
VOLUME: 1 | ISSUE: 1 | 2017 | June

Modelling of Graph Databases

Jaroslav POKORNY*

Faculty of Mathematics and Physics, Charles University, Malostranske nam. 25, 118 00, Praha,
Czech Republic

*pokorny@ksi.m�.cuni.cz
(Received: 3-February-2017; accepted: 20-April-2017; published: 8-June-2017)

Abstract. Comparing graph databases with tra-
ditional, e.g., relational databases, some impor-
tant database features are often missing there.
Particularly, a graph database schema includ-
ing integrity constraints is mostly not explic-
itly de�ned, also a conceptual modelling is not
used. It is hard to check a consistency of
the graph database, because almost no integrity
constraints are de�ned or only their very sim-
ple representatives can be speci�ed. In the pa-
per, we discuss these issues and present current
possibilities and challenges in graph database
modelling. We focus also on integrity con-
straints modelling and propose functional de-
pendencies between entity types, which reminds
modelling functional dependencies known from
relational databases. We show a number of ex-
amples of often cited GDBMSs and their ap-
proach to database schemas and ICs speci�ca-
tion. Also a conceptual level of a graph database
design is considered. We propose a su�cient
conceptual model based on a binary variant of
the E-R model and show its relationship to a
graph database model, i.e. a mapping concep-
tual schemas to database schemas. An alterna-
tive based on the conceptual functions called at-
tributes is presented.

Keywords

Attribute, graph conceptual modelling,

graph database, graph database mod-

elling.

1. Introduction

There are several application domains in which
the data has a natural representation as a graph.
Well-known applications using graph data struc-
tures include particular �elds of the Semantic
web, i.e. RDF data, Linked data, and other
graph-oriented data as social networks and infor-
mation networks. In�uence of graph technolo-
gies is noticeable in areas like geography, spatial
objects, and semi-structured data (e.g. XML).
Graph databases are useful for storage and pro-
cessing sensor networks in logistics, protein in-
teraction pathways in life sciences, etc.

Graphs used in today's applications are usu-
ally directed graphs based simply on a set of
nodes, together with a binary relation on these
nodes to represent the edges among them. Also
undirected graphs and multigraphs can be de-
�ned in this way. The labeling of the edges is
represented as a function from the edges to the
�nite alphabet of symbols. The graphs are en-
riched mostly with properly de�ned attributes
(properties).

A graph database (GDB) is any storage sys-
tem that uses graph structures to represent and
store data. An associated new brand category
of data stores is called graph database manage-
ment systems (GDBMS). Today, due to some
their special properties, GDBMS belong among
so called NoSQL databases.

Similarly to traditional databases, GDBs are
based on a (logical) data model. Such a model
is characterized by the following three features:

4 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

khangnt
Typewriter
DOI: http://dx.doi.org/10.25073/jaec.201711.44

VOLUME: 1 | ISSUE: 1 | 2017 | June

• Data and the database schema are repre-
sented by a graph or by data structures gen-
eralizing the notion of graph.

• Manipulation of data is expressed by graph
transformations like graph-oriented opera-
tions and type constructors.

• Integrity constraints (IC) enforce data con-
sistency.

Most of the graph database models proposed
in the literature ignore at least one of the three
components of a complete database model. Par-
ticularly, there has been much less work de-
voted to the formalisms other than graph reach-
ability patterns or, e.g., the ICs such as labels
with unique names, typing constraints on nodes,
functional dependencies, and domain and range
of properties [1].

A graph database schema re�ecting the above
features consists of three components: a set of
data structure types, a set of operators or infer-
ence rules, and a set of ICs (often called only
constraints). Often we talk about the logical
schema of a GDB in this context. Formally, ICs
are statements about a GDB which must be sat-
is�ed. In e�ect, a GDB can be considered as an
instance of its schema. For a GDB designer,
the logical schema refers to the organization of
data, which describes how the database will be
constructed. Graph schemas are also appropri-
ate tools to understand and visualize the data in
the GDB.

Current commercial GDBs still need more im-
provements to meet these traditional d�nitions.
A graph database model is usually not pre-
sented explicitly, but it is hidden in constructs
of data de�nition language (DDL) which is at
disposal in the given GDBMS. Especially the
IC possibilities and a declarative language for
online querying of graph data are either lim-
ited or completely lacking. Also the notion of
database schema is often understood in other
way than usually. Many graph database ven-
dors have opted to either support a weaker no-
tion of schema or to avoid it entirely. For ex-
ample, a Titan [21] database schema can either
be explicitly or implicitly de�ned. The schema
is de�ned implicitly when it is �rst used dur-
ing the addition of an edge, node or the setting

of a property. GDBMS Orient [22] even distin-
guishes three roles of graph database schema:
schema-full, schema-less, schema-hybrid (more
in Sec. 3.2).

For example, the advanced GRAD [2] is a
schema-less database model. This is in ac-
cordance with a general approach to NoSQL
databases, where the notion of database schema
is usually not considered at all. Its authors
support the idea to load the data into a graph
repository without restricting it to any prede-
�ned schema. Then, the analyst can design an
application-implicit, on-read schema and have
the �exibility to explore more conveniently the
graph at run-time according to speci�c scenario.
On the other hand, schema-less model leads to
sub-optimal query processing because the code
that needs to make a decision on which paths
to explore in the graph has to �rst ask each ob-
ject it encounters what type it is. And this is an
expansive operation.

Conversely, strict schema enforcement is
sometimes considered disadvantageous by those
who develop applications for dynamic domains,
e.g., domains dealing with user-generated con-
tent, where the structure of data may change
very often [3].

Our intention is to study approaches to GDBs
which are capable of expressing a schema and/or
ICs, while at the same time still have manage-
able model checking properties. In a top-down
approach to development of a GDB, ICs depend
on the conceptual model behind and on expres-
siveness of the DDL. Obviously, the complexity
of such formalisms depends on how the underly-
ing directed graphs of the databases are repre-
sented. An interesting approach to GDBs is pre-
sented just by GRAD database model, which al-
though schema-less, uses conceptual constructs
occurring in E-R conceptual model.

Related works. There is not too much
literature about graph database models and
graph conceptual models. ICs in graph
databases environment are mentioned also only
marginally. Books are rather devoted to com-
mercial GDBMSs [4] or Big Graph applications
(e.g., [5]). In cite6 we discuss limitations of
graph databases, but without consideration of
their conceptual properties including ICs. These

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 5

VOLUME: 1 | ISSUE: 1 | 2017 | June

parts of graph database technology are dis-
cussed in [7]. Some papers partially compare
graph database models used in various commer-
cial GDBMS (e.g., [3], [8]). Concerning graph
database schemas, three most popular GDBMS
from the DB-Engines Ranking of Graph DBMS
[23] , Titan and OrientDB use the notion of
schema, not Neo4j [7]. But they enable only
some simple ICs (see, Sec. 3.2.).

Papers focused on graph database modelling
such as [2] and [3] provide an exclusion and con-
sider ICs in more detail. The graph database
model GRAD supports advanced graph struc-
tures, a set of well-de�ned constraints over these
structures, and a powerful graph analysis ori-
ented algebra. An attempt to implement a graph
database schema expressed in UML on top of
Neo4j is described in [9].

Objective and contribution. In the paper,
we discuss issues and current possibilities and
challenges in graph database modelling. Also
a conceptual level of a graph database design
is considered. We propose a su�cient concep-
tual model and show its relationship to a graph
database model.

We will also use a functional approach to a
database modelling in which a database graph
is represented by so called attributes, i.e. typed
partial functions [10]. We use for this approach
the HIT Database Model, see, e.g., [12], as
a functional alternative variant of E-R model.
Then a typed lambda calculus can be used as
a data manipulation language. This approach
re�ects the graph structure of a GDB and, on
the other hand, provides powerful possibilities
for dealing with properties in querying the GDB
content. The paper is an extension of the work
[7].

The rest of the paper is organized as follows.
In Sec.2 we describe some basic graph database
models including main types of graphs usable
in this area. Section 3. presents a discussion
about categories of ICs and some examples from
GDBMS Neo4j, Titan, OrientDB, and Stardog
[24] . We focus also on modelling functional de-
pendencies between entity types, which reminds
modelling functional dependencies known from
relational databases, and extend them to con-
ditional functional dependencies. In Sec. 4 we

will attempt to introduce a conceptual level for
GDB, i.e., the level not considered in the graph
database world at all. We use a binary vari-
ant of the E-R model and introduce a functional
approach with so called attributes as �rst class
citizen construct. Finally, Sec. 5 concludes the
paper.

2. Logical Level of Graph

Databases

2.1. Graph De�nitions

All graph database models have their formal
foundations in the basic mathematical de�ni-
tions of various types of graphs. The most
commonly used model of graphs in this context
is called a (labelled) property graph model [4].
For example, current leading graph databases
Neo4j and Titan are built on top of property
graphs. The property graph contains connected
entities (the nodes) which can hold any number
of attributes (properties) expressed as key-value
pairs with text keys in the simplest case. Rela-
tionships provide directed, semantically relevant
connections (edges) between two nodes. A re-
lationship always has a direction, a start node,
and an end node. Nodes and edges are tagged
with labels representing their di�erent roles in
application domain. There are exclusions, e.g.
in GDBMS Titan unlike edge labels, node la-
bels are optional. Some approaches refer to the
label as the type. Labels may also serve to at-
tach metadata - index or constraint information
- to certain nodes and edges. Like nodes, rela-
tionships can have any properties. Often, rela-
tionships have quantitative properties, such as
weight, cost, distance, ratings or time interval.
Properties make the nodes and edges more de-
scriptive and practical in use. The ability to
type an edge and attach properties to it increases
the semantic expressiveness of directed graphs.
Both nodes and sometimes also edges are de�ned
by a unique identi�er.

As relationships are stored e�ciently in GDB,
two nodes can share any number or relation-
ships of di�erent types without sacri�cing per-
formance. Note that although they are directed,

6 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 1 | 2017 | June

relationships can always be navigated regard-
less of direction. In fact, the property graph
model concerns data structure called a directed,
labelled, attributed multigraph in graph theory.
Then, the de�nition of a database graph is as
follows:

De�nition 1 : A database graph G =
(V,E,N,Σ, ρ, A,Att) is a directed, labelled, at-
tributed multigraph, where V is a �nite set of
nodes with identi�ers drawn from an in�nite al-
phabet N,E is a set of edges, and ρ is an inci-
dence function mapping E to V ×V . Node iden-
ti�ers are called also labels (node labels). The
edge labels are drawn from the �nite set of sym-
bols Σ, and α is an edge labelling function map-
ping E to Σ. A is a set of attributes (properties)
represented by couples (Ai, valuei). Att is a
mapping assigning to each node/edge a subset
(possibly empty) of attributes from A.

Observe that De�nition 1 accepts database
graphs with di�erent sets of attributes for
nodes/edges of the same types. It occurs in
practice, especially in cases where no graph
database schema is at disposal, i.e., in schema-
less GDBMSs.

Since an undirected edge can be always rep-
resented as two directed edges, each one in a
reverse direction of the other, undirected graphs
are a particular case of directed graphs. Often
querying a GDB is formulated and performed
regardless of direction type.

The currently known GDBMSs, categorized
under the NoSQL umbrella, are mostly built on
top of database graphs based on the De�nition
1.

2.2. Graph database modelling

In a native graph database model, both the
schema and its instances are modelled as graphs.
Nodes and edges are �rst-class citizens. The
model equips users by data as well as graph
topology-aware data manipulation operators.
These operators in�uence a development of
graph query languages. They handle entire
graphs and do not simply return sets of dis-
connected nodes. But there are exceptions,
e.g. GDBMS Neo4j. Finally, the consistency

of the graph data should be guaranteed by ICs
d�ned over the graph structures and maintained
through, e.g., special algebraic operations. The
constraints should be applied on whole sub-
graphs and not just on single nodes or edges.

Example 1 : Suppose entity types Language,
Teacher, and Town. Relationship types
Teaches and Is_born_in describe teaching
and to be born (in a town), respectively. An
associated graph database schema is depicted
in Fig. 2. Figure 1 shows an instance of this
schema. We could suppose the following prop-
erties (without domains) for entity/relationship
types in Fig. 2: Language(Name,
Textbook), Teacher(#T_ID, T_name,
Birth_year), Town(Town_name,
Population), Teaches(Day, Hour,
Room), Is_born_in(Date). For exam-
ple, the property Textbook could look as
Textbook:string(120) for node type
Language in Fig. 2 and as Textbook:German
for beginners for node German in Fig. 1.
Properties both of nodes and edges are omitted
in Figs. 1 and 2.

Fig. 1: A graph database.

Fig. 2: Graph DB-schema 1.

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 7

VOLUME: 1 | ISSUE: 1 | 2017 | June

The strings Language, Teacher, and
Town as well as Teaches and Is_born_in can
be used both for labeling in the graph database
schema and in the associated GDB.

Because the human perceptual system is much
more adept in working with graph data struc-
tures a good visualization is indispensable for
GDB processing [5]. Authors of [13] mention the
Neoclipse editor of Neo4j enabling visualizing
and altering a GDB. Because a graph database
schema is again database graph, it seems possi-
ble to use such tools for graph database mod-
elling.

One can observe that the graph database
schema 1 may not be su�cient for applica-
tion using the GDB in Fig. 1. Obviously,
each teacher can teach more languages and each
teacher is born exactly in one town. These
ICs should be already revealed at a conceptual
level. Thus, there is M:N cardinality between
languages and teachers, which is not expressed
in Fig. 2. Then, a more sophisticated descrip-
tion would be needed. How can we expect,
the answer is in the conceptual modelling and
a conceptual schema designed for the GDB (see
Sec. 4).

3. Integrity Constraints

In the case of the existence of a graph database
schema, schema-instance consistency is required
[14]. As in traditional databases, ICs provide
a mechanism for capturing the semantics of the
domain of interest represented by graphs. In the
database area we usually distinguish three types
of ICs. Inherent constraints are inher-
ent to the data model itself and do not need
to be speci�ed explicitly in the schema but are
assumed to hold by the de�nition of the model
constructs. There are at least two inherent ICs
in the graph data model considered:

1. Node labels in a GDB are unique.

2. Edges of the GDB are composed of the la-
bels and nodes of the database graph in
which the edge occurs.

These constraints correspond roughly to the
ICs for the relational data model: (1) No com-
ponent of the primary key of a base relation is
allowed to accept NULL values; (2) The database
must not contain any unmatched foreign key val-
ues.

An explicit constraint is any constraint that
can be formulated in a DDL for a GDB. Some-
times also cardinalities of relationships are ex-
plicitly stated. Obviously, a goal is to develop a
su�ciently expressive language for formulation
of explicit ICs. Such languages are not yet com-
mon in the commercial GDBMSs. Implicit con-
straints are logical consequences of inherent and
explicit ICs.

Another ICs concern property values both of
nodes and edges. They include some domain
constraints for particular properties, and pos-
sibly logical restrictions for their mutual rela-
tionships, e.g., functional dependencies known
from relations in relational databases. However,
GDBs are well-suited for situations in which the
data complexity is contained in the relation-
ships between the entities rather than in the
property values associated with single nodes and
edges. Consequently, we will notice such ICs
only marginally in the paper.

Mostly the following ICs are studied [3]:

• types checking,

• node/edge identity, to verify that an entity
or a relationship can be identi�ed by either
a value (e.g., name or ID) or the values of
its attributes;

• referential integrity, to test that only exist-
ing entities are referenced;

• cardinality checking, to verify uniqueness of
properties or relationships;

• functional dependencies, to test that an el-
ement in the graph determines the value of
another;

• graph pattern constraints, to verify a struc-
tural restriction (e.g., path constraints).

It is remarkable, that for GDBMS DEX (now
Sparksee [25]) and In�niteGraph [26] the last

8 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 1 | 2017 | June

three IC types were not supported at all in 2012.
Today, a full schema model is currently used
in In�niteGraph. However, the developers of
this GDBMS provide users with a schema-hybrid
model involving strongly-typed objects for per-
formance and loosely-typed objects for �exibil-
ity.

3.1. Formal approaches to

integrity constraints

As a formal apparatus for some ICs the predicate
calculus can be used. In the case of, e.g., quan-
tifying nodes and edges labels, the second-order
logic is needed. Authors of [15] show how de-
scription logics are well suited for this purpose.
A usable approach is o�ered by above mentioned
GRAD database model. It enables to express
some semantic restrictions over the graph data
with using graph patterns. A graph pattern P
is a predicate on the graph topology (specify-
ing conditions on the structural properties of the
graph) and properties (specifying conditions on
their values) of the graph elements.

A natural and useful IC is a functional de-
pendency (FD) on graph nodes and edges. For
example, Yu and He�in [16] proposed a value-
clustered graph functional dependency for RDF
data. Comparing to FDs known in the relational
data model (see, e.g., [17]), in a GDB FDs re-
quire a special approach. An oriented edge in
the graph database schema does not necessar-
ily denotes a FD, e.g., Teaches in Fig. 2, and
otherwise Is_born_in does. It means that
FD speci�cation has to be conceived as a for-
mulation of explicit ICs on the database level.
Due to the fact that graph database schemas
are multigraphs, FD description needs node and
edge labels, and direction, e.g., Teacher →
Is_born_inTown denotes such FD.

Often, FDs can be found for some edges
coming from non-functional relationships, e.g.,
Teaches. In associated domain there is a rule,
that teachers older than 70 teach at most one
language. Such a dependency can be speci�ed
as e.g., as Teacher(Birth_year > 1994) →
TeachesLanguage. We call such FDs conditional
functional dependencies. Generally, they are de-
scribed by expressions A(φ) →R B, where A,

B are node labels, R is edge label, and φ is a
Boolean expression. Considering Armstrong's
axioms used in the theory of FDs in the rela-
tional data model, only axiom of transitivity is
relevant here. For example, A(φ1) →R B and
B(φ2) →S C imply A(φ1) →T C. Obviously, it
would be necessary to specify a meaningful name
of the new edge T, which arises by composition of
R and S. The axiom of re�exivity can be not ap-
plied here. For example, the statement Person
→ Is_friend_of Person does not hold. A person
can have more friends.

In practice, an important problem is that
GDBs might be inconsistent, i.e., the database
might fail to satisfy all ICs. In the case of
GDB applications, such inconsistencies appear
due to interoperability and graph distribution.
For example, inconsistency might arise while
integrating several sources into a single RDF
graph, or while performing statistical inference
on a scienti�c or social network [18]. Similar is-
sues occur in integration of any heterogeneous
databases. Thus, there is a need for developing
an inconsistency-tolerant semantics for GDB.

3.2. Examples of integrity

constraints in GDBMSs

We will show a number of examples of often
cited GDBMSs and their approach to database
schemas and ICs speci�cation.

Neo4j : Neo4j is a schema-less GDBMS. In
terminology of Neo4j so called schema is a per-
sistent database state that describes available
indexes and enabled constraints for the data
graph, i.e. GDB. On the other hand, Neo4j helps
enforce data integrity with the use of ICs. ICs
can be applied to either nodes or relationships.
Unique node property constraints can be cre-
ated, as well as node and relationship property
existence constraints.

Suppose nodes with the label Teacher. Then
the following ICs can be speci�ed:

CREATE CONSTRAINT
ON(teacher:Teacher) ASSERT
teacher.#T_ID IS UNIQUE,

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 9

VOLUME: 1 | ISSUE: 1 | 2017 | June

CREATE CONSTRAINT
ON(teacher:Teacher) ASSERT
exists(teacher.Birth_year),

i.e. all nodes with the label Teacher have a
certain property.

CREATE CONSTRAINT ON()-
[teaches:Teaches]-() ASSERT
exists(teaches.Room),

i.e. all relationships with the label Teaches
have a certain property.

Titan: GDBMS Titan enables to de�ne some
ICs in the graph schema de�nition, e.g. cardi-
nality settings for node and edges properties, to
distinguish simple graphs and multigraphs, and
1:1, 1:N, and N:1 cardinalities. For example,

town = mgmt.makeEdgeLabel(’Is_born_in’)
.multiplicity(MANY2ONE).make()

i.e. the edge label Is_born_in is an example
with MANY2ONE multiplicity since each teacher
has at most one town where he/she is born, but
towns can have multiple teachers born there. In
Titan DDL schema elements can be even rede-
�ned during the existence of a graph.

OrientDB : GDBMS OrientDB brings to-
gether the power of graphs and the �exibility of
documents into one scalable database even with
an SQL layer. In OrientDB, classes for node
types and edge types are de�ned, e.g.,

orientdb>CREATE CLASS Teacher
EXTENDS V orientdb>CREATE CLASS
Language EXTENDS V

orientdb>CREATE CLASS Teaches
EXTENDS E

Nodes and edges (records of particular classes)
are created by commands CREATE VERTEX and
CREATE EDGE, respectively. During this pro-
cess identi�ers of nodes and edges are automat-
ically generated. To require that the Teaches
edge only exists between the node of type
Teacher and the node of type Language, it
is necessary to specify

orientdb> CREATE PROPERTY
Teaches.out LINK Teacher
orientdb> CREATE PROPERTY
Teaches.in LINK Language

Properties are de�ned as class �elds, e.g. by
command

teacher.createProperty("Birth_year",
OType.int)

They can be constrained by ICs like: Min-
imum Value: setMin(), Maximum Value:
setMax(), Mandatory: setMandatory(),
Read Only: setReadonly(), Not Null:
setNotNull(), and Unique.

The role of graph database schema can be pre-
cisely speci�ed in OrientDB:

• schema-full - enables strict-mode at a class-
level and sets all �elds as mandatory.

• schema-less - enables classes with no prop-
erties. Default is non-strict-mode, meaning
that records can have arbitrary �elds.

• schema-hybrid - enables classes with some
�elds, but allows records to de�ne custom
�elds. This role is also sometimes called
schema-mixed.

Stardog : A more sophisticated approach to
ICs is o�ered by GDBMS Stardog. Stardog
supports RDF graph model and property graph
model. It takes the IC validation as a data qual-
ity mechanism via closed world reasoning. ICs
can be speci�ed in languages as OWL, SWRL,
and SPARQL and serve for validation of RDF
data. The authors of Stardog argue that ICs in
Stardog may be arbitrarily complex and include
many conditions.

A special problem of ICs is their checking. If
an IC is enabled, data is checked as it is entered
or updated in the database, and data that does
not conform to the IC is prevented from being
entered. Relatively easy is the case when an IC
concerns a node and its neighbors. More com-
plex can be to verify a structural restriction.

4. Conceptual Level of

graph Databases

Graph-based conceptual schemas are an e�ective
communication medium between users of any a

10 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 1 | 2017 | June

GDB. They can signi�cantly help to GDB de-
signers. We describe a graph database by de�n-
ing its conceptual schema in a binary variant
of E-R conceptual model in Sec. 4.1. In Sec.
4.2, we present some mapping rules transform-
ing a graph conceptual schema expressed in E-R
model into graph databases schema in a weaker
variant of this E-R model. This approach is nec-
essary due to the inherent properties of database
graphs used for GDB in this paper.

4.1. A binary E-R model as a

variant for graph

conceptual modelling

As usually in the database world, we use a vari-
ant of E-R model for conceptual modelling of
GDB. Based on the general de�nition of E-R
model, in practice it is possible to de�ne various
E-R notations and more or less restricted vari-
ants of E-R models. As we deal with directed,
labelled, attributed multigraphs, only a binary
E-R variant can be considered. We propose
a graph conceptual schema de�nition based on
the binary E-R model with strong entity types,
weak entity types, binary relationship types, at-
tributes, identi�cation keys, partial identi�ca-
tion keys, ISA-hierarchies, and min-max ICs.

In a binary E-R model, we are limited to
only binary relationship types with the cardi-
nalities 1:1, 1: N, and M:N. Fig. 3 uses the con-
structs coming from the binary E-R model used
in the Oracle Designer CASE Notation (see, e.g.,
[19]). Its original notation, however, considers
only 1:1 and 1:N cardinalities, i.e., M:N rela-
tionship types must be decomposed into two
1:N relationship types. This is not too nec-
essary for our graphs, since M:N cardinalities
can be modelled directly. Thus, schemas like
the one in Fig. 3(a.) are acceptable. Both en-
tity and relationship types can have attributes.
Remind that in the Binary E-R model by Ora-
cle relationship types have no attributes. This
fact re�ects so called semantic relativism exist-
ing from the decomposition of M:N relationship
types. Observe that cardinalities 0 and 1 are
not precisely distinguishable in Fig. 3(a.). For
this purpose, the min-max ICs are usable. In
this model variant, min-max cardinalities are

expressed using the crow's foot notation used
for the start node and the end node of some
edges (see, Fig. 3(b.)). A straight and dotted
line express mandatory and optional relation-
ship, respectively. Min-max ICs could be ex-
pressed equivalently by expressions (E1 : (a, b),
E2 : (c, d)), where a, c ∈ {0, 1}, b, d ∈ {1, N},
and N means �any number greater than 1�.

Fig. 3: (a) Graph C-schema 1. (b) Graph C-schema 2.

Weak entity types are identi�cation- and
existence-dependent on some other entity type.
Suppose a weak entity type EW with a partial
identi�cation key that distinguishes instances of
EW that are related to the same instance of
a strong entity type E. The full identi�ca-
tion key of EW then has to include the iden-
ti�cation key of E. In Fig. 4, Street is a
weak entity type. Its partial identi�cation key
is Street_name. On the database schema
level, the identi�cation key of Street would be
Town_name, Street_name. The perpendic-
ular line denotes the identi�cation and existence
dependency. Identi�cation dependency implies
existence dependency.

Subtyping (ISA-hierarchies) can be simply ex-
pressed in this conceptual model as well, e.g.,
Teacher ISA Person. Identi�cation key of
Teacher would be #Person_ID. Due to the
explicit Is_a edge, the inherited information is
not necessary in subtypes. Obviously, Teacher
has yet its own identi�cation key #T_ID. The
supertype identi�cation key in the Teacher
type can only simplify querying in the associ-
ated GDB. A possible associated graph database
schema is in Fig. 5.

Weak entity types can be quite complex. To
reach a strong entity type for the weak entity

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 11

VOLUME: 1 | ISSUE: 1 | 2017 | June

Fig. 4: Graph C-schema 3.

type EW , it can be necessary to form a sequence
of other weak entity types or even a few such se-
quences for obtaining the resulted identi�cation
key of EW .

Example 2 : Consider entity types Person and
Loan_app. Two persons are necessary for a
loan transaction (e.g., a husband and his wife).
Loans of couples are numbered locally by dates
(see, Fig. 6). Consequently their full identi�ca-
tion key will be #Husband_ID, #Wife_ID,
#Date, where a referential integrity exists in
Loan_app, i.e. #Husband_ID⊆ #Person_ID
and, similarly, #Wife_ID ⊆ #Person_ID.

Fig. 5: Graph DB-schema 2.

On the other hand, the associated graph
database schema in Fig. 7 will be simpler, due
to the one-way orientation and union of partial
keys. Somebody could ask why only one edge la-
bel is used in the graph database schema 3. Ob-
viously, two edges will lead from each Loan_app
node in a GDB instance. This should be ensured

Fig. 6: Graph C-schema 4.

Fig. 7: Graph DB-schema 3.

by an IC. For better distinguishing the husband
and his wife in personal data, two di�erent edge
labels would be more appropriate. In De�nition
2 we will not consider this possibility, i.e. we
will use the variant with only a unique sequence
of weak entity types.

People experienced in E-R conceptual mod-
elling may lack other details of super-
type/subtype hierarchies, such as two important
constraints on the subtype entities: disjointness
and completeness. For example, the Student
entity type could exist as a further subtype of
Person. Then ICs like Student ∩ Teacher
= ∅, and Student ∪ Teacher = Person are
meaningful.

De�nition 2 : A graph conceptual schema
in the binary E-R model is 4-tuple <
E,R,H,CC >, where E is a set of entity
types, each of them is given by its name Ei and
a set of attributes AEi

. One or more attributes
from AEi

determine the identi�cation key KEi

of Ei. R is a set of binary relationship types,
while each relationship type R is given by a cou-
ple (Ei1, Ei2) and a set of attributes AR. There
are two inverse relationship names for each re-
lationship type. If Ei1 = Ei2 for R, then such
relationship type is called recursive. H is a set
of ISA-hierarchies of entity types, and CC is a
set of ICs.

There is a set EW ⊂ E (possibly empty) of
weak entity types. For each weak entity type
EW there is at least one sequence E1, . . . , Es,
such that E1 = E, Ei−1 is identi�cation de-

12 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 1 | 2017 | June

pendent on Ei, i = 2, . . . , s − 1, and Es is a
strong entity type. Identi�cation key of EW is
the union of all partial and complete identi�-
cation keys from this sequence. In each ISA-
hierarchy HE ∈H, HE ⊆ E ×E,

• entity type E is the source of HE with iden-
ti�cation key KE ,

• the graph associated to HE is a tree with
the root E,

• there is no hierarchyHE
′ ∈H such that the

tree associated to HE is a subtree of tree,
which is associated to hierarchyHE

′, except
of the case, when HE has only a root.

For each relationship type R ∈ R there are
two min-max ICs in CC and vice versa, to each
min-max IC from CC there is at least one rela-
tionship R in R having this IC as its min-max
IC.

Conceptually, other generic relationship
types, e.g., is-part-of relationships, could
be considered in the binary E-R model. They
can be described simply with graph conceptual
constructs as well.

4.2. Mapping conceptual

schemas to database

schemas

A correct graph conceptual schema may be
mapped into an equivalent (or nearly equiva-
lent) graph database schema with the straight-
forward mapping algorithm but with a weaker
notion of a database schema, i.e. some inherent
ICs from the conceptual level will be neglected
to satisfy usual notation of directed, labelled, at-
tributed multigraphs. Then the mapping algo-
rithm transforming a graph conceptual schema
C into a graph database schema D can be de-
scribed by the following rules:

Rule 1. Strong entity types. For each strong
entity type E ∈ E, create a node type DE which
includes all attributes from AE and the same
identi�cation key KE .

Rule 2. Weak entity types. Let E1, . . . , Es is a
sequence of entity types from E, where Es in a

strong entity type, and Ei, i = 1, . . . , s − 1, are
weak entity types with partial keys PKi. For
each weak entity type Ei create a node type DEi

which includes all the attributes ofAEi
and iden-

ti�cation key Ki+1 from DEi+1
. The resulted

key Ki = PKi ∪Ki+1, i = 1, . . . , s− 1.

Rule 3. Relationship types. For each relationship
type R ∈ R, create an edge type DR which in-
cludes all attributes from AR. Specify the label
and direction belonging to the edge type.

Rule 4. Integrity constraints. Inherent ICs such
as cardinalities become explicit ICs in D. Ex-
plicit ICs from CC become also explicit ICs in
D.

Rule 5. ISA-hierarchies. They are trans-
formed directly into ISA relationships in the
GDB level. Associated edges will be labelled
as Is_a. For better manipulation of data from
ISA-hierarchies, we recommend to propagate the
identi�cation key KE of the source of each ISA-
hierarchy into all nodes of this hierarchy in D.

An instance of the graph database schema is
a database graph containing nodes labelled with
the associated entity types or identi�ers and la-
belled edges according to the schema.

Rule 3 needs an explanation. The label used
for the edge should be chosen accordingly to the
chosen edge direction. For example, M:N rela-
tionship between type Teacher and Language
in Fig. 3 (graph conceptual schema 1) can be
transformed to the Teaches edge with direc-
tion from Teacher to Language (see Fig. 2) or
Is_taught with reverse direction. Such edges
express the relationship semantics only in one
direction. Our binary E-R model uses two in-
verse relationship names for better readability
of the conceptual schema. We can use both on
the conceptual level, but in the database schema
only one of these labels is used as well as only
one direction.

Similarly, a question is why the relationship
type (Town, Street) is not inverse in Fig. 5.
Yes, it could be, obviously with a di�erent as-
sumption on the database implementation. For
application requirement to have more queries on
streets of a town, the �rst choice is more ade-
quate. Consequently, from a graph conceptual
schema we can propose several di�erent graph

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 13

VOLUME: 1 | ISSUE: 1 | 2017 | June

database schemas. The �nal selection is in�u-
enced by the analytical phase of the GDB devel-
opment.

In practice some weaker variants of graph
database schemas are used. For example, such
a schema has only subsets of entity/relationship
attributes for some nodes/edges. Consequently,
node and edges can own only subsets of key-
value couples. It is in accordance to key-value
NoSQL databases which do not represent explic-
itly a missing information. Similarly, ICs may
be missing in the graph database schema at all.
An advantage of such approach is that graphs,
which allow for rich data structures without
the ICs of schema, are naturally extensible and
amenable to continuous data evolution.

A special problem is the language for ICs,
i.e. the associated DDL. For example, we can
state the IC on the database level requiring that
each teacher in the database graph teaching Ger-
man should be born after 1980. That is, such a
teacher has to be related to the German lan-
guage. If these conditions are not met, then,
e.g., the insert transaction of Teaches edge in
the database graph should fail. Using a graph
pattern (see the approach in Section 3.1) we can
obtain IC in Fig. 8. We can observe that the
pattern is a generalization of a conditional func-
tional dependency.

Fig. 8: Integrity constraint pattern.

A signi�cant problem is how to use these pat-
terns in practice, reminding that the problem of
graph matching using subgraph isomorphism is
known to be NP-complete.

4.3. Functional approach graph

conceptual modelling

A conceptual modelling can be based on the no-
tion of attribute viewed as an empirical typed
function that is described by an expression of a
natural language [12]. A lot of papers are de-
voted to this approach studied mainly in 90ties
(see, e.g., [20]).

Types

A hierarchy of types is constructed as follows.
We assume the existence of some (elementary)
types S1, ..., Sk (k ≥ 1). They constitute a base
B. More complex types are constructed in the
following way.

If S,R1, ..., Rn(n ≥ 1) are types, then
(i) (S : R1, ..., Rn) is a (functional) type,
(ii) (R1, ..., Rn) is a (tuple) type.

The set of types T over B is the least set
containing types from B and those given by (i)-
(ii). When Si in B are interpreted as non-empty
sets, then (S : R1, ..., Rn) denotes the set of all
(total or partial) functions from R1 × ... × Rn

into S, (R1, ..., Rn) denotes the Cartesian prod-
uct R1 × ...×Rn.

The elementary type Bool = {TRUE,
FALSE} is also in B. The type Bool allows to
type some objects as sets and relations. They
are modelled as unary and n-ary characteristic
functions, respectively. The notion of a set is
then redundant here.

The fact that X is an object of type R ∈ T
can be written as X/R, or "X is the R−object".
For each typed object o the function type re-
turns type(o) ∈ T of o. Logical connectives,
quanti�ers and predicates are also typed func-
tions: e.g., and/(Bool:Bool,Bool), R-identity
=R is (Bool:R,R)-object, universal R-quanti�er∏

R, and existential R-quanti�ers
∑

R are
(Bool : (Bool : R))-objects. R-singularizer
IR/(R : (Bool : R)) denotes the function whose
value is the only member of an R-singleton
and in all other cases the application of IR is
unde�ned. Arithmetic operations +,−, ∗, / are
examples of (Number:Number,Number)-objects.
The approach also enables to type functions of
functions, etc.

14 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 1 | 2017 | June

Attributes

Object structures usable in building a
database can be described by some expres-
sions of a natural language. Suppose B =
{ Language, Teacher, Town, School, Name,
Birth_year, . . . }. Then, e.g, "the language
thought by a teacher at a school" (abbr. LTS)
is a (Language : Teacher, School)-object, i.e.
a (partial) function f : Teacher × School →
Language . Such functions are called attributes
in [12].

More formally, attributes are functions of type
((S : T) : W), whereW is the logical space (pos-
sible worlds), T contains time moments, and S ∈
T. Mw denotes the application of the attribute
M to w/W , Mwt denotes the application of Mw

to the time moment t. We can omit parame-
ters w and t in type(M). In the case of LTS at-
tribute we consider possible worlds, where teach-
ers teach at most on language in each school. For
GDBs we can elementary entity types conceive
as sets of node IDs.

Attributes can be constructed according to
their type in a more complicated way. For ex-
ample, "the classes in a school" could be consid-
ered as an attribute CS of type ((Bool : (Bool :
Student)) : School), i.e. the classes contain sets
of students and the CS returns a set of classes
(of students) for a given school.

We can also consider other functions that need
no possible world. For example, the aggregate
function like COUNT, + (adding) provides such
function. These functions have the same behav-
ior in all possible worlds and time moments.

Consequently, we can distinguish between two
categories of functions: empirical (e.g. at-
tributes) and analytical. The former are con-
ceived as partial functions from the logical space.
The range of these functions are again functions.
Analytical functions are of type R, where R does
not depend onW and T . In the conceptual mod-
elling, each base B consists of descriptive and
entity types. Descriptive types (String, Num-
ber, etc.) serve for domains of properties.

The notion of attribute applied in GDBs could
be restricted on attributes of types (R : S),
(Bool(R) : S), or Bool(R,S), where R and S
are entity types. This strategy simply covers bi-

nary functional types, binary multivalued func-
tional types, and binary relationships described
as binary characteristic functions. The last op-
tion corresponds to M:N relationship types. For
modelling directed graphs the �rst two types are
su�cient, because M:N relationships types can
be expressed by two �inverse� binary multivalued
functional types. Here we will consider always
one of them.

Now we add properties. Properties describing
entity types can be of types (S1, ..., Sm : R),
where Si are descriptive elementary types and
R is an entity type. So we deal with functional
properties. Similarly, we can express properties
of edges. They are of types (S1, ..., Sm, R1 : R2)
or (Bool(S1, ..., Sm, R1) : R2).

Fig. 9: Graph DB-schema 1 with properties.

Then a functional database schema corre-
sponding to the graph database schema in Fig. 9
can look as

Language/((Name, Textbook):Language)
Teacher/((T_ID, T_Name,
Birth_year):Teacher)
Town/((Town_name, Population):Town)
Teaches/(Bool:(Day, Hour, Room, Language)
:Teacher)
Is_born_in/((Date, Town):Teacher)

We remark, however, that our functional
GDBs with such schemas can contain isolated
nodes with at least one property. IDs of edges
are not necessary, because edges are not explic-
itly considered.

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 15

VOLUME: 1 | ISSUE: 1 | 2017 | June

Then, the associated typed lambda calculus
with applications of functions and lambda ab-
stractions provides a powerful tool for querying
graph data conceived as functions [10].

5. Conclusion

In this paper, we proposed an approach to
modelling GDBs based on a classical technique,
here a binary variant of the E-R model, known
from the world of relational DBMSs. We also
proposed rather non-traditional functional ap-
proach to modelling graph data based on the
notion of attribute. Attributes are conceptual
objects with extension enabling to conceive a
property graph as a set of functions.

We used the notions of graph conceptual
model and graph database model. We also dis-
cussed relationships between schemas in both
models, particularly the transformation of a
graph conceptual schema to a graph database
schema. Comparing to similar approaches in the
world of relational DBMSs, the resulted schema
is not given uniquely in this approach, both
in terms of graph structure and ICs. We dis-
cussed also some types of ICs reminding func-
tional dependencies known from a relational the-
ory. Both graph data modelling and ICs formu-
lation are yet maturing and o�er an interesting
theme for future research.

Acknowledgment

The work was supported by the Charles Univer-
sity project Q48.

References

[1] LARRIBA-PEY, J. L., N. MARTINEZ-
BAZAN and D. DOMINGUEZ-SAL. Intro-
duction to Graph Databases. In: 10th Inter-
national Summer School. Athens: Springer,
2014, pp. 171�194. ISBN 978-3-319-10586-
4. ISSN 0302-9743.

[2] GHRAB, A., O. ROMERO, S. SKHIRI,
A. VAISMAN, and E. ZIMANYI. BGRAD:
On Graph Database Modelling. In: Cornel
University Library [online]. 2016.

[3] ANGLES, R. A Comparison of Current
Graph Database Models. In: 28th In-
ternational Conference on Data Engineer-
ing Workshops. Arlington: IEEE, 2012,
pp. 171�177. ISBN 978-0-7695-4748-0.

[4] ROBINSON, I., J. WEBBER and E.
EIFREM. Graph databases. 1st ed.
O'Reilly Media, 2013. ISBN 978-1-4493-
5626-2.

[5] POKORNY, Jaroslav and Vaclav SNASEL.
Graph-based social media analysis: In
Graph Based Social Media Analysis. Chap-
man and Hall/CRC, 2015, pp. 391�416.
Chapman. ISBN 978-1-4987-1904-9.

[6] POKORNY, J. Graph Databases: Their
Power and Limitations. In: Proceedings of
14th Int. Conf. on Computer Information
Systems and Industrial Management Appli-
cations (CISIM 2015). vol. 9339. Warsaw:
Springer, 2015, pp. 58�69.

[7] POKORNY, J. Conceptual and Database
Modelling of Graph Databases. In:
Proceedings of the 20th International
Database Engineering. Montreal: ACM
Press, 2016, pp. 370�377. ISBN 978-1-
4503-4118-9.

[8] JADHAV, P. and R. OBEROI. Compara-
tive Analysis of Di�erent Graph Databases.
Int. Journal of Engineering Research &
Technology, vol. 3, iss. 9, pp. 820�824, 2014.
ISSN 2278-0181.

[9] DELFOSSE, V., R. BILLEN and P.
LECLERCQ. UML as a schema candidate
for graph databases. In: Proceedings of
NoSQL Matters. 2012, pp. 1�8.

[10] POKORNY, J. Functional Querying in
Graph Databases. In: Asian Conference
on Intelligent Information and Database
Systems. Kanazawa: Springer, 2017,
vol. 10191. pp. 291�301. ISBN 978-3-319-
54471-7.

16 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 1 | 2017 | June

[11] MENDELZON, A. O. and P. T. WOOD.
Finding Regular Simple Paths in Graph
Databases. SIAM Journal on Computing.
1995, vol. 24. no. 6, pp. 1235�1258.

[12] POKORNY, J. A function: unifying mech-
anism for entity-oriented database mod-
els. In: Entity-Relationship Approach: A
Bridge to the User, Proceedings of the Sev-
enth International Conference on Entity-
Relationship Approach, North-Holland: El-
sevier Science Publishers B.V., pp. 165�181,
1989.

[13] KAUR, K. and R. RANI. Modeling and
querying data in NoSQL databases. In: In-
ternational Conference on Big Data. Silicon
Valley: IEEE, 2013, pp. 1�7. ISBN 978-1-
4799-1293-3.

[14] ANGLES, R. and C. GUTIERREZ. Survey
of graph database models. ACM Computing
Surveys (CSUR). 2008, vol. 4, iss. 1. ISSN
0360-0300.

[15] CALVANESE, D., M. OORTIZ, and M.
SIMKUS. Evolving Graph Databases under
Description Logic Constraints. In: Proceed-
ings of the 26th Int. Workshop on Descrip-
tion Logics (DL 2013). 2013, vol. 1014,

[16] YU, Y. and J. HEFLIN. Extending Func-
tional Dependency to Detect Abnormal
Data in RDF Graphs. In: The Seman-
tic Web � ISWC. 2013, Berlin: Springer,
vol. 7031, pp. 794�809. ISBN 978-3-642-
25072-9.

[17] SILBERSCHATZ, A., H. KORTH, and S.
SUDARSHAN, Database System Concepts.
6th ed. McGraw-Hill, 2010.

[18] BARCELLO, P. and G. FONTAINE, On
the Data Complexity of Consistent Query
Answering over Graph Databases. In: Pro-
ceedings of 18th International Conference
on Database Theory (ICDT'15). Leibniz
Int. Proceedings in Informatics, pp. 380�
397, 2015. ISSN 0022-0000.

[19] BARKER, B., CASE*METHOD: En-
tity Relationship Modeling. Addison-Wesley
Publishing Company, New York, 1990.

[20] POKORNY, J. Database semantics in het-
erogeneous environment. In: Proceedings of
23rd Seminar SOFSEM 96: Theory and
Practice of Informatics, Springer-Verlag,
pp. 125-142, 1996.

[21] Titan: Distributed Graph Database [on-
line]. 2017. Available at: http://titan.
thinkaurelius.com/.

[22] OrientDB Ltd. OrientDB [online]. 2017.
Available at: http://orientdb.com/.

[23] DBengines. DB-Engines Ranking of
Graph DBMS [online]. 2017. Available
at: https://db-engines.com/en/
ranking/graph+dbms.

[24] Stardog Union. Stardog 5 [online]. 2017.
Available at: http://www.stardog.
com/.

[25] Sparcity Technologies. Scalable high-
performance graph database [on-
line]. 2017. Available at: http:
//sparsity-technologies.com/
#sparksee.

[26] Objectivity. In�niteGraph [online].

2017. Available at: http://www.
objectivity.com/products/
infinitegraph/#.U8O_yXnm9I0.

About Authors

Jaroslav POKORNY is a full professor of
the Faculty of Mathematics and Physics at
Charles. His research interests include database
technologies, information retrieval, data orga-
nization, and XML. He has published more
than 300 papers and 6 books. He organized
ADBIS-DASFAA, EDBT, ISD, ICADIWT,
and ADBIS international conferences in Czech
Rep. in 2000-2016, in other conferences he
served as their general-chair. He is a member
of the Editorial Boards of Computing and
Informatics, J. of Systems Integration, Int. J. of
Web Information Systems, and J. of Advanced
Engineering and Computation. He is a member
of ACM and IEEE. From 2005 he serves as a
representative of Czech Rep. in IFIP.

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 17

khangnt
Typewriter
"This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0)."

http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
http://orientdb.com/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
http://www.stardog.com/
http://www.stardog.com/
http://sparsity-technologies.com/#sparksee
http://sparsity-technologies.com/#sparksee
http://sparsity-technologies.com/#sparksee
http://www.objectivity.com/products/infinitegraph/#.U8O_yXnm9I0
http://www.objectivity.com/products/infinitegraph/#.U8O_yXnm9I0
http://www.objectivity.com/products/infinitegraph/#.U8O_yXnm9I0

