

∥∥∥ϑ̇2(t)∥∥∥ ≤
0.01 ∥y2∥+0.21 ∥y2∥×(∥x2∥)+0.04 ∥y2∥ (∥x2∥)2
the mismatched uncertainty in state ma-
trix and the interconnection respectively

are D̄2Ξ2Ē2, where D̄2 =

 1
0
0

 ,Ξ2 =

0.1 sin(0.1t), Ē2 =
[
1 1 0

]
, and

F̄21Ξ21(x1(t), t)Ḡ21, where F̄21 =

 0
1
0

 ,Ξ21 =

0.4 sin(0.3t), Ḡ21 =
[
1 1 0

]
. The ini-

tial situations of two subsystems are cho-
sen as x1 (0) =

[
0.1 −0.1 0.01

]T and
x2 (0) =

[
0.1 −0.1 0.2

]T respectively. By
using the MATLAB software, the simulation
consequences are respectively portrayed from
Figs. 2-7 including the state variables of two
subsystems, the ROSME, error dynamics, the
upper limit of the error, the switching manifold
and the novel CSORSMCs. From the
above-mentioned simulation of the attained
achievements, we can realize that the suggested

Fig. 2: Time answer of the plant states of two subsys-
tems.

Fig. 3: Time reactions of the observer of two subsys-
tems.

approach is effective in dealing with the chatter-
ing destruction and the reaching phase removal
problems for a class of uncertain interconnected
systems with extended perturbations and
mismatched uncertainties.

5. Conclusions

In this research, a decentralized robust stabiliza-
tion and the chattering avoidance problem of the
complex interconnected plants with mismatched
parameter uncertainties in interconnections and
state matrix have been explored in which the
external perturbation is extended. Especially,
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Fig. 4: Time history of the observer errors.

Fig. 5: The trajectories of the error’s upper limit.

Fig. 6: Time history of the switching manifolds.

Fig. 7: Time responses of the suggested controllers.

this research has presented the improved SMC
without reaching phase such that the plant’s
robustness is guaranteed when its whole state
variables always start from the switching mani-
fold surface. The ROSME has been established
to guess the immeasurable states. By employ-
ing the ROSME tool and the Moore-Penrose in-
verse technique, a new decentralized CSORSMC
not only resolves the single-phase complex in-
terconnected problem but also cancels the un-
desired high frequency fluctuation in control sig-
nal. Moreover, the reduced-order interconnected
plants in sliding mode are asymptotically sta-
ble by means of the Lyapunov stability theory
and the well-known LMI technique. In addition,
instance simulation is specified to confirm the
practicability and usefulness of the key achieve-
ments. However, our study has not considered
the time-delay effect which leads to an unsteadi-
ness and/or diminishes the plant performance.
Hence, the development of the offered method to
other more general plants involving unidentified
time-varying delays could be the future trend.
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