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Abstract. This paper presents a novel dual-
loop trajectory tracking control strategy for
differential-drive mobile robots (DDWMRs).
The outer loop employs feedback linearization to
address kinematic constraints and minimize po-
sition and heading errors. It generates control
inputs for the inner loop, which utilizes state
feedback control to manage the robot’s dynamics.
Actuator dynamics are incorporated to improve
the model fidelity. The proposed system is imple-
mented in MATLAB/Simulink. The uncertainty
of the system is added to the model by using
Uncertain State Space block. The proposed con-
troller achieved high tracking accuracy for both
circular and eight-shaped trajectories. In circu-
lar trajectories, the Relative-Root-Mean-Square-
Error (RRMSE) remained below 7.2% (X-axis),
7.46% (Y-axis), and 3.16% (Yaw angle) over 3
seconds. Similarly, for eight-shaped trajectories,
RRMSEs were approximately 5.25%, 8.19%, and
2.83% within 2 seconds. Simulation results
demonstrate the robustness and effectiveness of
the dual-loop controller in handling parame-
ter uncertainties and achieving better trajectory
tracking capability.

Keywords: Wheel Mobile Robot, MIMO, Feed-
back Linearization, State Feedback, Trajectory
Tracking.

1. Introduction

Because robots can do work with quality, ac-
curacy, and efficiency, they are becoming a
more prevalent substitute for humans in the
real world. This is especially true in the fields
of industry [1, 2], hospitality [3, 4], entertain-
ment [5, 6] and the military [7]. The differential
drive wheel mobile robot (DDWMR) is becom-
ing more and more common among the various
kinds of robots [8]. Unfortunately, a lack of the
best controller in almost all DDWMRs produces
inadequate results.

To accomplish the intended goals, several re-
searchers have therefore suggested a variety of
control frameworks. In [9], the authors sug-
gested a unified tracking and regulation visual
servoing strategy for a wheeled mobile robot
with an onboard camera. The proposed unified
controller exhibited asymptotic stability despite
uncertainties in the object model and depth in-
formation, demonstrating its feasibility through
both simulation and experimental results. Many
attempts have been made [10] in order to present
two control laws for trajectory tracking control
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of non-holonomic mobile robots: quasi-sliding
mode control for angular velocity and global
terminal sliding mode control for linear veloc-
ity. Simulation results showed faster conver-
gence of tracking errors for circular and sinu-
soidal reference trajectories, but the authors did
not consider system dynamics in this paper.
Nascimento and co-workers [11] hypothesized a
novel approach for trajectory tracking control
for nonholonomic mobile robots, using a non-
linear model predictive controller and modifica-
tions in the robot model, cost function, and op-
timizer to minimize steady-state error and ad-
dress the issue of complex nonlinear vehicle dy-
namics. More recent evidence (Phuc et. al. [12])
revealed an adaptive fuzzy sliding mode control
(AFSMC) for trajectory tracking control of a
non-holonomic mobile robot system. The AF-
SMC demonstrated strong resistance and the
ability to handle parameter variation and sys-
tem disturbance, eliminating chattering. Re-
search has tended to focus on designing a dy-
namic controller for trajectory tracking control
of DDWMRs, which may not be suitable and
may result in reduced system performance due
to the absence of actuator dynamics.

Much work has been done on DDWMR; how-
ever, the majority of the literature only ad-
dresses their kinematics models, which are ap-
propriate for light-load, low-speed, and low-
acceleration applications. When mobile robots
operate at high speeds and carry large loads,
the kinematic control loop cannot ensure pre-
cise velocity tracking. In order to reduce track-
ing errors, it becomes crucial to take robot dy-
namics into account. Furthermore, each side of
the DDWMR chassis has its own independently
driven wheel, which is powered by electric mo-
tors that may be adjusted separately in terms of
speed and direction. The motors are coupled, re-
sulting in DDWMR coupling multi-input-multi-
output systems. This coupling issue is a preva-
lent problem in practice, complicating controller
design.

This study considers both dynamic and kine-
matic model of DDWMR. Additionally, the
dynamic model includes the actuators, which
strengthens the DDWMR model’s accuracy.
Both inner loop and outer loop control strategies
are introduced; the former utilizes state feedback

control to handle the dynamics of the system,
while the latter employs feedback linearization
method to control DDWMR kinematics.

The main contribution of this research is
to improve the DDWMR model’s accuracy by
taking into account the system’s actuator and
applying the multiple input-multiple output
(MIMO) model of DDWMR when designing the
controller. The goal is to use the cascaded con-
troller to obtain good trajectory tracking perfor-
mance from the DDWMR in the presence of pa-
rameter uncertainty. The Uncertain State Space
block, which is part of the block collection in
the Robust Control Toolbox, is used to incorpo-
rate uncertainty information into Simulink mod-
els. It allows for the analysis of how variations
in uncertainties affect system behavior and the
evaluation of the robustness of the control ap-
proach being proposed. The performance of the
suggested controller is evaluated using circular
and eight-shape trajectories.

The remaining sections of the paper are orga-
nized as follows. Section 2. presents the deriva-
tion of the multivariable mathematical modeling
of DDWMR. In Section 3. the design control
techniques for the system are described. Sec-
tion 4. discusses the simulation findings. Some
conclusions are drawn in Section 5.

2. Modeling of system

The differential drive wheel mobile robot’s kine-
matics, which consist of a stiff body and non-
deforming wheels, are depicted in the schematic
diagram in Figure 1, and the main notations
used in this work are listed in Table 1 below.
It is assumed that the mobile robot travels on
a plane without slipping. On its platform, the
DDWMR has one free castor wheel for balanc-
ing and two drive wheels with independent actu-
ators positioned on the same axis. Controlling
the respective angular velocities of the driving
wheels allows the mobile robot to be navigated.

The proposed drive-wheeled model is fully in-
tegrated with two identical permanent magnet
DC motors whose output shafts are coupled to
corresponding driving wheels. The wheel hub
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Fig. 1: Differential drive-wheeled mobile robot.

Tab. 1: Main notations for this work.

vR, vL Linear speed of the right and left wheels
ωR, ωL Angular speed of the right and left motors
rW Radius of the wheels
iG Gearbox ratio of the motors
ν Longitudinal velocity of the DDWMR
ω Angular velocity of the DDWMR

2W Distance from the right-to-left wheel’s
ground contact point

νX , νY X and Y-axis velocities of the DDWMR
θ Orientation of the DDWMR

iaR, iaL Armature current of the right and left DC
motors

uaR, uaL Armature voltage of the right and left DC
motors

centers’ longitudinal speeds are established by

νL =
rW
iG

ωL and νR =
rW
iG

ωR (1)

At the midpoint of the line connecting the wheel
hub centers, the DDWMR’s longitudinal veloc-
ity ν and yaw rate ω are

ν =
1

2
(νR + νL) =

rW
2iG

(ωR + ωL)

ω =
1

2W
(νR − νL) =

rW
2WiG

(ωR − ωL)

(2)

The linear and angular velocities of DDWMR in
the inertial frame are stated as follows [13]:

νX = ν cos θ

νY = ν sin θ

θ̇ = ω

(3)

The dynamic model of the DDWMR in state
space form is provided by [14] when the actua-
tors and robot system are treated according to

Newton’s second law:

ẋ = Ax+Bu

y = Cx
(4)

where,

A =


−k1R −k2R 0 0
k4R −k5R −k6R k7R
0 0 −k1L −k2L

−k6L k7L k4L −k5L

 ,

B =


k3R 0
0 0
0 k3L
0 0

 ,C =

[
0 k8R 0 k8L
0 k9R 0 −k9L

]

In this model x =
[
iaR ωR iaL ωL

]T ,
y =

[
ν ω

]T , u =
[
uaR uaL

]T are states,
output, and input vectors, respectively. Our ear-
lier work has specifics regarding the modeling
and simulation of each component [14].

3. Controller design

In this study, the design and structure of the
trajectory tracking controller are separated into
two stages. Using the errors between the de-
sired position [ Xref Yref θref ]T and the
actual robot position [ X Y θ ]T , the kine-
matic controller is first utilized to generate the
desired linear and angular velocities. The sec-
ond stage is the design of the dynamic controller,
which is utilized to compensate for the mobile
robot’s dynamic effects. Figure 2 illustrates the
trajectory tracking controller’s whole architec-
ture.

Fig. 2: Overall trajectory tracking controller of
DDWMR.
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3.1. Feedback linearization
control for trajectory
tracking of DDWMR

By introducing a transformation to the system
input, feedback linearization aims to achieve a
linear system between new input and output
[15]. This makes it possible to develop any lin-
ear control system. In line with the kinematic
model, their initial derivative is{

Ẋ = νX = ν cos θ

Ẏ = νY = ν sin θ
(5)

Only the translational velocity ν is shown in
the first derivative. The second derivative is{

Ẍ = ν̇ cos θ − νθ̇ sin θ

Ÿ = ν̇ sin θ + νθ̇ cos θ
(6)

Both of the velocities ν and ω = θ̇ are in-
cluded in Equation 6. Currently, the system of
equations is reformulated such that the functions
of the highest derivatives of individual inputs (
ν̇ and ω ) describe the second derivatives of the
flat outputs.[

Ẍ

Ÿ

]
=

[
cos θ −ν sin θ
sin θ ν cos θ

] [
ν̇
ω

]
= F

[
ν̇
ω

]
(7)

It is now possible to introduce the non-
singular matrix F if ν = 0. Thus, the system
of equations can be solved for ν̇ and ω :[

ν̇
ω

]
= F−1

[
Ẍ

Ÿ

]
=

[
cos θ sin θ

− 1
ν sin θ 1

ν cos θ

] [
Ẍ

Ÿ

]
(8)

The recently acquired linear system comprises
inputs [ uFL1 uFL2 t]T = [ Ẍ Ÿ ]T , and
states z = [ X Ẋ Y Ẏ ]T . The state-space
model provides a straightforward way to charac-
terize the dynamics of the new system is

Ẋ

Ẍ

Ẏ

Ÿ

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




X

Ẋ
Y

Ẏ

+


0 0
1 0
0 0
0 1

[
uFL1

uFL2

]

(9)
or

ż = AFLz+BFLuFL (10)

Since the controllability matrix of the system
in Equation 10 has a complete rank, the state
feedback controller for every given characteristic
polynomial of the closed loop exists, indicating
that the system is controllable.

Another necessity is to create the control law
so that the robot follows a reference trajectory.
In the context of flat systems, a reference tra-
jectory for flat outputs is presented as Xref (t),
Yref (t).

Then the reference can be re-
trieved for the system state zref =
[ Xref Ẋref Yref Ẏref ]T and the system
input uFLref = [ Ẍref Ÿref ]T . Equation
10 can alternatively be expressed for reference
signals:

żref = AFLzref +BFLuFLref (11)

Errors between the actual and reference states
is characterized as z̃ = z − zref . Subtracting
Equation 11 from Equation 10 results in

˙̃z = AFLz̃+BFL (uFL − uFLref ) (12)

Equation 12 defines the dynamics of the state
error. These dynamics should be steady and ap-
propriately quick. One method for regulating
closed-loop dynamics is to specify closed-loop
pole locations. As demonstrated previously, the
pair ( AFL,BFL) is controlled; thus, it is possi-
ble to attain arbitrary placements of the closed-
loop poles in the left half-plane of the complex
plane s by appropriately choosing a constant
control gain matrix KFL (of dimension 2×4). It
is possible to rewrite the equation 12 as follows:
˙̃z = (AFL −BFLKFL) z̃+BFLKFLz̃+BFL (uFL − uFLref )

= (AFL −BFLKFL) z̃+BFL (KFLz̃+ uFL − uFLref )

(13)

If the final part in Equation 13,
(KFLz̃+ uFL − uFLref ) is zero, the state
errors converge to 0 with the prescribed dynam-
ics, provided by the matrix (AFL −BFLKFL)
of the closed-loop system. The control law for
this method is defined by forcing this term to
zero:
uFL (t) = −KFLz̃ (t) + uFLref (t)

= −KFL [z (t)− zref (t)] + uFLref (t)

= KFL [zref (t)− z (t)] + uFLref (t)
(14)
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Fig. 3: Feedback linearization for reference tracking.

Because of a particular type of matrix
AFL,BFL in Equation 9, where uFL1 only influ-
ences states Z1, Z2, while uFL2 only influences
states Z3, Z4 the controller gain matrix is:

KFL =

[
kFL1 kFL2 0 0
0 0 kFL3 kFL4

]
(15)

Thus, the control law Equation 14 may be ex-
pressed as follows:

uFL1 (t) = Ẍ (t) = kFL1 [Xref (t)−X (t)] + kFL2

[
Ẋref (t)− Ẋ (t)

]
+ Ẍref (t)

uFL2 (t) = Ÿ (t) = kFL3 [Yref (t)− Y (t)] + kFL4

[
Ẏref (t)− Ẏ (t)

]
+ Ÿref (t)

(16)

3.2. State feedback for dynamic
control of DDWMR

Examine the state-variable model provided in
Equation 4

ẋ = Ax+Bu

y = Cx
(17)

The controller must be designed to allow
tracking of a step reference input with zero
steady-state error, which is a design challenge.
In this paper, the reference input is r =
[ νref ωref ]T and the tracking error e is

e = r− y (18)

Finding the time derivative yields

ė = ṙ− ẏ = −Cẋ (19)

According to [16], the two intermediary variables
are defined as follows:{

q = ẋ
w = u̇

(20)

then[
ė
q̇

]
=

[
0 −C
0 A

] [
e
q

]
+

[
0
B

]
w (21)

If Equation 21 is controllable, we can obtain
feedback control law in the following form:

w = −K1e−K2q (22)

such that Equation 21 is stable. This suggests
a stable tracking error e, and hence the goal of
asymptotic tracking with zero steady-state error
is accomplished. Integrating Equation 22 yields
the control input, which is

u = −K1

t∫
0

e (τ) dτ −K2x (23)

The corresponding block diagram of the state
feedback control algorithm is shown in Figure 4.

Fig. 4: Pole placement with integral control block dia-
gram.

4. Results and discussions

The effectiveness of the suggested control strat-
egy is assessed in this section both with and
without parameter uncertainty. This section
assesses the suggested control method’s perfor-
mance in two scenarios: one in which parameter
uncertainty exists and the other in which it does
not. The Simulink model of the DDWMR using
the state feedback method for dynamic control
and feedback linearization control for trajectory
tracking is displayed in Figure 5. The parame-
ters of the system are listed in Table 2 below.
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Fig. 5: Simulink model of the overall trajectory tracking
controller of DDWMR.

Tab. 2: Specifications of the DDWMR.

Symbol Description Value Units
JZ Moment of inertia of DDWMR 0.35 kg.m2

mB Mass of DDWMR 15 kg
W Half wheel base length 0.2 m
mW Wheel mass 0.5 kg
JW Moment of inertia of wheel 0.0002 kg.m2

iG Gearbox ratio 2 -
ηG Gearbox efficiency 85 %
rW Wheel radius 0.0675 m
Bm Motor viscous coefficient 0.0132 N.ms/rad
Kt Motor torque constant 0.6303 N.m/A
La Armature winding inductance 0.0172 H
Ra Armature winding resistance 0.7424 Ω

4.1. Trajectory tracking

Case Study 1: Circular path
To evaluate the suggested controller’s tracking
capability, a circular reference trajectory for the
DDWMR is chosen for the simulation.

Xref = 0.5 + 0.7 cos(2πt/30)

Yref = 0.3 + 0.7 sin(2πt/30)
(24)

The simulation time for trajectory tracking
in this case is 30 seconds to ensure the robot
finishes one period. The robot’s initial posi-
tion is at (0.8, 0), while the reference trajectory
starts at (1.2, 0.3). The performance response
of the circular reference trajectory tracking is
displayed in Figure 6 As can be seen in the fig-

ure, the real trajectory can track the reference
trajectory after a short time.

Fig. 6: Circular trajectory tracking.

The position and orientation tracking errors of
the mobile robot under the operation of the pro-
posed controllers are shown in Figure 7 The X
and Y-position tracking errors start at 0.4 and
0.3, respectively, and then converge to almost
zero within 2 seconds. Meanwhile, the orienta-
tion tracking error starts at an initial error of
1.57 and gradually decreases to zero over a rel-
atively long time of approximately 3 seconds.

Fig. 7: Position and orientation tracking errors.
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To evaluate the tracking capability, the
Relative-Root-Mean-Square-Error (RRMSE) is
used as a metric. The RRMSE is defined by

RRMSE =

√
1
n

n∑
i=1

(yD,i − yA,i)
2

√
1
n

n∑
i=1

y2D,i

100 (25)

where n is the number of data points, yD,i is
the desired output and yA,i is the actual output
value.

The RRMSE in X-, Y-axis, and orientation
are 7.2%, 7.46%, and 3.61%, respectively. The
corresponding control inputs are the armature
voltages applied to the right and left wheel mo-
tors, as shown in Figure 8. Since the reference
trajectory is a circular path with a fixed radius,
the desired left and right motor angular speeds
will be constants. As a result, in a steady state,
the voltages applied to the right and left motors
will be constant.

Fig. 8: Control input for right and left wheel motors.

Case study 2: Eight-shape reference
trajectory
In this case study, the performance of the pro-
posed system is evaluated with an eight-shape
reference trajectory defined by:

Xref = 0.5 + 0.7 sin(2πt/30)

Yref = 0.3 + 0.7 sin(4πt/30)
(26)

Assuming that the robot initiates at (0.2, 0) and
the reference trajectory begins at (0.5, 0.3), the

Fig. 9: Eight-shape-type trajectory tracking.

simulation duration for following the trajectory
in this scenario is 30 seconds.

The tracking performance is shown in Figure 9
and the corresponding errors are shown in Fig-
ure10. It can be seen that after less than two
seconds, the tracking errors for both positions
and orientation asymptotically approach zeros.
The corresponding RRMSEs are approximately
5.25%, 8.19%, and 2.83%, respectively. In this
case study, the control inputs for the right and
left wheel motors are as shown in Figure 11.

Fig. 10: Position and orientation tracking errors.

4.2. Parameter variations

The trajectory tracking algorithm consistently
requires a DDWMR model. However, due to
the inability to precisely measure the physical
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Fig. 11: Control input for right and left wheel motors.

parameters, the controller is designed using the
nominal value of these parameters. Neverthe-
less, when the algorithm is implemented on an
actual model, the true value of DDWMR may
deviate from the nominal value parameters cho-
sen in the algorithm, thereby unavoidably im-
pacting the algorithm’s control effectiveness. In
this study, the variation of the eight parame-
ters: radius of the wheel rW , efficiency of the
motor ηG, wheel mass mW , wheel inertia JW ,
motor armature winding resistance Ra, motor
armature winding resistance La , motor torque
constant Kt and motor viscous coefficient Bm on
each side of DDWMR is specifically taken into
account due to practical considerations. These
parameters are taken to be constants, but there
could be a 10% relative uncertainty around the
nominal values. In order to examine the im-
pact of uncertainty on the model’s responses,
the Simulink model will incorporate uncertain
real parameters using the MATLAB command
’ureal’ [17]. The MATLAB command ’usample’
will then be employed to generate random val-
ues for these parameters. Additionally, the com-
mand ’ufind’ will be used to identify the ’un-
certain state space blocks’ within the Simulink
model and compile a comprehensive list of all
uncertain variables present in these blocks.

Analyze the step response of the open-loop
system using the MATLAB ’step’ command to
understand the behavior that the uncertainty
represents. This command mechanically gener-
ates a series of random samples from an uncer-
tain system. A collection of step responses illus-

trates the plant variability is shown in Figure 12.
This figure illustrates the step responses of the
armature voltage of the left and right DC mo-
tors to the longitudinal and angular velocities of
the DDWMR’s dynamic model. The graphics
display the response of the nominal system as
a solid red line, while the responses of the un-
certain system are represented by dashed blue
lines. The simulation results indicate that the
nominal value of ν (from uaR ) is 0.0317 and it
ranges from 0.0271 to 0.0372. Similarly, the no-
tional value of ω (from uaR ) is 0.159 and it also
ranges from 0.138 to 0.186. Additionally, charac-
teristics rise time and settling time, . . . also de-
viate significantly from the nominal value, which
poses challenges in precisely controlling the tra-
jectory of DDWMR.

Fig. 12: Step responses of uncertain open-loop dynamic
system.

The longitudinal velocity and yaw rate tran-
sient responses of the uncertain closed-loop sys-
tem in the test with the eight-shape trajectory
are shown in Figure 13 and Figure 14. In these
figures, the dashed red line is the reference sig-
nal, and the remaining lines are the response
signals. The simulation results show that af-
ter a period of about 0.5 seconds, the response
lines follow the reference signal. The transient
responses of the actual positions and heading an-
gle also closely match the desired signal.

It can be seen that the DDWMR model’s pa-
rameter uncertainty can be compensated by the
proposed controller. The efficacy of the con-
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Fig. 13: Closed-loop transient response of DDWMR’s
longitudinal velocity.

Fig. 14: Closed-loop transient response of DDWMR’s
yaw rate.

troller in adapting control signals to account for
variations in model parameters during simula-
tions is seen in Figure 15. Simulating the be-
havior of the system with uncertain parameters
when the trajectory is in the shape of a circle
also yields similar results. The variation in the
RRMSE of responses can be seen in Figure 16.

5. Conclusions

This study proposes a novel dual-loop control
strategy for DDWMRs. It combines feedback
linearization for precise kinematic control with
state feedback control to ensure robust dynamic
response. The controller’s performance was rig-
orously evaluated in simulations using various

(a) Right wheel motor

(b) Left wheel motor

Fig. 15: Control inputs.

Fig. 16: Variation of RRMSE for parameter uncer-
tainty.

metrics, including settling time and relative-
root-mean-square error (RRMSE). It achieved
excellent tracking accuracy for both circular and
eight-shaped trajectories, with low RRMSE val-
ues. Furthermore, simulations incorporating pa-
rameter uncertainty via Simulink’s Uncertain
State Space block confirmed the controller’s sta-
bility. These findings suggest the proposed dual-
loop controller’s potential for real-world applica-
tions with strict tracking requirements and un-
certain operating conditions.
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