
VOLUME: 8 | ISSUE: 1 | 2024 | March

Optimal renewable-integrated economic load
dispatch for a large-scale power system using

One-to-One Optimization Algorithm

Vu Uyen Phuong Nguyen1,Hanh Hoang Minh2, Thang Trung Nguyen3,∗

1Can Tho Vocational College, 57, August Revolution street, An Thoi Ward, Binh Thuy District,
Can Tho City; npuvu@ctvc.edu.vn

2Faculty of Automation Technology, Thu Duc College of Technology, Ho Chi Minh City 700000,
Vietnam; hanhhm@tdc.edu.vn

3Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

*Corresponding Author: Thang Trung Nguyen (Email:nguyentrungthang@tdtu.edu.vn )
(Received: 02-November-2023; accepted: 21-January-2024; published: 31-March-2024)

http://dx.doi.org/10.55579/jaec.202481.438

Abstract. This study presents the application
of a new meta-heuristic algorithm called the
One-to-One optimization algorithm (OOBO) for
solving the renewable-integrated economic load
dispatch problem (RI-ELD) with consideration
of both wind and solar power plants. The whole
study focuses on minimizing the overall expendi-
ture of fuel (OEF) for all thermal electric power
plants (TEPPs). The considered power system
consists of twenty TEPPs with different working
limits. OOBO is applied to solve the given prob-
lem in three cases of load demand level, including
2500, 2600, and 2700 MW. The results achieved
by OOBO in the three cases are compared with
other meta-heuristic algorithms called Coati op-
timization algorithm (COA) in the four aspects,
such as Best OEF (Bst. OEF), Average OEF
(Aver. OEF), Maximum OEF (Max. OEF).
OOBO not only outperforms COA in all com-
parison aspects but also provides faster conver-
gence speed to the optimal values of OEF at all
three cases of load demand. Moreover, OOBO
shows its surprising stability over COA regard-
less of the increase in load demand in Cases 2
and 3. By observing these results, OOBO de-
served the highly effective search tool for solving

the large-scale and highly complex RI-ELD prob-
lem.

Keywords: Economic load dispatch, Re-
newable energy, Thermal electric power
plants, Coati optimization algorithm,
One-to-One optimization algorithm, Load
demand.

1. Introduction

Solving the economic load dispatch problem
(ELD) is one of the first priorities in operating
the power system [1]. The process of solving
the ELD is to optimize the allocation of power
generation for each thermal electric power plant
(TEPP) to meet the load demand with a mini-
mum overall expenditure of fuel (OEF) and ful-
fill the involved constraints [2]. In the past,
TEPP was the unique generating source while
solving the ELD problem. However, the working
process of these TEPPs has eliminated a large
amount of toxic emissions that strongly destroy
both human health and the environment. In
these circumstances, the integration of different
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renewable generating sources (RGSs), such as
wind and solar, has become an affordable solu-
tion to benefit both the environmental and eco-
nomic aspects. The consideration of RGSs in
solving the ELD problem is called the renew-
able integrated–economic load dispatch problem
(RI-ELD).

Deriving from the ELD, RI-ELD is consid-
ered a large-scale and highly complicated opti-
mization problem, especially in the power sys-
tem with many TEPPs accompanied by differ-
ent non-linear constraints. In such a scale, ap-
plying the former approaches, such as Gauss-
Siedel [3] and Jacobian [4], is impractical to
find a complete optimal solution. Luckily, dif-
ferent smart computing methods were devel-
oped in the past two decades. These methods
could be divided into two groups, including hu-
man brain-based methods and heuristic meth-
ods. One of the most well-known representations
of the first group is artificial neural networks
(ANNs). Soon, there were many other meth-
ods derived from the principle of ANNs, such as
artificial neural network (ANN)-balancing com-
posite motion optimization (BCMO) [5], which
proved to be more effective than other common
optimization algorithms. On the other hand,
heuristic methods are also developed based on
natural phenomena, physics laws, animal living
practices, wildlife, etc. Soon, heuristic methods
rapidly evolved and are often known as meta-
heuristic algorithms. These methods have wit-
nessed an enormous leap forward in terms of ef-
fectiveness while solving large-scale and highly
complicated optimization problems in both en-
gineering and economics, and RI-ELD is one of
them. A considerable number of researches im-
plemented a different meta-heuristic method to
successfully solve the ELD and RI-ELD prob-
lem, such as the multi-objective multi-verse op-
timization (MOMVO) [6], Firework algorithm
(FWA) [7], Adaptive cuckoo search algorithm
(ACSA) [8], Grasshopper optimization algo-
rithm (GOA) [9], one rank cuckoo search algo-
rithm (ORCSA) [10], chaotic teaching–learning-
based optimization with Lévy flight (CTLBO)
[11], adaptive simulated annealing (ASA) [12],
Modified harmony search algorithm (MHSA)
[13], Whale optimization algorithm (WOA) [14],
tunicate Swarm Optimizer (TSO) [15], interior

search algorithm (ISA) [16], differentia evolution
immunized ant colony optimization (DEIANT)
[17], JAYA algorithm (YA) [18], moth-flame op-
timization algorithm (MFO) [19], Real-Coded
Elitism Genetic Algorithm (RCEGA) [20], slime
mould algorithm (SMA) [21], equilibrium op-
timizer (EO) [22], Turbulent Flow of Water
Optimization (TFWO) [23], firefly algorithm
(FA) [24], Chaotic whale optimization algorithm
(CWOA) [25].

By fully acknowledging the enormous bene-
fits of using meta-heuristic algorithms for solv-
ing different optimization problems in previous
studies, we decided to apply to novel meta-
heuristic algorithms, including coati optimiza-
tion algorithms (COA) [26] and One-to-One
Based Optimizer (OOBO) [27] to determine the
optimal solution of to the RI-ELD problem with
the consideration of wind power plant (WP) and
solar power plant (SP). COA is a nature-inspired
optimization problem proposed based on the
hunting practices of the coati, while OOBO is
built based on the mechanism of exchanging
knowledge in a population.

The motivation for selecting COA and OOBO
is decided based on different evaluations, as fol-
lows:

1. COA and OOBO are the new meta-
heuristic algorithms proposed in 2023.
These algorithms are the subsequent de-
velopment of the meta-heuristic algorithms
family to solve complex and nonlinear opti-
mization problems.

2. COA and OOBO have been tested by a wide
range of benchmark functions, including the
optimal design problems in practice. The
results from the tests have demonstrated
their high effectiveness over the previous
meta-heuristic methods such as the Marine
predator algorithm (MPA), Tunicate swarm
algorithm (TSA), Whale optimization al-
gorithm (WOA), Particle swarm optimiza-
tion (PSO), Genetic algorithm (GA), etc.
[26, 27].

3. Besides their effectiveness in terms of find-
ing the more promising solution in various
tests, the update mechanism for the new so-
lution of COA and OOBO has significantly
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reduced time response, as investigated in
[26], and computer resources, which are of-
ten represented by the number of popula-
tion and maximum iteration for reaching
the best fitness values [27].

The novelties and the critical contributions of
the whole study are as follows:

- Apply two novel optimization algorithms
for solving the most crucial problem in the
power system, which is the RI-ELD prob-
lem.

- Determine the most affordable method,
which is OOBO, for dealing with the RI-
ELD problem by using different comparison
aspects.

- Both wind and solar power plants are suc-
cessfully employed in the process of finding
the best solution to the RI-ELD problem.

- Proposed a template for integrating differ-
ent renewable energy sources in power sys-
tem operation to mitigate the environmen-
tal problems that are on high alert today.

2. Problem Formulation

2.1. Objective function

This study aims to minimize the overall expense
of fuel (OEF) of all the thermal electric power
plants (TEPPs). The OEF of each TEPP in the
considered power system is described as follows:

Minimize OEF =

NTEPP∑
j=1

σj + τjPGTEPP,j

+ φjPG2
TEPP,j

(1)

where OEF is the overall expense of fuel of all
the TEPPs; σj , τj , and φj are the fuel utiliz-
ing factors of TEPP j; PGTEPP,j is the power
output generated by the TEPP j; and NTEPP

is the number of TEPP in the considered power
system.

2.2. Constraints

The power balance constraints between the gen-
erating end and the receiving end: This con-
straint infers that total power produced by all
types of generating sources at the generating
side must equal the total power required by load
demand plus the loss in transmission lines:

NTEPP∑
j=1

PGTEPP,j + PGWP + PGSP = PLP + PLS

(2)

where
NTEPP∑
j=1

PGTEPP,j is the overall power out-

put generated by all TEPPs in the system;
PGWP and PGSP are, respectively, the power
generated by WP and SP connected with the
power system; PLP and PLP are, respectively,
the power consumed by the load and the power
loss in the transmission line.

The power loss in Equation 2 is determined
using the following expression:

PLS =

NTEPP∑
j=1

NTEPP∑
k=1,k ̸=j

PTEPP,jBj,kPGTEPP,k

+

NTEPP∑
j=1

B0jPGTEPP,j +B00

(3)

where Bj,k, B0j , and B00 are the loss factors.

The working limit of TEPPs: This constraint
means that the power generated by each TEPP
in the system can vary within its working limits
between the lowest and highest boundaries of
generation. Any violation of these limits will
cause the unstable status of the whole system:

PGlw
TEPP,j ≤ PGTEPP,j ≤ PGhg

TEPP,j (4)

where PGlw
TEPP,j and PGhg

TEPP,j are the lowest
and highest values of power generated by TEPP
j, PGTEPP,j is power produced by TEPP j.

The working limit of WP and SP: Similar to
TEPPs, both WPs and SPs only generate power
within the lowest and the highest range as fol-
lows:

PGlw
GW ≤ PGGW ≤ PGhg

GW (5)

PGlw
SW ≤ PGSW ≤ PGhg

SW (6)
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where PGlw
GW and PGhg

GW are the lowest and the
highest power generated by WP, PGlw

SW and #
are the lowest and the highest power generated
by SP, PGGW and PGSW are, respectively, the
power generated by the WP and SP.

3. Solution Methodology

3.1. The Coati optimization
algorithm

The Coati optimization algorithm (COA) is the
nature-inspired optimization algorithm based on
the hunting practices of the coati species in
wildlife. The update process for new solutions
of COA is completed in two phases as follows:

• Phase 1: The new solutions are produced
using the following expressions:

Cnew,p1
i =

 Ci +mf1 × (Pt+mf2 + Ci) if i < 0.5Np

Ci +mf1 × (Pg +mf2 + Ci) if FtPg < FtCi
, i > 0.5Np

Ci +mf1 × (Ci − Pg) if otherwise

(7)
where Cnew,p1

i is the new position of the coati i
in population in phase 1; Ci is the current posi-
tion of the coati I in the search space; mf1 and
mf2 are the magnifying factors, and their values
are between 0 and 1 for mf1 and between 1 and
2 for mf2. Pt and Pg are, respectively, the posi-
tions of the prey on the tree and on the ground;
and NP is the population number.

• Phase 2:: The new solutions in Phase 1 are
continuously updated in Phase 2 as follows:

Cnew,p2
i = Ci + (1− 2mf1)×

(
Bndlwi +mf1

× Bndhgi −Bndlwi

)
with i = 1, 2, ...Np

(8)
where Cnew,p2

i is the new position of the coat
i in Phase 2; Bndlwi and Bndhgi are the lowest
and highest boundaries of the new position in
the search space.

3.2. The One-to-One Based
Optimizer

Unlike COA, the One-to-One Based optimiza-
tion algorithm (OOBO) is proposed based on

the utilization of the diversification in the pop-
ulation. The advanced characteristic of this im-
plementation is to avoid the reliance on only one
individual throughout the updated process. In
short, the updated model of the algorithm for
new solutions is presented as follows:

Onew
i =

{
Oi +Rd× (Ok − af ×Oi) ifFtk < Fti

Oi +Rd× (Oi −Ok) otherwise

(9)
with

Ok = [Ok1, Ok2, ...OkN ] with N = N_p (10)

and
af = round (1 +Rd) (11)

where Onew
i is the new solution i of the popula-

tion; Oi is the current solution; Rd is the random
value between 0 and 1; Ok is the random solution
picked up from the navigating group; af is the
amplifying factor; Ftk and Fti are, respectively,
the fitness value of the navigating solution and
the considered solution.

3.3. The discussion of using
random factors in the
update process of COA and
OOBO

Note that the implementation of the magnify-
ing factors plays a significant role and directly
affects the quality of the newly updated solu-
tion. As a result, the higher the quality of newly
updated solutions, the more effective the search
process will be. The so-called effective meta-
heuristic algorithm must balance the exploration
and exploitation phases while solving the opti-
mization problems. Mainly, exploration repre-
sents the capability of searching for new solu-
tions in unexplored areas inside the search space,
while exploitation aims to refine and enhance
current solutions found by the algorithm. How-
ever, both exploitation and exploitation must be
controlled by an affordable technique because
the overuse of one phase between the two will
significantly affect the overall performance of a
meta-heuristic algorithm.

The popular implementation of improving the
balance for the two phases is using the random
factors or the amplifier, which could be named
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under different titles but share the same func-
tion. In particular, the exploration phase of the
COA and OOBO is controlled by mf2 and af. In
contrast, the exploitation phase of the two ap-
plied methods is manipulated by mf1 and rnd,
respectively. The proper use of these factors re-
duces the possibility that the whole searching
process gets trapped in the local optima, result-
ing in a non-competitive solution compared to
other previous methods. Moreover, the opti-
mal selection of the mentioned factors also pro-
vides a high capability to scan for optimal so-
lutions while dealing with multi-dimension opti-
mization problems with many local optima and a
wide range of complicated constraints that must
be satisfied before the legal optimal solution is
achieved.

4. Results and Discussion

In this section, COA and OOBO are applied
to solve the renewable integrated-economic load
dispatch (RI-ELD) with different cases of load
demand from 2500, 2600, and 2700 MW. The
selected power system consists of twenty TEPPs
with different constraints of power generation
[9]. The main objective function of the whole
study is to minimize the OEF as much as possi-
ble. On the other hand, a WP and an SP with
a rated power generation of 100 and 50 MW are
integrated with the power system in all cases of
load demand levels. For a fair evaluation of the
real performance of the two applied algorithms,
the initial control parameters, such as popula-
tion number (Np) and maximum iteration index
(MImax), are fairly set by 50 and 100, respec-
tively. Moreover, the two applied methods will
be operated in 50 trial runs for the best values
of the main objective function.

All coding and related simulation for the
study is performed in a computer with 2.4 GHz
of the central processing unit (CPU) clock speed
and 4GB of Random accessing memory (RAM).
MATLAB software version R2018a is utilized for
the main platform to carry out the implementa-
tion of two applied methods.

Figure 1 shows the best convergences of
the two applied methods among 50 trial runs.

OOBO always reaches the best optimal value at
the end of the optimizing process, regardless of
the increase in load demand levels from Case 1
to Case 3. In the meantime, all the OEF val-
ues reached by COA in the same cases are all
the local ones and cannot considered as the op-
timal value for the considered problem. Figure

Fig. 1: The best convergences achieved by COA and
OOBO among 50 trial runs

2 describes the results achieved by both COA
and OOBO after 50 trial runs in three cases of
load demand. It is easy to observe that, in three
load demands cases, OOBO outperformed COA
by reaching a more optimal value of the OEF,
while COA cannot provide the same capability.
Specifically, all the OEF values achieved by COA
in the three cases are extremely far from the
optimal one. The observation on the average

Fig. 2: The results achieved by COA and OOBO after
50 trial runs

convergences and the maximum convergences in
Figure 3 and Figure 4 are continuously the su-
periority of OOBO over COA. Notably, in both
Figure 3 and Figure 4, OOBO always results in
better values in terms of Mean OEF and Max-
imum OEF at the end of the optimizing pro-
cess. Where the values of Mean OEF and Max-
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imum OEF reached by COA are vividly larger
than the similar ones found by OOBO. Fig-

Fig. 3: The average convergences achieved by COA and
OOBO among 50 trial runs

Fig. 4: The maximum convergences achieved by COA
and OOBO among 50 trial runs

ure 5 shows the detailed comparison between
COA and OOBO in different aspects of the first
case where load demand 2500 MW is employed,
including Best OEF (Bst.OEF), Average OEF
(Aver.OEF), Maximum OEF (Max.OEF), and
standard deviation (Std). OOBO outperforms
COA in the four mentioned aspects. Particu-
larly, OOBO not only reaches the best value
of Bst.OEF, but also given the surprising sta-
bility degree. Specifically, the results obtained
by OOBO in these aspects are $59325.4 for the
Bst.OEF and 0.907 for Std, while the similar
values achieved by COA are $59343.333 and up
to 10.53 for Std. By converting into percent-
ages, OOBO is better than COA 0.05% for the
Bst.OEF, 0.09% for the Aver.OEF, 0.12% for the
Max.OEF and 89.87% for the Std. Next, the in-
vestigation of the performance of the COA and
OOBO with the two remaining levels of load de-
mand are described in Figure 6 and Figure 7,
respectively. OOBO continuously shows its su-
periority over COA regardless of the increase of

Fig. 5: The comparison between COA and OOBO on
different criteria in Case 1

load demand in these two cases from 2600 to
2700 MW. Particularly, for the case of load de-
mand 2600MW, the superiority of OOBO over
COA measured in percentages is 0.032% for the
Bst.OEF, 0.071% for the Aver. OEF, 0.11% for
the Max.OEF, and 91,71 for Std, respectively.
While load demand level 2700 MW is employed,
the similar percentages of the four comparison
aspects are 0.03%, 0.075%, 0.11%, and 91,39%.

Note that, the optimal solutions achieved by

Fig. 6: The comparison between COA and OOBO on
different criteria in Case 2

COA and OOBO in the three cases of load de-
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Fig. 7: The comparison between COA and OOBO on
different criteria in Case 3

mand levels are reported in the Table A1 of the
Appendix.

For a better demonstration of OOBO’s per-
formance, the results achieved by the algorithm
have been compared to other previous methods,
including the Tunicate Swarm algorithm (TSA)
[28], the Whale Optimization Algorithm (WOA)
[29], and the Marine Predator Algorithm (MPA)
[30]. Besides, these algorithms are also tested
by various optimization problems by the authors
while developing the new OOBO. Note that all
the initial parameters for the tested algorithms
in terms of population number (Np) and max-
imum iteration index (MImax) are equally set,
similar to OOBO, as mentioned earlier.

Table 1 presents the results obtained by pre-
vious algorithms in Case 1 with a load demand
of 2500 MW. In the table, the results achieved
by OOBO are completely better than others in
all criteria, especially in terms of the best value
of the considered objective function (Bst. OEF)
and time response (TR). Next, Tables 2 and 3

Tab. 1: The comparison on different criteria between
OOBO and other algorithms in the Case 1.

Method TSA WOA MPA OOBO
Bst.OFE ($) 59326.99 59358.17 59325.37 59325.35
Aver.OEF ($) 59329.41 59389.33 59328.09 59326.88
Max.OEF ($) 59331.88 59423.87 59333.13 59329.72
Std 1.153 16.049 1.918 0.907
TR 1.392 0.576 0.954 0.175

describe the comparison in Cases 2 and 3, while
load demand levels are increased to 2600 MW
and 2700 MW, respectively. Similar to the

Tab. 2: The comparison on different criteria between
OOBO and other algorithms in the Case 2.

Method TSA WOA MPA OOBO
Bst.OFE ($) 61412.14 61441.39 61411.21 61411.2
Aver.OEF ($) 61415.4 61479.82 61414.65 61412.83
Max.OEF ($) 61418.32 61531.08 61419.25 61415.24
Std 1.43 19.714 2.109 0.968
TR 1.474 0.648 1.133 0.207

Tab. 3: The comparison on different criteria between
OOBO and other algorithms in the Case 2.

Method TSA WOA MPA OOBO
Bst.OFE ($) 63509.41 63548.73 63507.54 63507.11
Aver.OEF ($) 63511.71 63586.55 63510.83 63509.36
Max.OEF ($) 63514.86 63646.98 63517.44 63512.57
Std 1.248 19.108 2.644 1.298
TR 1.526 0.708 1.6 0.238

first case of load demand, OOBO still maintains
its superiority over the previous methods, re-
gardless of load demand increment. Specifically,
OOBO is still the only method that offers the
capability of finding the best OEF value with a
small TR.

5. Conclusions

In this study, both new meta-heuristic algo-
rithms, including COA and OOBO, are success-
fully applied to solve the RI-ELD problem for
the overall expense of fuel minimization consid-
ering both wind and solar power plants. Dif-
ferent load demand levels were employed, in-
cluding 2500, 2600, and 2700 MW, to judge the
real performance of the two applied methods.
A comparison of the results shows that OOBO
is completely superior to OOA in all compari-
son aspects, regardless of the increase in load
demand levels in the three cases. The optimal
results achieved by OOBO not only fulfill all the
involved constraints but also reach the optimal
value of the considered objective function. In
the three cases of load demand levels, the re-
sults achieved by COA and OOBO are evalu-
ated on the four aspects, including Bst. OEF,
Aver. OEF, Max. OEF, and Std. Surprisingly,
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OOBO always reaches better values in all com-
parison aspects, although the scale of load de-
mand is expanded in Case 2 and Case 3. For
instance, the superiority of OOBO over COA
over the four mentioned aspects in Case 1 are,
respectively, 0.05% for the Bst. OEF, 0.09% for
the Aver. OEF, 0.12% for the Max. OEF and
89.87% for the Std. The similar values in Case 2
are 0.03%, 0.075%, 0.11%, and 91.39%, respec-
tively. Lastly, in Case 3, these percentages are
0.03%, 0.075%, 0.11%, and 91.39v. Moreover,
OOBO also proves its superiority when com-
pared to other previous methods, such as TSA,
WOA, and MPA, especially in terms of finding
the best OEF values with a short time response.
Based on this evidence, OOBO deserves a highly
effective search method, and we strongly suggest
using OOBO to deal with large-scale and highly
complex problems such as RI-ELD.
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Tab. A1: The optimal solution achieved by COA and OOBO in the three cases of load demand levels.

Case 1 Case 2 Case 3
TEPP no. (2500 MW) (2600 MW) (2700 MW)

COA OOBO COA OOBO COA OOBO
TEPP 1 (MW) 396.757 395.380 421.027 416.119 419.647 424.266
TEPP 2 (MW) 124.022 147.212 146.201 155.979 164.630 177.049
TEPP 3 (MW) 108.402 115.243 131.315 121.992 125.032 129.143
TEPP 4 (MW) 89.790 96.275 116.248 104.053 114.756 107.049
TEPP 5 (MW) 124.591 102.361 121.288 112.633 103.259 113.375
TEPP 6 (MW) 54.402 66.830 37.953 71.618 71.508 75.346
TEPP7 (MW) 87.710 108.568 107.351 113.509 101.888 113.811
TEPP 8 (MW) 104.986 110.676 113.724 112.001 100.509 118.487
TEPP 9 (MW) 111.528 99.369 106.373 100.674 111.055 107.636
TEPP 10 (MW) 104.652 101.945 106.310 109.082 114.722 110.044
TEPP 11 (MW) 154.992 151.100 148.260 151.894 176.111 158.023
TEPP 12 (MW) 270.868 285.981 289.683 286.114 307.249 292.263
TEPP 13 (MW) 113.708 111.955 108.918 118.829 130.877 117.909
TEPP 14 (MW) 50.086 29.111 43.601 35.466 74.006 35.746
TEPP 15 (MW) 115.950 106.509 121.523 106.096 92.917 111.798
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