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Abstract. This paper investigates trajectory
tracking with obstacle avoidance of a Free-
Floating Satellite Manipulator (FFSM) under
the communication failure problem. The end ef-
fector of the manipulator is desired to follow the
reference path of a virtual leader while avoiding
dynamic obstacles in real-time. The main idea
behind this work is the use of a nonlinear model
predictive controller (NMPC) with a robust opti-
mization approach to achieve the path following
and real-time collision avoidance with predefined
objectives subject to the input, output and ob-
stacle constraints. While on-line quadratic pro-
gramming is adopted to achieve the real-time
constrained optimal control decisions over a re-
ceding horizon. However, from the practice, it
emerges that the coordinates of the virtual leader
may fail very often to reach the end effector
of the FFSM because of communication failure
problems that are caused by many practical rea-
sons. Therefore, a polynomial fitting algorithm
is implemented in the NMPC controller based on
Cramer’s rule to predict the reference trajectory,
which enhances the stability and robustness of
the system and makes the manipulator capable
to overcome efficiently the communication fail-
ure problems. The main novelty of this work is
to cope with the above circumstances simultane-
ously in practice based on the NMPC approach,
which is also found suitable to fulfill the physi-
cal limits of the system in real-time applications.
At the end, the performance of the proposed ap-
proach is validated with a Matlab example, and
the simulations results show the superiority and

advantage of this work compared to the previous
works in terms of efficiency and robustness.

Keywords: Communication Failure, Free-
Floating Satellite Manipulator, Obstacle Avoid-
ance, Nonlinear Model Predictive Control, Tra-
jectory Tracking.

1. Introduction

This paper focuses on the control of a Free-
Floating Satellite Manipulator (FFSM) which
consists mainly of a set of robotic manipula-
tors that are tied to a satellite. The FFSM
plays an important role to carry out different
space missions [1–5]. In the literature, there
is a huge volume of research work about the
kinematics and dynamics control of the FFSM
[6–10]. For example, trajectory tracking and ob-
stacle avoidance are two fundamental tasks for
the control of the FFSM in space applications.
In one hand, the design of an efficient controller
is extremely challenging because of nonlinear-
ity and complexity of the FFSM. Thus, tra-
jectory tracking approaches are proposed such
that the FFSM is capable to realize path fol-
lowing efficiently. In [11] an optimization of the
standard proportional integral derivative (PID)
controller based on particle swarm optimization
(PSO) algorithm is proposed, and an estimation
algorithm is applied to deal with communication
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failure problem, whereas the performance of the
proposed PID-PSO controller is shown in com-
parison to the conventional PID controller and
the PID optimized by genetic algorithm (PID-
GA) controller. In [12], a nonsingular terminal
sliding mode control strategy is developed with
predefined-time stability for trajectory planning
and control of a dual-arm free-floating space
robot. In [13], a fuzzy sliding mode controller is
used for trajectory tracking of the space robot to
deal with external disturbance and parametric
variation. On the other hand, space debris are
considered as unwanted objects when the space
robots are executing tasks. Therefore, the de-
sign of efficient methods to avoid obstacles in
real-time applications is still a difficult research
topic [14–17]. Traditionally, obstacle avoidance
is treated as a high level planning task. For
instance, in [18], a new path planning method
is proposed based on an active set algorithm
for a robotic arm mounted on the free-floating
spacecraft, and its results are compared with the
bidirectional Rapidly-exploring Random Trees
(RRT) algorithm. In [19], an optimal path gen-
erator is proposed with a genetic algorithm and
needs only the Cartesian position of the point to
grasp as an input, without prior knowledge of a
desired path. In [20], a model-free hierarchical
decoupling optimization algorithm is developed
to realize 6D-pose multi-target trajectory plan-
ning for the free-floating space robot.

Based on this background, it emerges that tra-
jectory tracking of the space robot with obstacle
avoidance and communication failure (CF) as a
particular case, have been studied separately in
the previous works, but in fact these problems
may happen at the same time in practical appli-
cations. Therefore, the aim of this paper is to
propose a novel control method that makes the
FFSM capable to follow a reference path that is
provided by a virtual leader robot while avoid-
ing dynamic obstacles in real-time, and over-
come the communication failure problems. The
main idea behind the present work is the use of a
nonlinear model predictive control (NMPC) ap-
proach. Although, the origins of this technique
are the chemical plants and oil refineries, how-
ever the application of the MPC method has in-
creased in the last decades to other fields like the
space domain. For example in [21], a NMPC ap-

proach is proposed to trajectory tacking and ob-
stacle avoidance of a free-floating space robot. In
[22], a mixed integer predictive controller is de-
veloped for trajectory tracking and real-time ob-
stacle avoidance of the FFSM. In [23], a NMPC
is proposed for a rotation floating space robot
and its efficacy is compared with Transpose Ja-
cobian Cartesian (TJC) controller that is based
on Generalized Jacobian Matrix (GJM).

According to the works [11] and [21], the main
contribution of this paper is to propose for the
first time a novel control approach for trajectory
tracking of FFSM with real-time obstacle avoid-
ance under the CF problem. At first, the anti-
collision constraints are derived based on the ve-
locity damper method, then they are integrated
as inequality conditions within a quadratic pro-
gramming (QP) process to get an optimal so-
lution about the receding horizon. However, it
emerges from the practice that CF might oc-
cur very often between the end effector and the
virtual leader because of noise, external distur-
bances and errors in the sensors. To overcome
this problem, a polynomial fitting algorithm is
adopted in this paper based on Cramer’s rule to
predict the reference path of the virtual leader.
To the best of the knowledge of the author, this
work is the first that discusses the above circum-
stances in a unique a work for the control of the
FFSM.

The remainder of this paper is structured as
follows. Section 2. presents the dynamic model
of the FFSM. Section 3. discusses the anti-
collision constraints. Section 4. discusses in
detail the proposed approach for the control of
the FFSM. Section 5. demonstrates the simu-
lation results to validate the proposed approach.
Section 6. gives the main concluding remarks
and the future works.

2. Modelling of the FFSM

A Free-Floating Satellite Manipulator (FFSM)
is a mechanical system that is composed of the
satellite as the base that is floating in space and
a set of manipulators that are attached to the
satellite. Assume the environment depicted in
Figure 1, which consists of a FFSM with two
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rigid links that is supposed to follow a reference
path provided by a virtual leader robot on the
space while avoiding moving obstacles in real-
time. While taking into consideration the prob-
lem of communication failure between the vir-
tual leader and the end effector. Table 1 con-
tains the list of symbols that are used in this
section.

According to the Lagrangian method (see Ap-
pendix B for more details), the FFSM model is
given as follows.[
Hb Hbm

HT
bm Hm

] [
ẍb

θ̈

]
+

[
Ḣb Ḣbm

ḢT
bm Ḣm

] [
ẋb

θ̇

]
+

[
cb
cm

]
=

[
0
τ

]
(1)

where ẍb = (r̈b, ω̇b) ∈ R6 denotes the vector of
linear and angular accelerations of the base, and
θ̈ ∈ Rn is the manipulator joint accelerations.
The total momentum (L0 ∈ R6) of the mass
center of the system is deduced by the angular
momentum conservation law as follows.

L0 = Hbẋb +Hbmθ̇ (2)

Suppose the initial momentum is zero (L0 = 0),
the dynamic formulation of the FFSM derived
from equation 2 is given as follows.

τ = H(θ)θ̈ + c(θ, θ̇) (3)

where H(θ) = Hm − HT
hmH−1

h Hbm ∈ Rn×n is
the generalized inertia matrix c(θ, θ̇) = cm −
HT

hmH−1
b cb ∈ Rn×1 is the vector of the non-

linear force and the control torque of the FFSM.

3. Anti-collision
constraints

Suppose O be a closed subset of R3 and X(O) is
the inner part of O. The object O is said to be
strictly convex with the condition that any two
points (∀a, b ∈ O) satisfy the following convex
combination a+(1−σ)b ∈ X(O) where 0 < σ <
1.

Figure 2 displays the interconnection across
two strictly convex objects O1 and O2 where P1

and P
′

1 indiacte the nearest two points from O1

to O2. The distance d =
∥∥∥P1P

′

1

∥∥∥ is continuously

Fig. 1: FFSM scheme with moving obstacles.

Tab. 1: List of symbols.

Symbol Representation
Ci Link i mass center
Ji Joint i
ai Position vector from Ji to Ci

bi Position vector from Ci to J(i+ 1)
ri Link i position vector
rb Base position vector
re End effector position vector
ωb Base angular velocity
ωe End effector angular velocity
mi Link i mass
Ii Link i inertia matrix
Hb Base inertia matrix
Hm Manipulator inertia matrix
Hbm Matrix of coupling inertia between

base and manipulator
cb Vector of nonlinear coriolis
cm Vector of nonlinear centrifugal forces
τ Torque control input

differentiable because both objects are strictly
convex, and its derivative can be expressed as
an inner product equation as follows

ḋ =< ṙp1
− ṙp1,, n1 > (4)

where rpi and rpi′ denote the position and ve-
locity vectors of point pi. n1 = (rp1

−rp2
)/d is a

unit vector. Let q = [xb, θ]
T and q̇ be the FFSM

configuration and generalized velocity, respec-
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Fig. 2: The relationship between two objects

tively. Then the task-space velocity of Pi can be
indicated by ṙpi = Jpi q̇, where Jpi ∈ R3×(n+6)

is a Jacobian matrix of O1 at Pi. According
to the velocity damper method, if d approaches
into the influence distance (dif ), the following
constraint is derived

ḋ ≥ −ξ
d− duf
dif − duf

(5)

where ξ (ξ > 0) is the parameter that is used
for regulating the convergence speed, while
duf (duf < dif ) is the unsafe distance with posi-
tive quantity.

If the initial condition d(0) ≥ duf is satisfied,
then the velocity damper constraint can be de-
rived in the following inequality.

d(t) ≥ duf+(d(0)− duf ) e
−ξ

dif−duf
t
> duf ,∀t > 0

(6)
Equation 6 guaranties that the smallest distance
among the two objects will be never lower than
duf based on the velocity damper strategy.

With the same manner, another quantity
named security distance is defined by duf <
dsr < dif which means that the inequality con-
straint of equation 5 will become a rigorous con-
straint if d < dsr. It is worth noting that ḋ is
constrained by inequality 5 every time P1 ap-
proaches the influence area (d ≤ dif ). Then by
plugging equation 4 into inequality 5, a linear
inequality constraint about the generalized ve-
locity q̇ can be described as follows.

< JT
P1
n1, q̇ >≥ ⟨ṙp1′, n1⟩ − ξ

d− duf
dif − duf

(7)

The inequality constraints of equation 7 would
be associated into the optimization problem in
the next section.

4. Proposed approach

The general NMPC technique is summarized as
follows.

u = argu minΓ (k) (8)
Subject to

x(k|k) = xk

u(k + j|k) = u(k +Nc|k), j ≥ Nc, j ∈ [0, Np − 1]

x(k + j + 1|k) = fd(x(k + j|k), u(k + j|k))
y(k + j|k) = hd(x(k + j|k), u(k + j|k))

ymin ≤ y(k + j|k) ≤ ymax

umin ≤ u(k + j|k) ≤ umax

g(x(k + j|k)) ≤ 0

(9)
where the variables Np and Nc denote respec-
tively the prediction and the control horizon. k
is the sampling time. The cost function Γ(k) is
a scalar amount. The two functions: fd(x(k +
j|k), u(k + j|k)) and hd(x(k + j|k), u(k + j|k))
are the prediction and the measurement mod-
els. The inequality g(x(k + j|k)) ≤ 0 denotes
the supplementary constraints, like the security,
terminal, and so forth.

At each sampling point k, the optimization
is solved to get a series of optimal inputs as
{u∗(k|k), ..., u∗(k + Nc − 1|k)}. While a con-
strained QP process is adopted to get the op-
timal input whereas several constraints are in-
volved in the optimization.

4.1. Optimization index

The quadratic form of the cost function that is
used for the NMPC controller is expressed as
follows.

Γ(k) =

Np∑
i=1

∥ŷ(k + i|k)− r(k + i|k)∥2Q(i)

+

Nc−1∑
i=0

∥∆û(k + i|k)∥2T (i)

(10)

where Q(i) and T (i) denote the tracking error
and control effort matrix, respectively.
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It should be noted that the dynamic model of
the FFSM that is given in equation 3 cannot be
applied directly in the MPC method because it
is highly non-linear. Therefore, it needs to be
transformed into a state-space form by using a
feedback linearization procedure as follows.

Let x = [θ, θ̇]T be the system states, and with-
out considering the unmeasured noise, let u = θ̈
be the new input of the system, then a state-
space form in discrete-time can be established
by the zero-order hold with a sampling period h
as follows.{

x(k + 1) = Adx(k) +Bdu(k)

y(k + 1) = Cdx(k + 1)
(11)

where Ad, Bd and Cd are discrete-time matrices
of the system, input and output, respectively.
While x(k), u(k) andy(k) are respectively the
vectors of states, input and output at time k.

The output of the system in equation 11 can
be rewritten in the following form.

Y (k) = Φx(k) + Υu(k − 1) + Θ∆U(k) (12)

where the matrices Φ,Υ and Θ might be given
as follow:

Φ =



CdAd

...
CdA

Nc

d

CdA
Nc+1
d
...

CdA
Np

d


, Y =



CdBd

...∑Nc−1
i=0 CdA

i
dBd∑Nc

i=0 CdA
i
dBd

...∑Np−1
i=0 CdA

i
dBd


,

Θ =



CdBd ... 0
...

. . .
...∑Nc−1

i=0 CdA
i
dBd ... CdBd∑Nc

i=0 CdA
i
dBd ...

∑1
i=0 CdA

i
dBd

...
. . .

...∑Np−1
i=0 CdA

i
dBd ...

∑Np−Nc

i=0 CdA
i
dBd


.

Let the following expressions Y (k) =

[ŷ(k + 1|k), ..., ŷ(k +Np|k)]T , R(k) =[
r(k + 1|k), ..., r(k +Np|k)

]T , and ∆U(k) =
[∆û(k|k), . . . ,∆û(k+Nc − 1|k)]T , then the cost
function Γ(k) of equation 10 can be rewritten
as follows:

Γ(k) = ∥Y (k)−R(k)∥2Q+∥∆U(k)∥2T (13)

where Q = diag([Q(1), ..., Q(Np)]) and T =
diag([T (1), ..., T (Nc − 1)]). Let introduce a new
variable ϵ(k) as follows:

ε(k) = R(k)− Φx(k)−Υu(k − 1) (14)

Hence, the cost function Γ(k) of equation 13
might be rewritten as stated below.

Γ(k) = ∥Θ∆U(k)− ε(k)∥2Q+∥∆U(k)∥2T (15)

which can be rewritten as follows:

Γ(k) = Γconst +∆U(k)Tϑ+∆U(k)TM∆U(k)
(16)

where Γconst = ε(k)TQε(k), ϑ = −2ΘTQε(k)
and M = ΘTQΘ+T.

4.2. Inequality constraints

The optimal control issue over the receding hori-
zon can be given as stated below.{
∆U∗(k) = min

∆U ∆U(k)TM∆U(k) + ϑT∆U(k)

Subject to G∆U(k) ≤ g

(17)
Equation 17 is a constrained QP problem, and
several constraints should be transformed into
inequality equations. then getting the amounts
of G and g.

Due to the fact that the inertia matrix H(θ) is
positive, then the limits in the new control input
are given as follows.{

umin = Ĥ−1(τ − ĉ)

umax = Ĥ−1(τ − ĉ)
(18)

where τ = τmin and τ = τmax are the related
torque vectors that comply with input boundary
(τmin ≤ τ(t) ≤ τmax∀t).

It is worth noting that the new input vector
u(t) does not mean it is the real control torque
τ(t).

Given the dynamic model of equation 3 and
the limits of the new input vector u(k) in equa-
tion 18, this can be translated into linear in-
equalities around ∆U(k) as follows:

ΩNc
umin ≤ ΩNc

u(k − 1) +Ψ∆U(k) ≤ ΩNc
umax

(19)
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where the matrices ΩNc
and Ψ can be ex-

pressed as follows: ΩNc
=

En

...
En

 ∈ RnNc×n,

Ψ =

En

...
. . .

En ... En

 ∈ RnNc×nNc . Where

En ∈ Rn×n is a n dimensional identity matrix.

Likewise, suppose Yp = Φx(k) + Υu(k − 1)
and ΩNn

= [E2n, ..., E2n]
T ∈ R2nNp×2n, where

the limits in the system output are given as
(ymin ≤ y(t) ≤ ymax ∀t), then this can be
translated as well into linear inequalities around
∆U(k) as follows.

ΩNpymin ≤ Yp +Θ∆U(k) ≤ ΩNpymax (20)

while the FFSM configuration at one point falls
inside the obstacle influence region, a consistent
anti-collision constraint is actuated in the same
way of equation 6.

Supposing that at time k,Nk anti-collision
constraints are started and given the velocity-
damper constraint in equation 7, hence this can
be translated also into a linear inequality around
∆U(k) as follows.

Dvp +Θ∆U(k) ≥ Duf (21)

where Dvp = Θvjyvp and Θv = ΘvjΘvb.
Here, we choose Cvd = [0n, En] and define
yvp = CvdAdx(k) + CvdBdu(k) and Θvb =
[CvdBd, 0n, ..., 0n] ∈ Rn×nNc , in in the matter
of equation 7, Θvj and Duf can be formed as
follows

Θvj =



nT
1 JP1

...
nT
i JPi

...
nT
Nk

JPNk

 , Duf =



⟨ṙp2
, n1⟩ − ξ

d2−duf

dif−duf

...
⟨ṙpi

, ni⟩ − ξ
di−duf

dif−duf

...
⟨ṙpNk

, nNk
⟩ − ξ

dNk
−duf

dif−duf


.

while a range of constraints are modelled into
inequality equations in the same way of equa-
tions 19,20 and 21, the values of G and g can be
established as follows

G =


Ψ
−Ψ
Θ
−Θ
−Θv

 , g =


ΩNc

umax − ΩNc
u(k − 1)

−ΩNcumin +ΩNcu(k − 1)
ΩNpymax − Yp

−ΩNp
ymin + Yp

Dvp −Duf

 .

After getting the quantities of G and g, and
by using the inequality of constraints of equa-
tion 17, the QP process is adopted to search the
optimal control input in a receding horizon.

4.3. Communication failure

From the practice, it emerges that communica-
tion failure (CF) might occur very often between
the end effector of the FFSM and the virtual
leader robot because of many practical reasons
such as noise, external disturbances that affect
the stability of the system and errors in the sen-
sors. Hence, these problems are taken into con-
sideration in this paper. The CF event means
that the coordinates of the reference trajectory
(r) provided by the virtual leader fail to reach
the end effector. Here, to overcome this problem
then the value of the reference path (r) is re-
placed by an estimated function that is denoted
by r̂ which can be solved with a polynomial fit-
ting algorithm along a directed axis of motion of
the FFSM robot. Hence, the objective function
Γ(k) can be rewritten in as follows.

Γ(k) = (1− λ)

(
Np∑
i=1

∥ŷ(k + i|k)−

r(k + i|k)∥2Q(i)+

Nc−1∑
i=0

∥∆û(k + i|k)∥2T (i)

)

+ λ(

Np∑
i=1

∥ŷ(k + i|k)− r̂(k + i|k)∥2Q(i)

+

Nc−1∑
i=0

∥∆û(k + i|k)∥2T (i)))

(22)
where the variable λ has the following values,
λ = 0 if there is no communication failure, and
λ = 1 if there is a communication failure event.
The estimated trajectory r̂ can be approximated
in the following form.

r̂ = aKtK + · · ·+ a1t+ a0 + ϵ (23)

where aK is the polynomial coefficient, Kis the
polynomial’s degree, ϵ is the residual error.

The maximum order (K) of the polynomial is
imposed by the number of data points used to
generate the polynomial. The maximum order
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of the polynomial for a set of N data points,
is K = N − 1. In equation 23, the coefficients
(aK , . . . , a1, a0) are determined by solving the
following equation.

N
∑N

i=1 ti ...
∑N

i=1 t
K
i∑N

i=1 ti
∑N

i=1 t
2
i ...

∑N
i=1 t

K+1
i

...
...

...
...∑N

i=1 t
K
i

∑N
i=1 t

K+1
i ...

∑N
i=1 t

2K
i



a0
a1
...

aK

 =


∑N

i=1 ti∑N
i=1 riti

...∑N
i=1 r

K
i ti


(24)

Equation 24 is derived by the polynomial resid-
ual function and happens to be presented in the
standard form Ma = b, which can be solved as
follows.

ak =
det (Mi)

det (M)
(25)

where the matrix Mi is obtained from M by re-
placing its ith column with the column vector
b.

It should be noted that the estimation of the
reference path is carried out along both axis of
motion and the accuracy of tracking can be mea-
sured by the tracking error that is given as fol-
lows.

e(t) =
√
(xr − x)2 + (yr − y)2 (26)

where xr and yr represent the reference path co-
ordinates along X-axis and Y-axis, respectively.
Whilex and y denote the actual coordinates of
the FFSM.

The block diagram depicted in Figure 3 illus-
trates the proposed control system for the FFSM
with NMPC controller and polynomial fitting al-
gorithm to overcome CF problems. Depending
on the value of λ, the estimation of the reference
path (i.e. r̂) is used in case of CF.

5. Simulation results

This section demonstrates a simulation example
that is validating the proposed control approach
for trajectory tracking of FFSM with real-time
obstacle avoidance and CF problems.

Fig. 3: Block diagram of the proposed approach.

Assume the FFSM shown in Figure 1 which
consists of two rigid links, and the values of the
inertia and mass for each link are indicated in
Table 2. In this example, the FFSM is supposed
to track a circle trajectory of the following coor-
dinates: xr(t) = cos(t) and yr(t) = sin(t).

One sphere obstacle is placed in the workspace
of the FFSM and it is supposed to move when
the FFSM is performing path tracking and the
robustness of the proposed approach is tested
with two CF events.

Tab. 2: List of symbols.

Link ai(m) bi(m) mi(kg) Ii(kg.m
2)

0 - 0.5 40 6.667
1 0.5 0.5 4 0.333
2 0.5 0.5 3 0.25

Figure 4 and Figure 5 show the time evolution
of the tracking along X-axis and Y-axis, respec-
tively. Where OA stands for obstacle avoidance.
One can see in these figures that the end effec-
tor of the FFSM is executing tracking efficiently
along both axes while it is avoiding the dynamic
obstacle at two instants T1 and T2.

Now, the influences of the two CF events on
the stability of the system can be seen clearly
in Figure 6, which displays the time evolution
of the tracking error as measured by equation
26. One can see in this figure that the poly-
nomial fitting algorithm makes the FFSM capa-
ble of returning for tracking during CF events
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1 and 2. In Figure 7, the result of trajectory
tracking on the X-Y plane is depicted, in which
the FFSM provided good tracking while avoid-
ing the dynamic obstacle at times T1 and T2,
and it is also verified that there is no influence
of the CF events on the stability and robustness
of the system.

Finally, it is concluded from these results that
the proposed NMPC approach is more advanta-
geous than the previous works in terms of sta-
bility and robustness of the manipulator. More-
over, it corresponds to human perception in
dealing with such situations, and it can satisfy
the physical limits of the system in practice.

Fig. 4: Time evolution of FFSM tracking along X-axis.

Fig. 5: Time evolution of FFSM tracking along Y-axis.

Fig. 6: Time evolution of the tracking error.

Fig. 7: Trajectory of the FFSM on the X-Y plane.

6. Conclusions

This paper proposes for the first time a unique
approach for trajectory tracking of FFSM with
real-time obstacle avoidance under the problem
of CF between the end effector and the vir-
tual leader. A robust optimization approach
is proposed based on a nonlinear model pre-
dictive controller (NMPC). The anti-collision
constraints are derived based on the velocity
damper method, then they are integrated as
inequality conditions in the NMPC within a
quadratic programming (QP) process to get
an optimal solution about the receding hori-
zon. Moreover, a polynomial fitting algorithm is
adopted based on Cramer’s rule to predict the
reference path in case of CF, which enhances the
stability and robustness of the system, and it is
very important for real-time applications.
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The simulation results showed the efficiency
of the proposed approach to make the FFSM
capable to follow the reference path of the vir-
tual leader while avoiding dynamic obstacles in
real-time and the CF events are neglected based
on the polynomial fitting algorithm. Hence, it is
shown that this work has more advantages than
the previous works for real-time applications.

Future works can consider the time delays and
uncertainties in the FFSM model, also the detec-
tion of non-convex objects and the investigation
of adaptive NMPC. Another future research is
the application of the proposed approach to the
formation control of multiple space robots.

Appendix A

The list of acronyms that are used in the paper
are summarized in Table 3

Tab. 3: List of symbols.

Abb Representation
FFSM Free-Floating Satellite Manipulator
NMPC Nonlinear Model Predictive Controller
QP Quadratic Programing
PID Proportional Integral Derivative
PSO Particle Swarm Optimization
GA Genetic Algorithms
RRT Rapidly-exploring Random Trees
TJC Transpose Jacobian Cartesian
GJM Generalized Jacobian Matrix
CF Communication Failure
OA Obstacle Avoidance

Appendix B

The principle idea behind Lagrangian mechanics
is the use of energies instead forces in order to
derive the dynamic model of the system. In this
paper, since the potential energy of the FFSM
shown in Figure 1 is zero by assuming that the
manipulator is rigid and operates in no grav-
ity environment, then the Lagrangian (L) of the
FFSM equals to the kinetic energy (K) and it is

given as follows

L = K =
1

2

(
n∑

i=0

(ωT
i Iiωi +mir

T
i ri)

)
(27)

After simplification and rearrangement of terms,
equation 27 can be rewritten as follows.

L =
[
ẋb

T θ̇T
] [ Hb Hbm

Hbm Hm

] [
ẋb

θ̇

]
(28)

with Hb is the base inertia matrix, Hm is the
manipulator inertia matrix, Hbm is the dynamic-
coupling inertia matrix.

The Lagrangian equations of motion are given
as follows:

d

dt

(
dL

dẋb

)
− dL

dxb
= 0 (29)

d

dt

(
dL

dθ̇

)
− dL

dθ
= 0 (30)

By substituting the Lagrangian function ex-
pressed in Equation 28 into Equations 29 and
30, by computing the derivatives, and by prop-
erly rearranging the terms, the matricial equa-
tions of motion for the FFSM result as follows.[
Hb Hbm

HT
bm Hm

] [
ẍb

θ̈

]
+

[
Ḣb Ḣbm

ḢT
bm Ḣm

] [
ẋb

θ̇

]
+

[
cb
cm

]
=

[
0
τ

]
(31)

with the matrices cb and cm are defined as fol-
lows.

cb = − ∂L

∂xb
=− 1

2

∂

∂xb

(
ẋT
b Hbẋb + θ̇THmθ̇

+ẋT
b Hbmθ̇ + θ̇THT

bmẋb

)
(32)

cm = −∂L

∂θ
=− 1

2

∂

∂θ

(
ẋT
b Hbẋb + θ̇THmθ̇

+ẋT
b Hbmθ̇ + θ̇THT

bmẋb

) (33)
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