
Volume: 8 | Issue: 3 | 2024 | September

The free vibration of the MEE sandwich
microplate with the FG-CNTRC core using

the MSGT

T. T. Trien , P. T. Hung∗
Faculty of Civil Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi

Minh City, Vietnam.

*Corresponding Author: P. T. Hung (email: hungpht@hcmute.edu.vn)
(Received: 09-May-2024; accepted: 15-July-2024; published: 30-September-2024)

http://dx.doi.org/10.55579/jaec.202483.463

Abstract. This study deals with the free
vibration of the sandwich microplate with
the core made of functionally graded carbon
nanotube-reinforced composites (FG-CNTRC)
and magneto-electro-elastic (MEE) face sheets.
The governing equation of the microplates is de-
rived by using the refined plate theory (RPT)
with two variables and the modified strain gradi-
ent theory (MSGT). The Non-Uniform Rational
B-Splines (NURBS) basis function of the iso-
geometric approach (IGA) is used for the ap-
proximation of the displacement and electric and
magnetic fields of the microplates. The paper
studies the effect of the length scale parameters
(LSPs), CNTs distributions, CNTs volume frac-
tion, magnetic and electric loads and geometry
on the vibrational frequency of the MEE sand-
wich microplate.

Keywords: Isogeometric approach, magneto-
electro-elastic, modified strain gradient theory,
functionally graded carbon nanotube-reinforced
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1. Introduction

The modified strain gradient theory (MSGT) is
an enhanced framework in material science, re-
fining traditional strain gradient theories to cap-
ture finer details of material behavior. By in-

corporating higher-order strain gradients, this
theory addresses limitations in classical models,
particularly in micro and nanoscale applications,
offering improved accuracy in predicting mate-
rial responses under complex conditions. Lam et
al. [1] firstly presented a MSGT incorporating
three length-scale parameters (LSPs). Accord-
ing to the MSGT the size-dependent of the mi-
cro structures were studied by many scientists.
Examining static bending and free vibration of a
piezoelectric microbeams subjected to mechani-
cal and electric loads, Li et al. [2] conducted their
study based on the Timoshenko beam theory
and MSGT. The buckling analysis of the rect-
angular plate was explored by Mohammadi and
coworkers [3] utilizing the MSGT and the Kir-
choff plate theory (KPT). Hosseini et al. [4] uti-
lized the KPT to analyze the buckling of an or-
thotropic multi-microplate system positioned on
a Pasternak foundation, employing the MSGT.
The free vibration of the functionally graded
porous (FGP) microbeams was elucidated by
Karamanli et al. [5], utilizing both the MSGT
and quasi-3D theory. Furthermore, Wang et
al. [6] investigated the vibration and static re-
sponses of a porous metal foam microbeam by
employing the MSGT and sinusoidal beam the-
ory. In their analytical study, Zhang et al. [7]
incorporated the MSGT alongside the refined
plate theory (RPT) to examine the static, buck-
ling, and free vibration of the FG microplates
supported on an elastic medium. Applying the
MSGT, Ashoori [8] investigated a geometrically
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nonlinear plate formulation using the first-order
shear deformation theory and von Karman non-
linear strains. Besides, Le et al. [9–11] formu-
lated a mathematical model for the microstruc-
tures based on general Mindlin’s strain gradient
theory.

Magneto-electro-elastic (MEE) materials are
advanced materials that contain the unique ca-
pability to integrate mechanical, magnetic and
electrical properties. This unique combination
makes MEE materials valuable in various appli-
cations, including sensors, actuators, and smart
devices. For these reasons, many scientists
have devoted considerable time to researching
the behaviors of the structures made of MEE
materials. Liu et al. [12] reported the ana-
lytical static and vibration of MEE composite
plates with piezoelectric and piezomagnetic lay-
ers based on KPT. The investigation of free vi-
bration with large amplitude in MEE laminated
plates on an elastic medium was conducted by
Shooshtari et al. [13]. This study utilized the
analytical method and first-order shear defor-
mation theory (FSDT). Employing Eringen’s
nonlocal theory and the third-order shear de-
formation theory (TSDT), combined with ana-
lytical approach, Mohammadimehr and cowork-
ers [14] investigated the force vibration, static
and buckling of nanocomposite microplates, tak-
ing into account MEE properties. Zur and col-
leagues [15]] utilized the sinusoidal shear defor-
mation theory (SSDT) and nonlocal theory to
study the stability and vibration of the FG MEE
nanoplates subjected to electrical, mechanical,
and magnetic loads. In recent studies, exami-
nations of the dynamic and static of the MEE
plates have been documented in [16]. Certain
scholars directed their attention towards con-
ducting analyses on the mechanical responses of
the FG-CNTRC structures. Shi and colleagues
[17], utilizing the FSDT, determined the exact
solution for the free vibration of FG-CNTRC
beams. Chalak et al. [18] explored the hygro-
thermal free vibration of FG-CNTRC beams by
employing the higher-order zigzag theory and
the finite element method (FEM). Zghal and
coworkers [19] presented the FEM to introduce
the static bending of the FG-CNTRC structures,
encompassing plates and shells. Duc et al. [20]
presented the free vibration analysis of the FG-

CNTRC plates with cracks based on the FSDT
and FEM.

As per the cited references and the author’s
knowledge, no existing research employs isogeo-
metric analysis (IGA) and the MSGT to explore
the free vibration behavior of the sandwich mi-
croplates with MEE face sheets and FG-CNTRC
core. To study the behavior of the microstruc-
ture using MSGT, the analytical methods are
beneficial because they allow for the manipula-
tion of higher-order derivatives in the approxi-
mate functions of higher-order stress. However,
for practical applications involving real struc-
tures, numerical techniques like FEM, meshfree
methods, IGA, and similar approaches are of-
ten the most suitable options. One advantage of
IGA is its ability to achieve any desired level of
continuity with its basic functions, thus meeting
the C1-continuity requirement of the MSGT mi-
croplate model. Hughes and coworkers [21] ini-
tially introduced the isogeometric method. Ref-
erences [22–24] discuss the free vibration, bend-
ing, and buckling analyses of microplates uti-
lizing the MSGT and IGA. Additionally, Thai
et al. [25, 26] applied a joint approach involving
MSGT and HSDT to investigate the natural fre-
quencies and deflection of the FG microplates.
In addition, the fracture of the FG-MEE plates
was studied by Singh et al. [27] using the ex-
tended IGA. Kiran et al. [28, 29] employed the
IGA to present the brittle fracture in the piezo-
electric materials. In this paper, we utilize the
refined plate theory incorporating two variables
and the MSGT to investigate the free vibration
of the sandwich microplates with MEE face lay-
ers and FG-CNTRC core under the electric and
magnetic loads. The effects of the length scale
parameters (LSPs), various types of CNTs dis-
tributions, external magnetic and electric loads
and geometry on the vibrational frequency of the
MEE sandwich microplates are presented.

2. Fundamental equations

2.1. The displacement fields

In this investigation, the RPT with two variables
is utilized to represent the displacement fields as
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follows:

u = u1 + 2u2 + f (z)u3 (1)

where

u =

u
v
w

 ;u1 =

 0
0

wb + ws

 ;u2 = −

wb,xwb,y
0

 ;u3 =

ws,xws,y
0

 ;

f (z) = −4z3/3h2

(2)
where wb denotes the bending transverse dis-
placement; ws represents the shear transverse
displacement; index “, ” denotes the differential
operator.

The strain tensor is defined by follow{
εεεb = zεεε1 + f (z)εεε2
εεεs = (1 + f ′(z)) ε̄̄ε̄εs

(3)

with f ′ (z) = df(z)
dz , and

εεεb =

 εx
εy
γxy

 ; εεε1 = −

 wb,xx
wb,yy
2wb,xy

 ; εεε2 =

 ws,xx
ws,yy
2ws,xy

 ;

εεεs =

{
γxz
γyz

}
; ε̄̄ε̄εs =

{
ws,x
ws,y

}
(4)

In accordance with Maxwell’s equation [30],
the magnetic (Ψ) and electric (Φ) potentials can
be formulated as follows{

Φ (x, y, z) = φ (x, y) g (z) + 2zϕ0

h

Ψ(x, y, z) = ψ (x, y) g (z) + 2zψ0

h
with g (z) = cos

(
πz
h

) (5)

where (ψ) and (ϕ) are respectively represent the
in-plane magnetic and electric potentials. Addi-
tionally, (ψ0) and (ϕ0) signify the initial external
magnetic potential and electric voltage, respec-
tively.

The electric and magnetic fields are defined in
accordance with Maxwell’s equations by follow-
ing

E =

 Ex
Ey
Ez

 = −

 Φ,x
Φ,y
Φ,z

 = −


g (z)φ,x
g (z)φ,y

g′ (z)φ+ 2ϕ0

h

 ;

H =

 Hx

Hy

Hz

 = −

 Ψ,x
Ψ,y
Ψ,z

 = −


g (z)ψ,x
g (z)ψ,y

g′ (z)ψ + 2ψ0

h


(6)

where E is the vector of electric field, while are
the electric field’s components; H denotes the

vector of magnetic field, while are the compo-
nents of the magnetic field.

Based on the MSGT [1], the rotation gradient
tensor χχχ of the microplate is formulated as follow

χχχ = 1
2

(
∇θθθ +∇θθθT

)
=

{
χχχb
χχχs

}
=

{
χb1 + f ′ (z)χb2
f” (z)χχχs1

}
;

θθθ = 1
2

(
∇u−∇uT

)
(7)

where

χχχb =

 χxx
χyy
χxy

 ;χχχs =

{
χxz
χyz

}
;

χχχb1 =
1

4

 4wb,xy + 2ws,xy
−4wb,xy − 2ws,xy

2wb,yy − 2wb,xx + 2wx,yy − 2ws,xx

 ;

χχχb2 =
1

4

 −2ws,xy
2ws,xy

ws,xx − ws,yy

 ;χχχs1 =
1

4

{
−ws,y
ws,x

}
(8)

Likewise, the dilatation gradient tensor, as per
Eq. 1, assumes the forms:

ζζζ = ζζζ1 + zζζζ2 + f (z)ζζζ3 + f ′ (z)ζζζ4 (9)

where

ζ1 = −

 0
0

wb,xx + wb,yy

 ; ζ2 = −

wb,xx + wb,xy
wb,yy + wb,xxy

0

 ;

ζ3 =

ws,xx + ws,xyy
ws,yyy + ws,xyy

0

 ; ζ4 =

 0
0

ws,xx + ws,yy


(10)

Moreover, the deviatoric stretch gradient tensor
is formulated as follows

ηηη =

{
ηηηb
ηηηs

}
=

{
zηηηb1 + f (z)ηηηb2 + f” (z)ηηηb3

ηηηs1 + f ′ (z)ηηηs2

}
(11)

where

ηηηb =


ηxx
ηyyy
ηyyx
ηxy
ηzx
ηzy

 ;ηηηs =


ηzz
ηxx
ηyyz
ηxyz

 ;
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ηηηb1 =
1

5



−2wb,xx + 3wb,xy
−2wb,xy + 3wb,xy
wb,xx − 4wb,xy
wb,xy − 4wb,xy
wb,xx + wb,xy
wb,xy + wb,xy
wb,xy + wb,xy


;

ηηηb2 =
1

5



2ws,xx − 3ws,xy
2ws,yy − 3ws,xy
−ws,xx + 4ws,xy
−ws,yy + 4ws,xxy
−ws,xx − ws,xyy
−ws,yy − ws,xy


;

ηηηb3 = − 1

15



3ws,x
3ws,y
ws,x
ws,y

−4ws,x
−4ws,y


;

ηηηs1 =
1

15


3wb,xx + 3wb,yy − 3ws,xx − 3ws,yy
−4wb,xx + wb,yy + 4ws,xx − ws,yy
−4wb,yy + wb,xx + 4ws,yy − ws,xx

−5wb,xy + 5ws,xy

 ;

ηηηs2 =
1

15


−6ws,xx − 6ws,yy
8ws,xx − 2ws,yy
8ws,yy − 2ws,xx

10ws,xy


(12)

where, δ denotes the Kronecker’s delta.

2.2. The material properties

Consider the sandwich microplate as illustrated
in Figure 1. The microplate’s face sheets are fab-
ricated using isotropic magneto-electro-elastic
material. Additionally, the core is comprised
of an epoxy matrix reinforced with CNTs and
includes four distributions: FG-UD, FG-X, FG-
O, and FG-V. According to the extended rule
of mixture [31], the equivalent material proper-
ties of the FG-CNTRC core are formulated as

follows 

Ec11 = η1VCNTE
CNT
11 + VmE

m;

Ec22 =
η2

VCNT /ECNT22 + Vm/Em
;

Gc12 =
η3

VCNT /GCNT12 + Vm/Gm
;

νc12 = VCNT ν
CNT
12 + Vmνm;

ρc = VCNT ρCNT + Vmρm

Vm = 1− VCNT

(13)

in which the symbol ‘c′ represents the core layer,
whereas the symbols ‘CNT ′ and ‘m′ denote car-
bon nanotubes and matrix, respectively; E, G,
ν, ρ and V respectively denote the Young’s mod-
ulus, shear modulus, Poisson’s ratio, mass den-
sity and volume fraction; η1, η2 and η3 repre-
sent the CNTs efficiency parameters, which are
presented in Table 1. This paper employs four

Fig. 1: The geometry of the sandwich microplate.

distribution patterns to enhance the integration
of carbon nanotubes across the thickness of the
material matrix within the plate. The volume
fraction of CNTs in Equation 13 is explained for
different CNTs distributions as follows

VCNT = V ∗ FG−UD;

VCNT (z) =
(
1 + 2z

hc

)
V ∗ FG−V;

VCNT (z) = 4|z|
hc
V ∗ FG−X;

VCNT (z) =
(
2− 4|z|

hc

)
V ∗ FG−O

(14)
where

V ∗ =
ρmwCNT

ρmwCNT + ρCNT (1− wCNT )
(15)

where wCNT is the CNTs mass fraction.

2.3. The constitutive relations

Taking into account the MSGT [1], the consti-
tutive relations of the core layer can be defined
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Tab. 1: The CNTs efficiency parameters [32].

V* η1 η2 η3
0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.109

as follows


σσσcb = Cbcεεεb; σσσ

c
s = Cscεεεs

mc
b = 2µcl21I3×3χχχb;m

c
s = 2µcl21I2×2χχχs;

pc = 2µcl22I3×3ζζζ;

τττ cb = 2µcl23I6×6ηηηb;τττ
c
s = 2µcl23I4×4ηηηs

(16)

in which

σσσcb =
{
σcx σcy

⌢
τ
c

xy

}T
; σσσcs =

{
⌢
τ
c

xz
⌢
τ
c

yz

}T
;

mc
b =

{
mc
xx mc

yy mc
xy

}T
; mc

s =
{
mc
xz mc

yz

}T
;

pc =
{
pcx pcy pcz

}T
;

τττ cb =
{
τ cxxx τ cyyy τ cyyx τ cxxy τ czzx τ czzy

}T
;

τττ cs =
{
τ czzz τ cxxz τ cyyz τ cxyz

}T
;

Cbc =

 C11 C12 0
C12 C22 0
0 0 C66

 ; Csc =

[
C55 0
0 C44

]
(17)

Besides, I2x2, I3x3, I4x4 and I6x6 respec-
tively denote the 22, 33, 44 and 66 iden-
tity matrices; while σcx, σ

c
y, τ̂

c
xy, τ̂

c
xz and τ̂

c
yz

represent the stress components, while
mc
xx,m

c
yy,m

c
xy,m

c
xz,m

c
yz, pcx, p

c
y, p

c
z and

τ cxxx, τ
c
yyy, τ

c
yyx, τ

c
xxy, τ

c
zzx, τ

c
zzy, τ

c
zzz, τ

c
xxz, τ

c
yyz, τ

c
yyz

represent the higher-order stress components of
the core layer; C11, C12, C22, C44, C55 andC66

are the elastic coefficients; l1, l2 and l3 denote
three LSPs; µc represents Lame’s coefficient.
The definition of the elastic coefficients and
Lame’s coefficient is presented as follow

C11 =
Ec11

1− νc12ν
c
21

; C22 =
Ec22

1− νc12ν
c
21

;C12 =
νc21E

c
11

1− νc12ν
c
21

;

C44 = Gc23; C55 = Gc13; C66 = Gc12;µ
c =

C44 + C55 + C66

3
(18)

According to the coupling of magnetic, electric,
and elastic fields, and employing the MSGT [1],
the constitutive relations of the face layers are

presented by

σσσfb = Cbfεεεb −CuebEb − CumbHb

σσσfs = Csfεεεs −CuesEs −CumsHs

Db = CT
uebεεεb +CeebEb +CembHb

Ds = CT
uesεεεs +CeesEs +CemsHs

Bb = CT
umbεεεb +CembEb +CmmbHb

Bs = CT
umsεεεs +CemsEs +CmmsHs

mf
b = 2µf l21I3×3χχχb;m

f
s = 2µf l21I2×2χχχs

pf = 2µf l22I3×3ζζζ

τττfb = 2µf l23I6×6ηηηb;τττ
f
s = 2µf l23I4×4ηηηs

(19)

where

σσσfs = {τxz τyz}T ;σσσfb = {σx σy τxν}T ;

Bs =
{
Bfx Bfy

}T
;Bb = {0 0 Bz}T ;

Ds =
{
Df
x Df

y

}T
;Db =

{
0 0 Dz

}T
;

Hs = {Hx Hy}T ;Hb =
{
0 0 Hz

}T
;

Es = {Ex Ey}T ;Eb = {0 0 Ez}T ;

mf
b =

{
mf
xx mf

yy mf
xy

}T
;mf

s =
{
mf
xz mf

yz

}T
;

pf =
{
pfx pfy pfz

}T
;

τττfb =
{
τfxxx τfyy τfyyx τfxy τfzx τfzy

}T
;

τττfs =
{
τfzz τfxzz τfyz τfxyz

}T
;µf = c66

Cbf =

 c11 c12 0
c12 c22 0
0 0 c66

 ;Csf =

[
c44 0
0 c55

]
;

Cueb =

 0 0 e31
0 0 e31
0 0 0

 ;Cnmb =

 0 0 q31
0 0 q31
0 0 0

 ;

Cumτ =

[
q15 0
0 q15

]
;Cues =

[
e15 0
0 e15

]
;

Cesb =

0 0 0
0 0 0

0 0 k33

 ;Cmmb =

0 0 0
0 0 0
0 0 µ33

 ;

Cesc =

[
k11 0

0 k11

]
;Cmm =

[
µ11 0
0 µ22

]
;

Cemb =

0 0 0
0 0 0

0 0 d33

 ;Cemc =

[
d11 0

0 d22

]
(20)

In Eq. 20, τfxxx,τfyyy,τfyyx,τfxxy,τfzzx,τfzzy,
τfzzz,τfxxz,τfyyz,τfyyz, pfx,pfy ,pfz , and mf

xx,mf
yy,

mf
xy,mf

xz,mf
yz denote the higher-order
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stress components of the face sheets;
σfx , σ

f
y , τ

f
xy, τ

f
xz, τ

f
yz, Dx, Dy, Dz and Bx, By, Bz

respectively denote the stress components,
electric and magnetic displacements; ēij , q̄ij ,
and c̄ij respectively stand for the reduced piezo-
electric, piezomagnetic and elastic coefficients;
k̄ij , µ̄ij , and d̄ij are the reduced dielectric
permittivity, electromagnetic permittivity,
magnetic permittivity coefficients, respectively.
The material parameters, which are diminished
in Eq. 20, are computed by the following process

c̄11 = c11 −
c213
c33

; c̄12 = c12 −
c213
c33

; c̄66 = c66; c̄55 = c55;

c̄44 = c44; ē31 = e31 −
e33c13
c33

; ē15 = e15; q̄15 = q15;

q̄31 = q31 −
q33c13
c33

; k̄11 = k11; k̄33 = k33 +
e233
c33

;

d̄11 = d11; d̄33 = d33 +
q33e33
c33

;

µ̄11 = µ11; µ̄33 = µ33 +
q233
c33

(21)
where cij , qij , eij , µij and kij represent the ma-
terial parameters as outlined in Table 3.

2.4. The Hamilton principle

Formulated according to Hamilton’s principle,
the MEE sandwich microplate’s governing equa-
tion can be defined as by

t∫
0

(δΠ+ δK − δV ) dt = 0 (22)

Here, δK, δΠ and δV are respectively represent
the virtual kinetic energy, strain energy, and the
work done by the electric and magnetic poten-
tials.

The definition of the virtual strain energy for
the microplate using MSGT [1] is provided in

δΠ =

∫
Ω

δε̄̄ε̄εTb D̄bε̄̄ε̄εbdΩ−
∫
Ω

δε̄̄ε̄εTb D̄uebĒbdΩ

−
∫
Ω

δε̄̄ε̄εTb D̄umbH̄bdΩ +

∫
Ω

δεεεTs D̄sεεε
T
s dΩ

−
∫
Ω

δεεεTs D̄uesĒsdΩ−
∫
Ω

δεεεTs D̄umsH̄sdΩ

−
∫
Ω

δĒTb D̄
T
uebε̄̄ε̄εbdΩ−

∫
Ω

δĒTb D̄eebĒbdΩ

−
∫
Ω

δĒTb D̄embH̄bdΩ−
∫
Ω

δĒTs D̄
T
uesεεεsdΩ

−
∫
Ω

δĒTs D̄eesĒsdΩ−
∫
Ω

δĒTs D̄emsH̄sdΩ

−
∫
Ω

δH̄T
b D̄

T
umbε̄̄ε̄εbdΩ−

∫
Ω

δH̄T
b D̄embĒbdΩ

−
∫
Ω

δH̄T
b D̄mmbH̄bdΩ−

∫
Ω

δH̄T
s D̄

T
umsεεεsdΩ

−
∫
Ω

δH̄T
s D̄emsĒsdΩ−

∫
Ω

δH̄T
s D̄mmsH̄sdΩ

+

∫
Ω

δχ̄̄χ̄χTb D̄rbΓ̄̄Γ̄Γrbχ̄̄χ̄χbdΩ +

∫
Ω

δχχχTs D̄rsΓ̄̄Γ̄ΓrsχχχsdΩ

+

∫
Ω

δζ̄̄ζ̄ζ
T
D̄dilζ̄̄ζ̄ζdΩ +

∫
Ω

δη̄̄η̄ηTb D̄debΓ̄̄Γ̄Γdebη̄̄η̄ηbdΩ

+

∫
Ω

δη̄̄η̄ηTs D̄desΓ̄̄Γ̄Γdesη̄̄η̄ηsdΩ

(23)
where

εεεb =

{
εεε1
εεε2

}
; H̄b = −

0
0
ψ

 ; Ēb = −

0
0
φ

 ; H̄s = −
{
ψ,x
ψ,y

}
;

Ēs = −
(
φ,x
φ,y

)
; D̄b =

[
Ab Bb

Bb Db

]
;

D̄ueb =
{

C1
ueb C2

ueb

}
; D̄umb =

{
C1
umb C2

umb

}
;(

Ab,Bb,Db
)
=

∫ hc/2

−hc/2

(
z2, zf, f2

)
Cbcdz

+

∫ −hc/2

−h/2

(
z2, zf, f2

)
Cbfdz +

∫ h/2

hc/2

(
z2, zf, f2

)
Cbfdz;

D̄s =

∫ hc/2

−hc/2

(1 + f ′)
2
Cscdz +

∫ −hc/2

−h/2
(1 + f ′)

2
Csfdz

+

∫ h/2

hc/2

(1 + f ′)
2
Csfdz;

(
C1
ueb,C

2
ueb

)
=

∫ −hc/2

−h/2
g′ (z, f)Cuebdz +

∫ h/2

hc/2

g′ (z, f)Cuebdz;

(
C1
umb,C

2
umb

)
=

∫ −hc/2

−h/2
g′ (z, f)Cumbdz +

∫ h/2

hc/2

g′ (z, f)Cumbdz;
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D̄ues =

∫ −hc/2

−h/2
g (1 + f ′)Cuesdz +

∫ h/2

hc/2

g (1 + f ′)Cuesdz;

D̄ums =

∫ −hc/2

−h/2
g (1 + f ′)Cumsdz +

∫ h/2

hc/2

g (1 + f ′)Cumsdz;

D̄emb =

∫ −hc/2

−h/2
g′

2
Cembdz +

∫ h/2

hc/2

g′
2
Cembdz;

D̄eeb =

∫ −hc/2

−h/2
g′

2
Ceebdz +

∫ h/2

hc/2

g′
2
Ceebdz;

D̄mmb =

∫ −hc/2

−h/2
g′

2
Cmmbdz +

∫ h/2

hc/2

g′
2
Cmmbdz;

D̄mms =

∫ −hc/2

−h/2
g2Cmmsdz +

∫ h/2

hc/2

g2Cmmsdz;

D̄ees =

∫ −hc/2

−h/2
g2Ceesdz +

∫ h/2

hc/2

g2Ceesdz;

D̄ems =

∫ −hc/2

−h/2
g2Cemsdz +

∫ h/2

hc/2

g2Cemsdz

(24)
and

D̄ub =

[
Ab Bb

Bb Db

]
; D̄rb =

[
Arb Brb

Brb Drb

]
;

(Ab,Bb,Db) =

∫ h/2

−h/2

(
z2, zf, f2

)
Cubdz;

(Arb,Brb,Drb) =

∫ h/2

−h/2
2µl1

2
(
1, f ′, f ′

2
)
I3x3dz;

(Ars,Brs,Drs) =

∫ h/2

−h/2
2µl1

2
(
1, f”, f”2

)
I2x2dz

D̄di =


Adi Bdi Cdi Edi
Bdi Ddi Fdi Ldi
Cdi Fdi Hdi Odi

Edi Ldi Odi Pdi

 ;

D̄dsb =


Adsb Bdsb Cdsb Edsb
Bdsb Ddsb Fdsb Ldsb
Cdsb Fdsb Hdsb Odsb

Edsb Ldsb Odsb Pdsb

 ;

Adi,Bdi,Ddi,Cdi,Edi,Fdi,Ldi,Hdi,Odi,Pdi) =∫ h/2

−h/2
2µl22

(
1, z, z2, f, f ′, zf, zf ′, f2, ff ′, f ′2

)
I3x3dz;

Adeb,Bdeb,Ddeb,Cdeb,Edeb,Fdeb,Ldeb,Hdeb,Odeb,Pdeb) =∫ h/2

−h/2
2µl23

(
1, z, z2, f, f ′′, zf, zf ′′, f2(z), ff ′′, f ′′2

)
I6x6dz;

(Ades,Bdes,Ddes) =

∫ h/2

−h/2
2µl23

(
1, f ′, f ′2

)
I4x4dz;

D̄rs =

[
Ars Brs

Brs Drs

]
; D̄des =

[
Ades Bdes

Bdes Ddes

]
;

Γdeb =


Γdeb 0 0 0
0 Γdeb 0 0
0 0 Γdeb 0
0 0 0 Γdeb

 ;

Γrb =

[
Γrb 0
0 Γrb

]
;Γrs =

[
Γrs 0
0 Γrs

]
;

Γdes =

[
Γdes 0
0 Γdes

]
;

Γrb = diag (1, 1, 2) ;Γrs = diag (2, 2) ;

Γdes = diag(1, 3, 3, 6);Γdeb = diag(1, 1, 3, 3, 3, 3)
(25)

The expression for the virtual kinetic energy
is given as follows

δK =

∫
Ω

δūT m̄̄̈udΩ (26)

where

u =


u1

u2

u3

;m =

I0 0 0
0 I0 0
0 0 I0

 ; I0 =

I1 I2 I4
I2 I3 I5
I4 I5 I6


(I1, I2, I3, I4, I5, I6) =

∫ h/2

−h/2

(
1, z, z2, f, zf, f2

)
ρ (z) dz

(27)
Moreover, the virtual work is accounted for by

δV =

∫
Ω

δNT
wN

emNwdΩ (28)

in which

Nw =

{
wb,x + ws,x
wb,y + ws,y

}
;

Nem = −
[
2 (e31ϕ0 + q31ψ0) 0

0 2 (e31ϕ0 + q31ψ0)

]
(29)

By incorporating the required expressions into
Eq. 22, the weak form of the microplates is re-
vised as follow∫

Ω

δε̄̄ε̄εTb D̄bε̄̄ε̄εbdΩ−
∫
Ω

δε̄̄ε̄εTb D̄uebĒbdΩ

−
∫
Ω

δε̄̄ε̄εTb D̄umbH̄bdΩ +

∫
Ω

δεεεTs D̄sεεε
T
s dΩ

−
∫
Ω

δεεεTs D̄uesĒsdΩ−
∫
Ω

δεεεTs D̄umsH̄sdΩ

−
∫
Ω

δĒTb D̄
T
uebε̄̄ε̄εbdΩ−

∫
Ω

δĒTb D̄eebĒbdΩ∫
Ω

δε̄̄ε̄εTb D̄bε̄̄ε̄εbdΩ−
∫
Ω

δε̄̄ε̄εTb D̄uebĒbdΩ

−
∫
Ω

δε̄̄ε̄εTb D̄umbH̄bdΩ +

∫
Ω

δεεεTs D̄sεεε
T
s dΩ

−
∫
Ω

δεεεTs D̄uesĒsdΩ−
∫
Ω

δεεεTs D̄umsH̄sdΩ

−
∫
Ω

δĒTb D̄
T
uebε̄̄ε̄εbdΩ−

∫
Ω

δĒTb D̄eebĒbdΩ
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−
∫
Ω

δĒTb D̄embH̄bdΩ−
∫
Ω

δĒTs D̄
T
uesεεεsdΩ

−
∫
Ω

δĒTs D̄eesĒsdΩ−
∫
Ω

δĒTs D̄emsH̄sdΩ

−
∫
Ω

δH̄T
b D̄

T
umbε̄̄ε̄εbdΩ−

∫
Ω

δH̄T
b D̄embĒbdΩ

−
∫
Ω

δH̄T
b D̄mmbH̄bdΩ−

∫
Ω

δH̄T
s D̄

T
umsεεεsdΩ

−
∫
Ω

δH̄T
s D̄emsĒsdΩ−

∫
Ω

δH̄T
s D̄mmsH̄sdΩ

+

∫
Ω

δχ̄̄χ̄χTb D̄rbΓ̄̄Γ̄Γrbχ̄̄χ̄χbdΩ +

∫
Ω

δχχχTs D̄rsΓ̄̄Γ̄ΓrsχχχsdΩ

+

∫
Ω

δζ̄̄ζ̄ζ
T
D̄dilζ̄̄ζ̄ζdΩ +

∫
Ω

δη̄̄η̄ηTb D̄debΓ̄̄Γ̄Γdebη̄̄η̄ηbdΩ

+

∫
Ω

δη̄̄η̄ηTs D̄desΓ̄̄Γ̄Γdesη̄̄η̄ηsdΩ +

∫
Ω

δūT m̄̄̈udΩ

−
∫
Ω

δNT
wN

emNwdΩ = 0

(30)

3. The NURBS
formulation

In two dimensions (2D), Non-Uniform Ratio-
nal B-Splines (NURBS) basis functions [21] are
constructed using two knot vector and . In
this context, Θ = {η1, η2, . . . , ηn+p+1} and
H = {ζ1, ζ2, . . . , ζm+q+1} represent the number
of control points, while p and q denote the poly-
nomial orders. The knot vectors are denoted by
Θ and H .The computation of the basis func-
tions for two-dimensional B-splines involves:

Ri,j (η, ζ) = Ñi,p (η) M̃j,q (ζ) (31)

The B-spline basic functions Ñ and M̃ are con-
structed using the Cox-de Boor algorithm, as
described below

M̃j,0 (ζ) =

{
1 if ζj ≤ ζ ≤ ζj+1

0 otherwise
(q = 0)

Ñi,0 (η) =

{
1 if ηi ≤ η ≤ ηi+1

0 otherwise
(p = 0)

(32)

and

M̃j,q (ζ) =
ζ − ζj

ζj+q − ζj
M̃j,q−1 (ζ)

+
ζj+q+1 − ζ

ζj+q+1 − ζj+1
M̃j+1,q−1 (ζ) (q ≥ 1) ;

Ñi,p (η) =
η − ηi

ηi+p − ηi
Ñi,p−1 (η)

+
ηi+p+1 − η

ηi+p+1 − ηi+1
Ñi+1,p−1 (η) (p ≥ 1)

(33)
NURBS basic functions are formulated by com-
bining B-spline basic functions with their corre-
sponding weights, as shown below

Ni,j (η, ζ) = Ne (ˇ) =
Ñi,p (η) M̃j,q (ζ)wi,j

n∑̂
i=1

m∑̂
j=1

Ñî,p (η) M̃ĵ,q (ζ)wî,ĵ

(34)
The approximation of the displacement vec-
tor, magnetic and electric fields based on the
NURBS basic function is expressed by following

u (x, y) =

m×n∑
I=1

NI (x, y)qI ;

ψ (x, y) =

m×n∑
I=1

NψI (x, y)χχχI ;

φ (x, y) =

m×n∑
I=1

NφI (x, y)χI

(35)

where

NI (x, y) = NI (x, y) I2×2;qI =
{
wbI wsI

}T
;

NφI (x, y) =
{
NI (x, y) 0

}
;

NψI (x, y) =
{
0 NI (x, y)

}
;

χI =
{
φI ψI

}T
(36)

where the NURBS basic function is denoted by
NI(x, y).

Based on the approximation 35, the displace-
ment ū is reformed as follow

u =

u1

u2

u3

 =

m×n∑
I=1

N1I

N2I

N3I

qI =

m×n∑
I=1

N̄uIqI

(37)
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where

N1I =

 0 0
0 0
NI NI

 ;N2I =

−NI,x 0
−NI,y 0

0 0

 ;

N3I =

0 NI,x
0 NI,y
0 0

 (38)

The strain tensor, rotation gradient, devia-
toric stretch gradient, dilatation gradient and
electric and magnetic fields are reformed accord-
ing to the approximation in Eq. 35, as follows

ε̄̄ε̄εb =

{
ε̄̄ε̄ε1
ε̄̄ε̄ε2

}
=

m×n∑
I=1

{
B̄b1I

B̄b2I

}
qI =

m×n∑
I=1

B̄bIqI ;

ε̄̄ε̄εs =

m×n∑
I=1

B̄sIdI ; χχχs =

m×n∑
I=1

B̄rsIqI ;

χ̄̄χ̄χb =

{
χχχb1
χχχb2

}
=

m×n∑
I=1

{
Bb1
rI

Bb2
rI

}
qI =

m×n∑
I=1

B̄rbIqI ;

ζ̄̄ζ̄ζ =

m×n∑
I=1


Bdil

1I

Bdil
2I

Bdil
3I

Bdil
4I

qI =

m×n∑
I=1

B̄dilIqI ;

η̄̄η̄ηb =

 η̄̄η̄ηb1
η̄̄η̄ηb2
η̄̄η̄ηb3

 =

m×n∑
I=1

 Bdeb
1I

Bdeb
2I

Bdeb
3I

qI =

m×n∑
I=1

B̄debIqI

η̄̄η̄ηs =

{
η̄̄η̄ηs1
η̄̄η̄ηs2

}
=

m×n∑
I=1

{
Bdes

1I

Bdes
2I

}
qI =

m×n∑
I=1

B̄desIqI

Ēb =

m×n∑
I=1

B̄ebIΛΛΛI ; Ēs =

m×n∑
I=1

B̄esIΛΛΛI ;

H̄b =

m×n∑
I=1

B̄mbIΛΛΛI ; H̄s =

m×n∑
I=1

B̄msIΛΛΛI ;

(39)

in which

Bs
I =

[
0 NI,x
0 NI,y

]
;BebI =

 0
0

−NI

 ;

BesI =

{
−NI,x
−NI,y

}
;BrsI =

1

4

[
0 −NI,y
0 NI,x

]
;

Bb
1I = −

[ NI,xx 0
NI,yy 0
2NI,xy 0

]
;Bb

2I =

[ 0 NI,xx
0 NI,yy
0 2NI,xy

]
;

Bdeb
1I =

1

5


−2NI,xx + 3NI,xyy 0
−2NI,yyy + 3NI,xyy 0
NI,xxy − 4NI,xyy 0
NI,yy − 4NI,xyy 0
NI,xx +NI,xyy 0
NI,yy +NI,xy 0

 ;

Bdeb
2I =

1

5


0 2NI,xx − 3NI,xyy
0 2NI,xyy − 3NI,xxy
0 −NI,xxx + 4NI,xyy
0 −NI,yyy + 4NI,xyy
0 −NI,xxx −NI,xyy
0 −NI,yyy −NI,xyy

 ;

Bdeb
3i =

1

15


0 −3NI,x
0 −3NI,y
0 −NI,x
0 −NI,y
0 4NI,x
0 4NI,y

 ;

Bdes
1L =

1

15


3NI,xx + 3NI,yy −3NI,xx − 3NI,yy
−4NI,xx +NI,yy 4NI,xx −NI,yy
−4NI,yy +NI,xx 4NI,yy −NI,xx

−5NI,xy 5NI,xy

 ;

Bb1
rI =

1

4

 4NI,xy 2NI,xy
−4NI,xy −2NI,xy

2 (NI,yy −NIxx) NI,yy −NI,xx

 ;

Bb2
rI =

1

4

0 −2NI,xy
0 2NI,xy
0 NI,xx −NI,yy

 ;

Bdil
1I = −

 0 0
0 0

NI,xx +NI,yy 0

 ;

Bdil
2I =

−NI,xxx −NI,xyy 0
−NI,yy −NI,xxy 0

0 0

 ;

Bdil
3I =

0 NI,xxx +NI,xyy
0 NI,yyy +NI,xxy
0 0

 ;

Bdil
4I =

0 0
0 0
0 NI,xx +NI,yy


(40)
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Similarly, the vector Nw is rewritten as follow

Nw =

m×n∑
I=1

B̄gIqI ; B̄gI =

[
NI,x NI,x
NI,y NI,y

]
(41)

Substituting the necessary expressions into Eq.
30, the expression for the weak form in the
free vibration analysis of the MEE sandwich mi-
croplate can be stated as follows(

K− ω2M
)
q̄ = 0 (42)

where

K = Ku −KuκK
−1
κκK

T
uκ;

Kuκ = −
∫
Ω

B̄T
b D̄uebB̄ebdΩ−

∫
Ω

B̄T
b D̄umbB̄mbdΩ

−
∫
Ω

B̄T
s D̄uesB̄esdΩ−

∫
Ω

B̄T
s D̄umsB̄msdΩ;

Ku =

∫
Ω

B̄T
b D̄ubB̄bdΩ +

∫
Ω

B̄T
s D̄usB̄sdΩ

+

∫
Ω

B̄T
rbD̄rbΓ̄rbB̄rbdΩ +

∫
Ω

B̄T
rsD̄rsΓ̄rsB̄rsdΩ

+

∫
Ω

B̄T
dilD̄dilB̄dildΩ +

∫
Ω

B̄T
debD̄debΓ̄debB̄debdΩ

+

∫
Ω

B̄T
desD̄desΓ̄desB̄desdΩ−

∫
Ω

B̄T
gN

emB̄gdΩ;

Kκκ = −
∫
Ω

B̄T
ebD̄eebB̄ebdΩ−

∫
Ω

B̄T
ebD̄embB̄mbdΩ

−
∫
Ω

B̄T
esD̄eesB̄esdΩ−

∫
Ω

B̄T
esD̄emsB̄msdΩ

−
∫
Ω

B̄T
mbD̄embB̄ebdΩ−

∫
Ω

B̄T
mbD̄mmbB̄mbdΩ

−
∫
Ω

B̄T
msD̄emsB̄esdΩ−

∫
Ω

B̄T
msD̄mmsB̄msdΩ

M =

∫
Ω

N̄T
u m̄N̄udΩ; q = q̄eiωt

(43)
Here, ω represents the natural frequency, while
q̄ denotes the mode shapes. Meanwhile, K and
M denote the global stiffness matrix and mass
matrix, respectively.

4. Numerical results

To begin with, we examine square MEE sand-
wich plates with the materials are outlined in
reference [33] to validate the precision and agree-
ment of the proposed model. The material char-
acteristics of the FG-CNTRC core and MEE face

sheets are presented in Table 2 and Table 3, re-
spectively.

Tab. 2: The material properties of the FG-CNTRC
core.

Properties Matrix CNTs
ECNT11 = 5646.7

Elastic (GPa) Em = 2.61 ECNT22 = 7120.5
GCNT12 = 1944.5

Poisson’s ratio νm = 0.34 νCNT12 = 0.175
Density (kg/m3) ρm = 1200 ρCNT = 1400

Tab. 3: The material parameters of the MEE face
sheets.

Properties BaTiO3-CoFe2O4

c11 = c22 = 226; c12 = 125;
Elastic (GPa) c13 = 124; c33 = 216;

c44 = c55 = 44.2; c66 = 50.5;
Piezoelectric (Cm-2) e31 = e32 = −2.2;

e33 = 9.3; e15 = 5.8
Piezomagnetic (N/Am) q15 = q24 = 275;

q31 = q32 = 290.1; q33 = 349.9
Dielectric k11 = k12 = 5.64; k33 = 6.35
(10−9C2m−2N−1)
Magnetic µ11 = µ12 = −297;µ13 = 83.5
(10−6Ns2/C2)
Magnetoelectric d11 = d12 = 5.367; d33 = 2737.5
(10−12Ns/V C)
Density (kg/m3) ρf = 5500

The boundary conditions consist of a combi-
nation of simply supported (S) and clamped (C)
edges. Table 4 presents the lowest four natu-
ral frequencies of the SSSS sandwich plate with
MEE face layers and FG-CNTRC core with dif-
ferent CNTs distributions. The plate is mod-
eled with 9×9, 11×11 and 13×13 meshes. The
length scale parameters are neglected (l =0) in
this case. The results are compared with those
given in [33]. Moreover, it showed a good agree-
ment with the published solution. Besides, the
differences between the mesh levels are negli-
gible. Therefore, the forthcoming analysis will
use an 11×11 element mesh. Next, Table 5
present the first five dimensionless natural fre-
quency ω = ωh

√
ρ1/E1 of the SSSS metal foam

microplates with uniform porosity distribution.
The material properties of the metal foam mi-
croplate are taken by [34]: E1 = 200GPa,
ν1 = 0.33, ρ1 = 7850kg/m3. The numerical
results are compared with the reference given
in ref. [34], which are used the combination of
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RPT with four variables, MSGT and IGA. As
we see from Table 5, the present calculation re-
sults are in good agreement with the published
ones. The comparison results in Table 4 and Ta-
ble 5 present the precision and agreement of the
proposed method.

Tab. 4: The lowest four vibrational frequencies of the
SSSS MEE sandwich square plate (a = 20h, l =
0, hc = 8hf , V

∗ = 0.12, ϕ0 = 0, ψ0 = 0).

Mode Theory Mesh CNTs distribution
FG-X FG-V FG-O

Ref. [33] 1666.6 1608.3 1585.2
9×9 1659.5 1581.6 1496.5

1 Present 11×11 1659.5 1581.6 1496.5
13×13 1659.5 1581.6 1496.5

Ref. [33] 3475.6 3467.1 3466.9
9×9 3527.9 3484.9 3440.8

2 Present 11×11 3527.7 3484.7 3440.6
13×13 3257.7 3484.6 3440.6

Ref. [33] 3921.4 3744.2 3664.1
9×9 3934.3 3786.8 3598.0

3 Present 11×11 3934.1 3786.7 3597.9
13×13 3934.1 3786.6 3597.8

Ref. [33] 5278.5 5204.6 5177.0
9×9 5231.3 5102.9 4947.9

4 Present 11×11 5231.1 5102.8 4947.6
13×13 5231.0 5102.7 4947.6

Tab. 5: The lowest five vibrational frequencies of the
SSSS metal foam microplate with uniform
porosity distribution (a = 10h, l = 0).

l/h Theory Mode
1 2 3 4 5

0 Ref. [34] 0.0562 0.1340 0.1340 0.2054 0.2502
Present 0.0562 0.1340 0.1340 0.2054 0.2502

0.1 Ref. [34] 0.0601 0.1434 0.1436 0.2203 0.2683
Present 0.0601 0.1434 0.1436 0.2203 0.2683

0.2 Ref. [34] 0.0706 0.1684 0.1689 0.2595 0.3160
Present 0.0706 0.1684 0.1689 0.2595 0.3160

0.5 Ref. [34] 0.1203 0.2867 0.2892 0.4447 0.5389
Present 0.1203 0.2867 0.2892 0.4447 0.5389

1 Ref. [34] 0.2196 0.5225 0.5290 0.8128 0.9813
Present 0.2196 0.5225 0.5290 0.8128 0.9813

Moving forward, the free vibration analysis of
the sandwich microplates with MEE face layers
and FG-CNTRC core is investigated. The ma-
terial parameters of the microplates are taken in
Table 2 and Table 3. Besides, the LSPs are taken
the same l1 = l2 = l3 = l. The first four normal-
ized natural frequencies ω̄ = ωa2

h

√
ρm
Em

of the
square microplates with FG-CNTRC core and
MEE face layers under the effect of the scale-to-

thickness ratio (l/h) and CNTs distributions are
presented in Table 6. According to this table,
the vibrational frequency of the MEE sandwich
microplates is decreased with a growth of the
parameter l/h. Furthermore, the highest natu-
ral frequency is found in the FG-X distribution,
followed by FG-UD, FG-V and FG-O configu-
rations. The influence of the external electric
potential (ϕ0) and magnetic potential (ψ0) on
the first normalized frequency of the SSSS and
CCCC MEE microplate is studied and plotted in
Figure 2 and Figure 3, respectively. As we see in
Figure 2 and Figure 3, with a rise of the param-
eter ϕ0, the microplate’s frequency is decreases.
Meanwhile there is a growth of the microplate’s
frequency with an increase of the parameter ψ0.
The first dimensionless natural frequency of the
MEE sandwich microplates with various values
of the parameter a/h and CNTs volume fraction
(Vs) are presented in Figure 4. It can be seen
that in Figure 4, rise in the parameter a/h and
CNTs volume fraction leads to the growth of the
microplate’s natural frequency.

In addition, to show the advantage of the
present method, the free vibration of the MEE
sandwich circular microplate with radius R is
studied. The first four dimensionless natural
frequencies ω̄c = ωR2

h

√
ρm
Em

of the circular mi-
croplates with FG-CNTRC core and MEE face
layers with various values of parameter l/h and
CNTs distributions are tabulated in Table 7.
The results in Table 7 show that an increase
in the scale-to-thickness ratio leads to a rise in
the microplate’s frequency. Besides, the FG-
X distribution provides the largest vibrational
frequency, while the FG-O distribution provides
the smallest.

5. Conclusions

The size-dependent free vibration of the sand-
wich microplates with the MEE face sheets and
FG-CNTRC core is studied in this investigation.
The RPT and MSGT are employed to derive the
governing equation of the MEE sandwich mi-
croplates. After that, the IGA is used to solve
this governing equation. The impact of vari-
ous parameters of the material and microplate’s
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(a) FG-UD (b) FG-X

(c) FG-V (d) FG-O

Fig. 2: The impact of the parameters ϕ0 and ψ0 on the first normalized natural frequency of the MEE sandwich
square microplate with SSSS boundaries (a/h = 30, hc/hf = 8, V ∗ = 0.17, l = 0.2h).

geometry is examined. The results show that
a rise in the magnetic potential and electric
voltage leads to the improvement and reduc-
tion of the sandwich microplate with MEE face
sheets. Besides, the microplate’s stiffness is en-
riched with a growth in the length scale param-
eter. The increase in the CNTs’ volume fraction
rises the MEE sandwich microplate’s frequency.
Among the CNTs distributions, the FG-X dis-
tribution provides the highest stiffness of the
sandwich microplate, followed by FG-UD, FG-
V and FG-O distributions. Finally, the growth
in the length-to-thickness ratio makes the sand-
wich microplate stiffer.
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(a) FG-UD (b) FG-X

(c) FG-V (d) FG-O

Fig. 3: The impact of the parameters ϕ0 and ψ0 on the first normalized natural frequency of the MEE sandwich
square microplate with CCCC boundaries (a/h = 30, hc/hf = 8, V ∗ = 0.17, l = 0.2h).

(a) SSSS (b) CCCC

Fig. 4: The effect of the parameter a/h on the first normalized natural frequency of the MEE sandwich square
microplate (hc/hf = 8, l = 0.6h, ϕ0 = ψ0 = 0).
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Tab. 6: The lowest four normalized frequencies of the
MEE square sandwich microplate (a/h =
10, hc/hf = 8, V ∗ = 0.12, ϕ0 = ψ0 = 0).

BCs l/h Mode CNTs distribution
FG-UD FG-X FG-V FG-O

1 17.3150 17.7345 17.2995 16.7736
0 2 33.9145 33.9293 33.9253 33.7066

3 34.1403 34.4142 34.1521 33.9165
4 45.2100 45.2994 45.2289 45.0664
1 17.4049 17.8375 17.3899 16.8523

0.1 2 34.1225 34.1571 34.1349 33.9600
3 34.4293 34.7400 34.4434 34.1073

SSSS 4 45.5847 45.7125 45.6064 45.4055
1 18.0795 18.6028 18.0680 17.4491

0.3 2 35.6989 35.8752 35.7229 35.5601
3 36.5877 37.1649 36.6174 35.8591
4 48.4062 48.8132 48.4481 47.9681
1 19.2469 19.9000 19.2406 18.5064

0.5 2 38.4820 38.8760 38.5241 38.1519
3 40.2677 41.2680 40.3191 39.1256
4 53.3145 54.1664 53.3865 52.4615
1 23.4586 23.5171 23.4703 23.3776

0 2 39.0980 39.0466 39.1239 39.1414
3 39.5359 39.3742 39.5652 39.7667
4 50.6974 50.5180 50.7336 50.9365
1 23.6559 23.7339 23.6692 23.5572

0.1 2 39.5098 39.4933 39.5391 39.5207
3 39.8778 39.7399 39.9097 40.0885

CCCC 4 51.2212 51.0790 51.2616 51.4277
1 25.1194 25.3390 25.1434 24.8903

0.3 2 42.4180 42.4546 42.4690 42.3514
3 42.5834 42.8250 42.6371 42.4802
4 55.1290 55.2625 55.1990 55.0903
1 27.6079 28.0541 27.6477 27.1684

0.5 2 46.7798 47.0993 46.8605 46.5971
3 47.8513 48.5217 47.9412 47.2055
4 61.8504 62.4426 61.9656 61.3937

Tab. 7: The lowest four normalized frequencies of the
MEE circular sandwich microplate (a/h =
10, hc/hf = 6, V ∗ = 0.12, ϕ0 = ψ0 = 0).

BCs l/h Mode CNTs distribution
FG-UD FG-X FG-V FG-O

1 6.4009 6.6295 6.3913 6.1370
0 2 14.3893 14.5533 14.3819 14.2038

3 15.1914 15.6658 15.1807 14.6057
4 22.9747 23.3611 22.9637 22.5030
1 6.4122 6.6418 6.4026 6.1476

0.1 2 14.4241 14.5908 14.4169 14.2364
3 15.2364 15.7175 15.2261 14.6452

SS 4 23.0507 23.4458 23.0402 22.5718
1 6.4995 6.7364 6.4905 6.2299

0.3 2 14.6945 14.8815 14.6893 14.4909
3 15.5811 16.1103 15.5730 14.9498
4 23.6374 24.0957 23.6311 23.1057
1 6.6623 6.9098 6.6542 6.3859

0.5 2 15.2010 15.4202 15.1993 14.9723
3 16.2028 16.8075 16.1983 15.5093
4 24.7154 25.2757 24.7162 24.0988
1 10.2082 10.4192 10.2043 9.9612

0 2 18.4446 18.5643 18.4446 18.3158
3 18.9091 19.2352 18.9070 18.4925
4 26.7318 26.9748 26.7319 26.4351
1 10.2396 10.4541 10.2360 9.9898

0.1 2 18.5055 18.6304 18.5060 18.3724
3 18.9875 19.3235 18.9860 18.5621

CC 4 26.8458 27.1003 26.8469 26.5394
1 10.4804 10.7201 10.4784 10.2099

0.3 2 18.9752 19.1385 18.9793 18.8104
3 19.5844 19.9941 19.5874 19.0938
4 27.7166 28.0563 27.7243 27.3363
1 10.9180 11.1977 10.9189 10.6152

0.5 2 19.8390 20.0656 19.8494 19.6220
3 20.6522 21.1823 20.6621 20.0550
4 29.2905 29.7722 29.3090 28.7868
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