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Abstract. Power loss minimization and im-
proved wvoltage profile have been major chal-
lenges faced by the electrical distribution net-
work (DN) mainly because of the long length
of the feeders and the high resistance to reac-
tance (R/X) ratio of the DN. A lot of tech-
niques have been investigated to solve these prob-
lems. One of the most prominent is the opti-
mal integration of distributed generation (DG)
such as photovoltaic (PV) as well as the inte-
gration of Distribution Static Synchronous Com-
pensator (DSTATCOM) into the network. The
main challenge with this solution has been the
determination of the optimal sizes and sites of
the DG and/or DSTATCOM. This paper seeks
to optimize the simultaneous allocation of multi-
ple DSTATCOMs and PVs in the DN for power
loss reduction and voltage profile improvement
using the rat swarm optimization (RSO) tech-
nique, which is a simple, yet robust optimization
technique. The optimization problem is formu-
lated to minimize power loss, voltage deviation
idex, and mazximize the voltage stability index.
The IEEFE 33 node DN 1is used as a test network
and the simulation results show the effectiveness
of the RSO technique in finding the best sizes
and locations of the PVs and the DSTATCOMs.
The power losses of the network are reduced from
210.996 kW, and 143.129 kVAr when there is no
DSTATCOM nor PVs in the network to 26.155
kW, and 19.128 kVAr when DSTATCOM and

144

PVs are simultaneously allocated into the net-
work. A remarkable improvement in the volt-
age profile of the network is also observed with
the minimum node voltage being 0.98 p.u. com-
pared to 0.9038 p.u. when there are no DSTAT-
COMs or PVs. The RSO results were compared
with other techniques from the literature, and it
proved its superiority.

Keywords: DSTATCOM, Rat swarm optimiza-
tion, Photovoltaic, Distributed generation, Opti-
mization.

1. Introduction

As a result of the long lengths of distribution
networks (DNs) having high resistance to re-
actance (R/X) ratios, power loss minimization,
voltage profile improvement, and network relia-
bility improvement have been major challenges
faced by DNs [1]. Distributed generation (DG)
installed close to load centers where power is
consumed has been a potential solution. Mean-
while, as the need to cut down the emission
of greenhouse gases into the atmosphere keeps
growing, renewable energy DGs especially pho-
tovoltaic (PV) that directly convert sunlight into
electricity have gained a very strong interest.
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The penetration of PVs is fast increasing in the
modern DN as green electricity for discerning
consumers keeps improving as manufacturing ef-
ficiencies are upgraded. In addition, PVs present
potential benefits to the DN such as peak shav-
ing, voltage support, and reduction in losses [2].
Also, power is produced where it is consumed,
leading to a reduction in the net feeder load and
electricity bills paid by the prosumers [3].

The DN was designed to be balanced and
should be able to provide high-quality power to
the consumers, but due to the long feeders and
the reactive power needs of some loads, consider-
able power is lost along the lines [4]. To compen-
sate for this, a Distribution Static Synchronous
Compensator (DSTATCOM) could be used [5].
The DSTATCOM, which is a shunt connected
with loads stabilizes the DN voltage by regulat-
ing the reactive power flow in the DN, that is,
it absorbs reactive power when in excess in the
network and injects reactive power into the net-
work when in deficit [6]. STATCOMSs were ini-
tially designed for high voltage alternating cur-
rent transmission network applications but have
since then been of great interest in DN applica-
tions, with the name being adjusted to DSTAT-
COM [7]. The installation of DSTATCOM into
the DN has proven to be beneficial to the net-
work in terms of increased grid reliability, and
reduction in power losses [8]. Notwithstanding,
these benefits could only be obtained if strategi-
cally allocated [9].

A combination of DSTATCOM and DGs like
PVs in the DN will be very profitable to the
network as they will be able to minimize power
losses, improve the network voltage profile, and
improve the network’s stability [10]. Neverthe-
less, integrating both systems into the DN needs
to be done optimally to avoid the collapse of
the network [11]. Their sizes and locations need
to be carefully determined, and because of this,
a lot of research has been done to determine
the optimal sizes and locations of DSTATCOM
and DG in the DN. The authors in [12] used
the Cuckoo Search Optimization (CSO) tech-
nique to determine the optimal size and loca-
tion for DG and STATCOM integration into
the DN to minimize power losses, and the re-
sults obtained showed good performances when
compared with other techniques. In [13], the
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authors proposed the Chu—Beasley Genetic Al-
gorithm for the optimal integration of DSTAT-
COM into the DN. Meanwhile, in [14], the focus
was on using the Bald Eagle Search technique
for the allocation of DG and shunt reactive com-
pensators (SRC), and the simulation showed no-
ticeable results. In [15], the authors planned the
allocation of numerous DGs and DSTATCOM
in the power grid making use of the Student
Psychology-Based Optimization technique, and
the results obtained were compared with well-
known techniques like PSO. In [16], long-term
planning of DGs and DTATCOM into the DN
was carried out using the light search algorithm.
Testing was done on the IEEE 33 and 69 node
networks. The authors in [17] used PSO to opti-
mize the integration of DGs and DSTATCOMs
in the DN for power loss reduction and voltage
profile improvement.

This research focuses on the optimal sizing
and siting of PVs and DSTATCOMs in the DN
using the rat swarm optimization (RSO) tech-
nique. The RSO technique is chosen because
of its simplicity and robustness. The optimiza-
tion problem has been formulated as a multi-
objective problem minimizing active power loss,
and voltage deviation index while maximizing
the voltage stability index. The technique has
been tested on the IEEE 33 DN and the results
have been compared with past works.

The contribution of this work to the body of
knowledge is the adaptation/utilization of the
Rat Swarm Optimization (RSO) technique for
the optimal allocation of PVs and DSTATCOM
into the DN to minimize power loss and improve
the voltage profile of the network made up of
purely commercial loads. Despite the RSO be-
ing a simple yet robust optimization technique,
it had not yet been used for such applications.
The results obtained are then compared with
published results under the same conditions for
validation.

The rest of this paper is organized as follows;
the section after this is the methodology. The
methodology is followed by the presentation and
discussion of the results obtained, and then a
conclusion.
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2.  Methodology

2.1. Study Network

The IEEE test DNs are well-known DNs that
were first introduced by W. H. Kersting in 1991
to provide a common set of data to be utilized
by program developers and users to validate the
effectiveness of their solutions [18]. Since then,
other benchmarked networks have been devel-
oped. The test network used in this research is
the IEEE 33 node whose single line diagrams are
shown in Fig. 1. The IEEE 33 node network is
a balanced network at a voltage of 12.66kV with
a total load power of 3715 kW and 2300 kVAr as
shown in Table 1 [19]. This network as its name
implies has 33 nodes or buses of which one is a
generator bus, with the rest load buses. Con-
nected to the load buses are balanced loads that
consume both active and reactive powers. It is
chosen for this study because it is a balanced
network that is not too large nor too small. In
addition to that, many past works have made
use of this network, and therefore using it makes
results comparison and validation more realistic.
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Fig. 1: IEEE 33 node test DN.

Tab. 1: IEEE 33 node DN power demand

Active Power Reactive Apparent Power
(kW) Power (kVAr) (kVA)
3715 2300 4369.35

In this study, the network is studied as be-
ing purely commercial network (a network with
commercial customers), made up of small of-
fices, and retail shops. The normalized daily
load curve for the study area used in this re-
search is obtained from [20] as shown in Fig. 2.
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Fig. 2: Normalized daily load profile: industrial, resi-
dential, and commercial loads (the commercial
is considered).

2.2. Modelling of the PVs and

DSTATCOMs

PV modules or panels that produce direct cur-
rent (DC) power are connected to the grid (al-
ternating current (AC) power) through invert-
ers as shown in Fig. 3a. The inverters used
could be of two types: voltage source inverters
(VSIn) or current source inverters (CSIn). VSIn
makes use of DC capacitor links, and this gives
them the ability to inject reactive power into
the grid making them effective for applications
in low and medium voltage networks [21]. In
so doing, they work at a power factor different
from unity. Equations 1 and 2 show the power
expressions of a PV array with VSIn [22]. On
the other hand, CSIn works at a unity power
factor [23], because of the absence of a DC ca-
pacitor link, and therefore, they can only inject
active power into the network at a unity power
factor (equation (1) only applies in this case).

Ppy = [%va,zw — (P2 +Q3) — (Q}y — 2P Prv — 2Q:iQpv) (%)}
1)
Qpv = [%PPVJOSS — (P?+ Q%) — (P3y — 2P,Ppy — 2Q:Qpv) (%)}

2)
where Ppy is the real power produced by the
PV, Qpy is the reactive power produced by the
PV, V, is the voltage at the node i, R; is the
resistance of the line between node i, and i + 1,
Ppv,ioss) 18 the PV active power loss, G is the
distance between the source and the PV location
in km, and L is the feeder’s length from the node
iin km.

—~T o~

The PV systems considered here are without
any storage system and are made up of CSIn and
hence inject only active power into the networks.
They are subjected to the following environmen-
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Fig. 3: PV and DSTATCOM connected to the grid.

tal conditions (Fig. 4) from [26] which are for
the hot season (month of March) in Kenya.

On the other hand, DSTATCOMs are always
shunt-connected to the grid so that they can
regulate reactive power in the grid according to
needs. As shown in Fig. 3b, a DSTATCOM
consists of a voltage source converter (VSC), en-
ergy storage, a coupling transformer, and a con-
troller. In addition to providing reactive power
to the grid, a DSTATCOM could also provide
active power through its direct current energy
storage, so long as the output voltage of the
converter is set to be higher than that of the
network to which it is coupled at the point of
common coupling [27]. As obtained from [22],
equations 3 and 4 give expressions of the active
and reactive power of a DSTATCOM

ViV .
Ppsrarcom = XJSWMS (3)
L
V2w
=t -2 1) 4
Q@psrarcom X, x, (4)
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Fig. 4: Daily solar irradiance and temperature.

Where V; is the voltage at the node i, Vj is the
voltage of the DSTATCOM, X, is the reactance
of the line, and ¢ is the phase angle between V;
and Vj.

In this study, the DSTATCOM injects only
reactive power into the networks, and therefore,
only equation 4 applies.

2.3. Optimal allocation of the

PVs and DSTATCOMs

The optimal allocation of PVs and DSTAT-
COMs into the DN is done during peak load
demand. Since the loads are commercial loads,
this corresponds roughly to between 10 am to
2 pm. This time slot coincides with peak solar
insolation, and therefore the PVs are producing
at their peak as well.

1) Formulation of the optimization
problem

The optimization problem is formulated as a
minimization problem as adapted from [28].
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a. Power loss minimization

Np-
=min g Ry + I?

a=1

fi(5) (5)

where f; (j) is the total active power loss, Ny,
is the number of branches in the DN, I, is the
branch current, and R, is the branch resistance.

b. Average voltage deviation index (AVDI) min-
imization

fu Z|1_Vk|2 (6)

c. Voltage stability index (VSI) maximization
at a receiving end node, k, the VSI is calculated
as

2
fiii(k) = |Vk|4—4(Pk$jk + rijk) )
— 4(Perjk + Qrwjn) | Vi|?

where Vj is the node voltage at node k, Py is
the active power demand at node k, Q) is the
reactive power demand at node k, ;i is the re-
sistance of branch j—k, and z;, is the impedance
of branch j — k.

The VSI is given as a maximization problem
hence it is converted to a minimization problem
to be combined with the power loss and AVDI
equations to form the multi-objective function of
the optimization problem as shown in equation
8.

F(k) = min{ey fi(k) + ez fii (k) — es fiis(k)} (8)

where e1, es, and e3 are weights assigned to each
objective function. All the objective functions
have been given an equal weight of 1. That is;

61:62263:1

2) Constraints

a. Equality constraints: Power balance con-

straints

Npv N

PG"‘ZPPV—ZPZ_"ZPZOSS (9>
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where Pg is the active power from the grid, Ppy
is the PV active power produced, P is the active
power demand of the loads, IV,, is the number of
nodes, Npy is the number of PVs, P s is the
network active power loss, and Ny, is the number
of branches in the network.

Ny

QG+ZQD_ZQl+ZQloss

where Q¢ is the reactive power from the
grid, @ pis the reactive power generated by the
DSTATCOM, Np is the number of DSTAT-
COM, @ is the reactive power demand of the
loads, and Q;oss is the network reactive power
loss.

(10)

b. Inequality Constraints

- Voltage constraints: Node voltages should be

within limits.
szn < Vk V’I’nﬂft
Vi = 0.95p.u.
Vire® = 1.05p.u.

(11)

- PV power constraints

szn < PPV < Pma;v
PR = 100kW
PRaT = 2000kW

(12)

The maximum PV rating is chosen not to exceed
50% of the total active power demand of the
network.

- DSTATCOM power constraints

QB <Qp < QB™
QE™ = 100kV ar
mar — 2000kV ar

(13)

The maximum DSTATCOM rating is chosen not
to exceed 50% of the total reactive power de-
mand of the network.

3) Rat swarm optimization

RSO is the technique of choice in this work
for the optimal allocation of PVs and DSTAT-
COM in the DN because of its simplicity, high

(© 2024 Journal of Advanced Engineering and Computation (JAEC)
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accuracy, high convergence speed, and robust-
ness [29]. RSO is a novel optimization technique
inspired by rats’ behavior of chasing and fight-
ing their prey. Rats are social animals that hunt
and fight in packs, and this trait of aggression is
what gives the RSO algorithm its core motiva-
tion [30]. Each rat in RSO stands for a distinct
solution. The RSO begins by randomizing the
initialization of the solution set (rats), then eval-
uates them usi_r)1g an objective function, where

the best rat R, is considered the optimal so-
lution. As a result, the following processes are
repeatedly carried out a certain number of times
(t), beginning by first updating the position of
every rat based on the two modeled behaviors:
chasing and fighting prey. A second step is the
updating of the parameters, and any solution
outside the search space is adjusted. Lastly, the
recalculation of the fitness of every rat in the
swarm is done, and the best rat’s position is up-

N
dated if it is better that R,. The best solution
—

R, is returned after that is completed. The RSO
is summarised in the flowchart in Fig. 5.

A. Mathematical model of the RSO i. Chasing
the prey In the RSO, chasing the prey is usually
a general task wherein the rat who knows the
location of the prey is seen as the best search
argent, while the rest of the swarm align them-
selves according to the position of the best rat
as shown in the equation below [31]
B.= AR(j)+C. (R() - B()) (14
Where R, is the optimal solution, &; (j) is the
optimal solution which is the position of the "
rat, R (j) is the solution of the {*" and j is the
number of iterations. Parameters A and C are

calculated as shown in equation 1, where 5™
is the maximum iteration.
B
()
]mam
(15)

B = rand(1,5)
C =2 xrand(0,2)

ii. Fighting the prey
The equation describing how the rats fight the
prey is shown below.

B+)=|RG)-F (10

(© 2024 Journal of Advanced Engineering and Computation (JAEC)

where R; (j + 1) is the next position of the i
rat. A and C are used to balance between ex-
ploration and exploitation. Making A too small
for example 1 and making C moderate will re-
sult in a stressed exploitation, while a large value
will lead to a stressed exploration. To achieve a
balance, equation 13 which is the sum of intra-
cluster distances is used.

ch € C’Zx € Crd*(w, ) (17)
where i, is the middle of the cluster k, and d?
(...) is the square of the Euclidean distance.

A summary of the RSO is shown in Fig. 5
below.

© START
—
| Generation of initial rat population |
T
v
Choice of initial parameters
T
v
| Calculation of the fitness value of each rat |
v

Update the position of each rat based on the best

rat
Calculation of the fitness value of each rat again

v
Update the position of each rat and identificatio

n of better solutions if any

\

Stopping crite

ria met?

v Yes

END

Fig. 5: Flowchart of the RSO.

2.4. Optimal integration of PVs

and DSTATCOMs

The steps through which the optimal sizing and
allocation of PVs and DSTATCOMSs into the

149



Volume: 8 | Issue: 3 | 2024 | September

test DN using the RSO technique as adapted
from [31] are done are shown below. The steps
apply for the optimal integration of PVs and
then DSTATCOM. MATLAB R2018a is used for
the simulation.

Step 1: Enter the network data.

Step 2: Perform the base case load flow analy-
sis using the Newton-Raphson iterative method.
Step 3: Record the following results: active and
reactive power losses, network voltage profile,
AVDI, and VSI.

At a time, t = 0, perform Steps 4 and 5.

Step 4: Initialize the RSO parameters.

The search space dimension, d
- Number of rats, r

Number of iterations, j

- Maximum number of iterations, j™**

Step 5: Initialize the population.

- The position of the i*" rat, R;(j)

—

- The best rat’s position, R,

Initialize the parameters, A, B, and C

Result assessment is performed, and the
best solution is assigned to R;(j).

while (j < j™*)
for every rat,
Step 6:

- Update the current rat’s position using
equation (16).

- Update A, B, and C using equation (15).

- Verify if there is any rat that goes beyond
the set search space and if so, adjust its po-
sition.

- Calculate the fitness value of each rat.

- Update R;(j) if a better solution than the
previous optimal solution is found.

-j=j+1
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End while

Return R;(j)

End the procedure.

Step 7: Output load flow results (power losses,
node voltage, AVDI, AVSI) and the optimal size
and locations for the PVs or DSTATCOM.

The RSO parameters used in the simulation
are shown in Table 2. The parameters are an
adjustment of the empirical values used in [31]

Tab. 2: RSO Initial parameters

Parameter Symbol value
Search space dimension d 30
Number of rats r 30
Random parameters B 5

C 1
Maximum number of iterations  j™%* 1000

3. Results and discussion

The results obtained using the RSO technique
for the optimal allocation of PVs and DSTAT-
COMs in the IEEE 33 node DN are shown in
this section.

3.1. Simulation scenarios

Simulation is done using MATLAB R2018a. It
is arbitrarily chosen to optimally size and site 3
PV units and 3 DSTATCOM units in the test
network. The following scenarios are simulated.

Base Case: Load flow analysis of the network
without PV and DSTATCOM

Case 1: Load flow analysis of the network with
optimally sized and placed DSTATCOMs only

Case 2: Load flow analysis of the network with
optimally sized and placed PVs only

Case 3: Load flow analysis of the network with
PV and DSTATCOM simultaneously sized and
sited

(© 2024 Journal of Advanced Engineering and Computation (JAEC)
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3.2. Optimal sizes and sites of

DSTATCOMs and PVs

The obtained optimal sizes and sites when only
DSTATCOMs, only PVs, and both DSTAT-
COMs and PVs are simultaneously integrated
into the network are shown in Tables 3, 4, and
5 respectively. Looking at the three tables, it
is observed that the simultaneous integration
of DSTATCOMs and PVs into the DN using
RSO yields the lowest objective function values
(0.2647). This is followed by the integration
of PVs only (0.3812) and in the last position
the integration of DSTATCOM only (0.5446).
The objective function being a minimization
one therefore implies that the best solution is
achieved when both DSTATCOMs and PVs are
integrated into the DN for power loss reduction
and voltage profile improvement as compared to
integrating them separately.

Tab. 3: Optimal integration DSTATCOM only

Size Location Objective Function
(kVAr)  (node) value
634.48 31
480.85 30 0.5446
880.71 15

Tab. 4: Optimal integration of PVs only

Size Location Objective Function
(kVAr)  (node) value
665.05 31
915.2 12 0.3812
883.42 6

Tab. 5: Optimal integration of PVs and DSTATCOM

DSTATCOMs PVs
Size Location Size Location  Objective
(kVAr)  (node) (kW) (node) Function
value
482.68 12 1015.09 12
503.95 30 893.41 30 0.2647
851.67 25 436.91 25

(© 2024 Journal of Advanced Engineering and Computation (JAEC)

3.3.  Voltage profile

The network voltage profile without PVs and
DSTATCOMs, with DSTATCOMs only, with
PVs only, and with PVs and DSTATCOMSs is
shown in Fig. 6. It is seen that the introduc-
tion of PVs only yields a better voltage pro-
file with the minimum node voltage being 0.969
p.u. (node 18) than the introduction of DSTAT-
COMs whose lowest network voltage is 0.957
p.u. (node 18). This can be justified using active
and reactive power generation equations shown
below (equations 18, and 19). From equation
18, the load voltage Vi, can be expressed to give
equation 20. From equation 16, it is observed
that an increase in the active power generated
will lead to a greater increase in the load voltage
compared to the load voltage expressed in terms
of reactive power (equation 21). The optimal
simultaneous integration of PVs and DSTAT-
COMs into the DN by the RSO yields the best
network voltage profile with the lowest node
voltage being 0.982 (node 33) because of the
combined effect of the PVs and DSTATCOMs.

VaVe

Ps = X sind )
Qa = V—é Gy cosd
“TX X

Where Pg is the active power generated, Q¢ is
the reactive power generated, Vg is the genera-
tor voltage, V7, is the load voltage, X is the line
reactance, and ¢ is the power angle.

P X
V =
= L Vgsind
(VG2 _ QG?) (19)
V _ CcOoS
= L 7‘/0

3.4. Power losses

The allocation of the PVs and DSTATCOMs
into the DN leads to a drop in the total ac-
tive and reactive power losses of the network
as shown in Fig. 7. This is because they are
sized and placed at load centers where power
is consumed and hence lead to a reduction in
the amount of current flowing in the DN feeders
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Fig. 6: Network voltage profile without DSTATCOM
nor PVs, with DSTATCOMs only, with PVs
only, and with both DSTATCOMSs and PVs.

from the slack bus. Since power loss is a func-
tion of current, a reduction in current, there-
fore, leads to a reduction in both active and
reactive power losses, the reason why a power
loss of 210.996 kW, 143.129 kVAr experienced
when there are no PVs nor DSTTACOMs is
dropped to 26.155 kW, 19.128 kVAr when PVs
and DSTATCOMs are simultaneously sized and
placed in the network. Again, it is noted that
the allocation of PVs yields lesser active and re-
active power loss (81.171 kW, 56.048 kVAr) than
the DSTATCOMs (160.629 kW, 112.075 kVAr).
This could be because the DSTATCOMs is a
reactive power compensator, that is, it injects
reactive power into the network when it senses
a deficiency in reactive power while it absorbs
reactive power when it senses an excess. In
other words, it ensures that just enough reac-
tive power is present in the network. Whereas,
in the case of the PVs all through its operation,
it injects active power into the network therefore
the amount of active power drawn from the slack
bus by the loads is immensely definitely reduced
leading to better total power loss reduction.

3.5. Voltage deviation index

(VDI)

The voltage deviation index is useful to visual-
ize how much a node voltage differs from the
expected nominal voltage which is usually 1 p.u.
The smaller the VDI of a node in the network,
the closer the node voltage is to the reference
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Fig. 7: Total power loss in the network in all simulation
cases.

value. An average of the voltage deviation in-
dices of the network gives the average voltage de-
viation index (AVDI) which gives an idea of how
good the voltage profile of the network is. The
smaller the value, the better the voltage profile
of the network. The simultaneous sizing and al-
location of PVs and DSTATCOM in the DN led
to a drop in the AVDI from 0.00406 (base case)
to 0.00008 as seen in Fig. 8. It is observed here
again that the PVs result in a better AVDI of
0.00042 compared to the DSTATCOMs which is
of 0.00112. The reason is because of the greater
impact of the PVs on the network voltage profile
as explained earlier than the DSTATCOMs.
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Fig. 8: AVDI in all simulation cases.

3.6. Voltage stability index

(VSI)

The VSI is very useful in predicting how unsta-
ble a network is. It can estimate proximity to
collapse as well as identify critical nodes or line
segments, making it very useful in online volt-
age stability analysis [32]. When there are no
DSTATCOMs nor PVs in the network, the min-
imum VSI of the network is as low as 0.6671
(nodel8) as shown in Fig. 9. This is improved
t0 0.8335 (node 33) when the DSTATCOMs are
integrated, and better to 0.8804 (node 18) when
the PVs are integrated. The best minimum VSI
is of course seen when both DSTATCOMs and
PVs are simultaneously integrated into the net-
work with the resulting lowest node VSI being
0.93019 (node 33). Therefore, the presence of
the DSTATCOMs and PVs in the network re-
sults in the network being less susceptible to col-
lapse.

1,01
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= 086

=~ 081
0,76
0,71
0,66

1 357 9111315171921232527293133
Case

»==DSTATCOMs
DSTATCOMs & PVs

=@==Basc case
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Fig. 9: VSI in all simulation cases.
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3.7. Comparison with other

techniques

To validate the efficiency of the RSO in the si-
multaneous sizing and siting of DSTATCOMs
and PV/DG in the distribution, the results ob-
tained from this research are compared with
those obtained using other optimization tech-
niques in the literature under the same c as
shown in Table 6, with Fig. 10 showing a graphi-
cal comparison of the active power loss and min-
imum node voltage. All work was carried out
under the same conditions with the IEEE 33-
node test DN used. In some cases, 3 DG/PV
and DSTATCOM units are sized and allocated,
while others deal with the integration of a sin-
gle DG/PV and DSTATCOM. In the compar-
ison presented in Table 6, the total DG/PV
and DSTATCOM capacities are highlighted, and
their impact on the DN is examined. It is seen
that the minimum node voltage when the pro-
posed RSO is used is 0.98p.u., which is higher
than that when the other techniques are used.
In addition to that, the resulting total active
power loss of the network is lowest when the
proposed RSO is used to optimally size and site
the DSTATCOMs and PVs in the network. Fur-
thermore, the minimum VSI of the network is
highest (0.9302) when the proposed RSO is used
compared to that obtained in other research
works that examined the VSI. This, therefore,
shows the superiority of the RSO over other
techniques used in the literature for the opti-
mal sizing and allocation of DSTATCOM and
PV/DG units in the DN for power loss reduc-
tion and network voltage profile improvement.
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Tab. 6: Comparison of the proposed RSO technique with other works

Used Optimization techniques Ploss Min Voltage  Min Sizes
(kW) (p-u.) VSI DG/PV DSTATCOM

(kW) (kVAr)
Fractional Lévy Flight Bat Algorithm 102.74 0.97 - 2000 2000
(FLFBA) [33]
Enhanced Artificial Bee Colony (EABC) 82.28 0.9499 0.81  1098.778 1232.5
algorithm-based optimization method [34]
Loss Sensitivity Factor (LSF) [35] 86.2681 0.9503 - 1000 1500
Analytical approach-based technique [36]  121.7023 0.9546 - 203.4 1250
Proposed RSO 26.16 0.98 0.9302 2345.41 1838.3

121,7023

102,74

26,16

Active power loss (kW)

Case

m [15] = [22] [38] ®m [24] mProposed RSO

(a) Total active power loss

0,985
0,98
0,975
0,97
0,965
0,96
0,955
0,95
0,945
0,94
0,935
0,93

0,9546
0,9499 0,9503

Voltage (p.u.)

[38] = [24] ®=Proposed RSO

Case

[15] = [22]

(b) Minimum node voltage

Fig. 10: Comparison of the proposed RSO with other
techniques.
4. Conclusions

This study focused on the simultaneous optimal
sizing and siting of DSTATCOMSs and PVs in
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the DN for power loss reduction and network
voltage profile improvement. Also, simulation
cases of only DSTATCOMs as well as only PVs
being integrated into the DN were performed.
The IEEE 33 node DN was used as the test net-
work with the network made up of commercial
loads. The allocation of DSTATCOMs and PVs
in the distribution network is an important task
as there is a need to obtain the best network
parameters without violating certain conditions.
Therefore, the choice of the optimization tech-
nique for such a task is crucial. Because of
its simplicity and robustness compared to other
techniques, the rat swarm optimization (RSO)
technique was therefore used. It was observed
that the simultaneous sizing and siting of DSTA-
COMs and PVs yields good load flow parame-
ters as the power loss of the network dropped
tremendously from 210.996kW, 143.129kVAr in
the base case to 26.155kW, 19.128kVAr. Also,
an improvement in the voltage profile of the net-
work was noticed with the minimum node volt-
age being 0.98p.u. compared to 0.9p.u. in the
base case. The effectiveness of the RSO was vali-
dated against other techniques and it was shown
that the performance of RSO was superior to the
other techniques.
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