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Abstract. Steel fibers are essential for SFRC
since they strengthen the material’s resistance
to bending and cracking stresses and guarantee
its endurance. However, the uncertainty of in-
put parameters such as concrete compositions
and steel fibers causes the stochasticity of flex-
ural strength. The study uses big data to an-
alyze the influence of fibers and other concrete
compositions on the flexural strength properties
of SFRC. For this purpose, the study focuses
on developing predictive models for SFRC flexu-
ral properties based on a comprehensive database
comprising two hundred and seven experimen-
tal results recorded by seventeen researchers.
Bayesian Model Averaging is employed to iden-
tify significant components that influence the
overall flexural strength and to develop a predic-
tive flexural strength model. Monte Carlo simu-
lation generates big data by utilizing the prob-
ability distribution of input variables and the
predictive flexural strength model. The study
used Sobol’s global sensitivity analysis method to
assess various input parameters’ sensitivity to
SFRC flexural strength based on the generated
database. The impact order of input variables on
the flexural strength is identified, as determined
by the Sobol’ Indice.

Keywords: Sobol’ Method, Global Sensitivity
Analysis, Flexural Strength, SFRC, Linear Re-
gression, and Bayesian Model Averaging.

1. Introduction

A significant quantity of concrete is produced
annually, particularly in developing nations.
Over fourteen billion cubic meters of concrete
were used in the 2020 years, which is equiva-
lent to approximately 4.4 tons for every person
[1]. However, numerous barriers limit the perfor-
mance of concrete in the field of construction en-
gineering. A significant drawback of concrete is
its relatively poor tensile strength, which is just
1/10–1/8 of its compressive strength. In order
to address this problem, numerous studies are
advocating the incorporation of steel fibers into
the mixture for making Steel Fiber Reinforced
Concrete (SFRC). This straightforward method
is significantly efficient in improving the frac-
ture resistance of concrete structural elements,
which was first conducted by Bernard [2] as
early as 1874. At that time, a wide range of
researchers concentrated on identifying the me-
chanical properties of SFRC by conducting ex-
periments at laboratories worldwide, especially
flexural strength [3]].

Integrating steel fibers into plain concrete has
been confirmed as an effective solution to en-
hance the capacity to bear the weight of struc-
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tural components [4]. Flexural strength is a vi-
tal mechanical property of steel fiber reinforced
concrete (SFRC), which is crucial for its per-
formance in structural applications. Including
steel fibers significantly enhances SFRC’s ability
to resist cracking and withstand bending loads,
contributing to its toughness and durability in
concrete structures. The impacts of fibers on
the fundamental mechanical characteristics of
SFRC and associated uncertainties are a topic of
considerable study, and there are no good mod-
els to forecast them. Particularly remarkable is
that these input random variables significantly
affect the flexural strength of SFRC, which has
a stochastic output value. This study is an ef-
fort to analyze the impact of input variables and
flexural strength based on big data. The fol-
lowing steps were done to develop a predictive
model. It includes building test databases, val-
idating data distribution, analyzing and assess-
ing correlations of the data’s parameters, and
developing a predictive model for estimating the
flexural properties of SFRC.

A total of 207 experimental recordings were
obtained from the publications of 17 researchers
and inputted into a database. Bayesian Model
Averaging (BMA) is employed to identify the
most significant components that affect flexural
strength and define the most optimal predictive
model as well as a good simulation model.

Fig. 1: Framework of the study.

Compared to methods like FAST, Morris, or
others, the Sobol method is distinguished by
its ability to provide precise global sensitivity
analysis, particularly in capturing both main ef-
fects and interactions among input variables, al-
though it requires more computational resources
[5]. Thus, this study utilizes Sobol’s method to
perform global sensitivity analyses on the pre-
dictive model. Notably, most simulation models
are complicated and nonlinear. Global sensitiv-
ity analysis is a common way to anticipate model
performance and behavior. Sobol’s method is
a variance-based global sensitivity analysis ap-
proach that depends heavily on sampling and
input parameter distribution, which is used in
a nonlinear function to demonstrate its imple-
mentation and calculate input parameter sensi-
tivities on model output. This study demon-
strates the incorporation of Sobol’s method into
the predictive model to determine the sensitivity
of a variety of input values, including water, ce-
ment, sand, coarse aggregate, fiber length, fiber
diameter, fiber volume, and fiber tensile yield
strength, to the flexural strength of SFRC. Fig.
1 shows the methodology within the context of
this investigation.

2. Global sensitivity
analysis

Sensitivity analysis, as defined by Saltelli et al.
(2000) [6], is the investigation of how varia-
tions in the output of a model can be appor-
tioned, qualitatively or quantitatively, to differ-
ent sources of variations and how the input infor-
mation influences the model’s behavior. It can
be another way known that sensitivity analysis
examines how alterations in the input param-
eters of a mathematical model affect the vari-
ability of its output [7]. This study provides
an overview of Sobol’s global sensitivity analysis
method applied to the model used for estimat-
ing a mechanical property of SFRC, which is the
flexural strength via a predictive model related
to 11 stochastic input variables.

Fig. 2 illustrates the comprehensive process
of the global sensitivity analysis methods. For
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Fig. 2: A diagram for a global sensitivity analysis.

global sensitivity analysis to be conducted, the
subsequent procedures are executed:

1. Probability and distributions are present in
all input parameters;

2. The probability distribution of each param-
eter generates random input vectors;

3. Each random input vector has been pro-
vided with output values by the prediction
model;

4. The probability distribution of the output
is determined;

5. Sensitivity analysis is used to prioritize the
input parameters based on their impact on
the output.

If the input variables are not specified at the
interval, only one variable change is required to
determine the output’s sensitivity to the varia-
tion of an input parameter. The following as-
sumption must be made to implement global
sensitivity analysis procedures: that defined ϕ ∼
[0, 1]

p on the interval. Within the given frame-
work, it is thus feasible to demonstrate that ϕ
may be broken down into basic functions.

Y = ϕ (X) = ϕ0 +
∑p

i=1 ϕi

(
X(i)

)
+ ...∑

1≤i<j≤p ϕij

(
X(i), X(j)

)
+ . . .+ ϕ1...p

(1)

where ϕ0 a constant, ϕ1...p

(
X(1), ..., X(p)

)
veri-

fies for

∀k ∈ {1, ..., s} v {i1, ..., is} ⊆ {1, ..., n} :

∫10 ϕi1,...is

(
X(i1), . . . , X(is)

)
d

(2)

Since the random and independent form of the
data inputs X(i), by using the variance operator
on the equation, one may derive the ANOVA
decomposition.

V ar (Y ) = V =
∑p

i=1
Vi +

∑
1≤i<j≤p

Vij (3)

Through the variance operator VAR:

Vi = V ar
(
E
(
Y |X(i)

))
Vij = V ar

(
E
(
Y |X(i), X(j)

))
− Vi − Vj

Vijk = V ar
(
E
(
Y |X(i), X(j), X(k)

))
− ...

Vi − Vj − Vk − Vij − Vik − Vjk

(4)
where E indicates the expectation in mathemat-
ics. Sobol sensitivity indices at first order Si for
X(i) as:

Si =
Vi

V
=

V ar
(
E
(
Y |X(i)

))
V ar (Y )

(5)

Sobol sensitivity indices at second-order Sij

for X(i) and X(j) as:

Sij =
Vij

V
=

V ar
(
E
(
Y |X(i), X(j)

))
− Vi − Vj

V ar (Y )
(6)

Sensitivity indices of higher order may be de-
fined similarly. The interpretation of the sensi-
tivity indices is straightforward since they range
from 0 to 1, and their total sum is 1. If the value
of Si is near to 1, it indicates that the variable
X(i) has a significant impact on Y . As the input
dimension p rises, the number of Sobol indices
grows exponentially, making it difficult to esti-
mate all of these indices. To achieve that objec-
tive, total Sobol sensitivity indices STi

for each
variable X(i) as:

STi =
∑

k#i
Sk = Si + Sij + Sik + . . .+ Si...n

(7)
where #i signifies the collection of index sets
that include i.

This study aims to analyze the Monte Carlo
method for estimating Sobol sensitivity indices.
The Monte Carlo method is a scientific approach
that enables the acquisition of numerical results
without physical experimentation. We can de-
termine the probability distributions of our ma-
jor parameters using experimental findings or
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other data. Subsequently, we use distribution
data to construct a statistical sampling set with
vast amounts of data. The estimation of a pa-
rameter using Monte Carlo methods is repre-
sented by the notation B in the subsequent ex-
pression.

Let’s examine two realizations of N sample
size.

Xik =
(
xi
k1, x

i
k2, . . . , x

i
kp

)
, k = 1 . . . N, i = 1, 2 (8)

⌢

Si =

⌢

V i
⌢

V
=

⌢

U i −
⌢

ϕ
2

0
⌢

V
(9)

The mean is calculated using:

⌢

ϕo =
1

N

N∑
k=1

ϕ(x1
k1, ..., x

1
kp) (10)

The variance is estimated by definition with

⌢

V = 1
N

N∑
k=1

ϕ2(x1
k1, ..., x

1
kp)−

⌢

ϕ0

2

(11)

And finally, the term
⌢

U i is derived by combin-
ing the two sample size realizations of X with N :

⌢

U i =
1
N

∑N
k=1 ϕ

(
x1
k1, . . . , x

1
k(i−1), x

1
ki, x

1
k(i+1), . . . , x

1
kp

)
ϕ
(
x2
k1, . . . , x

2
k(i−1), x

1
ki, x

2
k(i+1), . . . , x

2
kp

)
(12)

By estimating
⌢

U i, the influence of the samples
on dimension i can be assessed. Second-order
sensitivity indices

⌢

Sij can be approximated us-
ing the following equations:

⌢

Sij =

⌢

U ij −
⌢

ϕ
2

0 −
⌢

V i −
⌢

V j
⌢

V
(13)

with
⌢

U ij =
1
N

∑N
k=1 ϕ

(
x1
k1, ..., x

1
k(i−1), x

1
ki, x

1
k(i+1), ..., x

1
k(j−1), x

1
kj , x

1
k(j+1), ..., x

1
kp

)
ϕ
(
x2
k1, ..., x

2
k(i−1), x

1
ki, x

2
k(i+1), ..., x

2
k(j−1), x

1
kj , x

2
k(j+1), . . . , x

2
kp

)
(14)

Sensitivity indices with greater varieties are
subsequently generated from these interactions.
Total sensitivity indices can be approximated us-
ing the following equations:

⌢

STi
= 1−

⌢

U⌢
i
−

⌢

ϕ
2

0

⌢

V
(15)

where:
⌢

U⌢
i
= 1

N

∑N
k=1 ϕ

(
x1
k1, . . . , x

1
k(i−1), x

1
ki, x

1
k(i+1), . . . , x

1
kp

)
ϕ
(
x1
k1, ..., x

1
k(i−1), x

2
ki, x

1
k(i+1), ..., x

1
kp

)
(16)

Thus, in this section, one has described
how Monte Carlo approaches are used to esti-
mate sensitivity Sobol indices for various orders.
These indices allow for the analysis of the impact
of various inputs on the variance of Y .

3. Flexural strength
predictive model

3.1. Selecting experimental
database

Building models that estimate the 28-day flex-
ural strength of SFRC using test data from
17 independent studies were combined into a
database with 207 test results, shown in Ta-
ble 2. In the database, variables are named
and described in Table 1. Fiber shape con-
stant includes the straight fiber (S), hooked-end
fiber (H), crimped fiber (CR), mill-cut fiber (M),
and flat-end fiber (F). The fiber shape constant
values [8] comprise fiber with two hooked ends
(=1.0), two crimped ends, or one hooked end
and straight end (=0.75), in addition to straight,
mill-cut fiber (=0.5).

3.2. Flexural strength equation

Regression analysis [9] is a statistical method
utilized to estimate the correlation between vari-
ables that exhibit the relationship of reason and
result. The primary objective of univariate re-
gression is to establish a linear relationship be-
tween a dependent and an independent variable
by analyzing their relationship and formulating
an equation for that relationship. Linear regres-
sion refers to models of regression that consist
of a single dependent variable and multiple in-
dependent variables. The data used for linear
regression analysis consists of 11 independent in-
put variables and one dependent variable of flex-
ural strength of SFRC, and the relationship is
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utilized to make a predictive model. The formu-
lation of a multivariate regression analysis model
is as follows:

Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ε (17)

where, Y is the dependent
variable.X1, X2, ..., , Xp are dependent variables.
β0, β1, β2, ..., βp are parameters. Moreover, ε is
an error.

Conventional linear regression presumes that
a singular model with fixed coefficients accu-
rately represents the output data. Nevertheless,
there may be some degree of uncertainty regard-
ing the coefficients of the variables and their sig-
nificance. BMA [7] provides a more comprehen-
sive understanding of the relationship between
variables by considering a range of models. The
study uses a statistical technique, which is BMA,
to solve this problem.

BMA [10] addresses uncertainty in determin-
ing the appropriate regression model by simul-
taneously considering multiple plausible mod-
els about the flexural strength of SFRC. BMA
weights these models based on their posterior
probabilities and combines them to provide a
comprehensive and flexible view of the relation-
ships between variables. This helps improve pre-
dictions, identify important variables, and incor-
porate prior knowledge about variable relation-
ships.

Tab. 1: Input variables of the Flexural Strength Predic-
tive Equation.

Symbol Description
X1 Mass of water
X2 Mass of cement
X3 Mass of sand
X4 Mass of coarse aggregate
X5 Maximum aggregate size
X6 Mass of admixture
X7 Fiber shape constant
X8 Fiber tensile yield strength
X9 Fiber volume fraction
X10 Fiber length
X11 Fiber diameter

The distribution of λ given the data
X = [X1, X2, . . . , X11], which is illustrated
in Table 1. Let M = [M1,M2, . . . ,Mk] indicates

the collection of all possible models.

p (λ|X) =

N∑
k=1

p (λ|Mk , X) p (Mk |X) (18)

In Eq. 18, the probability of each predictive
model, p(λ|Mk , X) are weighted by the poste-
rior model, p(Mk |X) is the probability of the
model. The term is produced by reapplying the
Bayes rule, except this time, it is done at the
level of models instead of parameters.

p (Mk |X) =
p (X|Mk) p (Mk)∑K
l=1 p (X|Ml ) p (Ml)

(19)

where p (X|Mk) = ∫ p (X|βk,Mk) p (βk|Mk) dβk

. The model’s marginal likelihood is p (λ|X).
βk,Mk is the vector of parameters of Mk model;
p (βk|Mk) is the prior density of βk under model
Mk ; p (X|βk,Mk) is the probability.

The p (Mk) is the prior likelihood, that Mk

is the accurate model. The set M concludes all
models, which depend on all probabilities. For
this investigation, M includes all valid predictor
combinations.

Just performing the calculation of the ratio
between the posterior model probabilities of the
alternative model (Mk ) and the null model (
Ml) is sufficient. This results in

p (Mk |X)

p (Ml |X)
=

p (X|Mk)

p (X|Ml)

p (Mk)

p (Ml)
= BF10

p (Mk)

p (Ml)
(20)

where BF10 is Bayes’s factor. The previous
model odds are represented by the ratio on the
right-hand side, while the posterior model odds
are represented by the ratio on the left. All of
the models that are being considered here follow
the form:

λ = β0 +

m∑
i=1

βiXi + ε (21)

The dependent variable’s observed data is rep-
resented by the number of λ vectors. A normal
distribution denoted as ε is provided, consisting
of a variance of σ2 and a mean of zero. It is
assumed that the ε′ values under various condi-
tions are independent.

The Bayesian Model Averaging (BMA) [28] al-
gorithm utilizes the Bayes Information Criterion
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Tab. 2: Summary of the flexural strength database of SFRC.

Water Cement Sand Coarse Admixture smax Fiber ff Vf lf df fr
Sources (m^3) (kg) (kg) aggregate (kg) (mm) shape (MPa) (%) (mm) (mm) (MPa)

(kg)
Nili, Afroughsabet [11] 162-177 354-450 893-920 858-887 2.3-6.5 19 H 1050 0-1.00 60 0.75 4.24-9.43
Ibrahim, Chebaker [12] 230 338 1049 760 0.7 10 H - 0-1.25 60 0.75 6.10-7.52
Sahin, Koksal [13] 170-179 325-487 785-891 850-965 0.9-1.8 19 H 1050-2000 0-1.00 60 0.71-0.75 3.30-17.30
Zhang [14] 164-185 308-529 633-764 929-1233 0-5.8 20 H 600-1000 0-2.00 35 0.55 3.10-8.32
Chen [15] 172-195 336-521 488-725 1080-1145 0-5.2 Oct-40 H 1100 0-1.00 30-60 0.75 4.68-9.31
Bai et al. [16] 165 367 702-765 1053-1146 2.2 16 CR 380 0-2.00 30 0.5 4.79-9.30
Abbass et al. [17] 137-157 350-550 682-798 1050-1078 3.5-3.7 10 H 1250 0-1.50 35 0.6 4.35-13.60
Yang et al. [18] 185 268-524 652-750 1056-1186 0.4-1.6 31.5 H 1000 0-0.63 40-60 0.62-0.75 2.50-4.80
Fan [19] 264 480 717-769 895-989 0 20 S, H 380-500 0-2.00 50 1 4.32-9.11
Raja, Sivakumar [20] 160 400 750 1140 0 20 H 1700 0-0.50 30.2-32.3 0.93-1.22 4.96-5.74
Gao [21] 215 500 556 1129 8 16 H 1345 0-1.0 30 0.5 7.61-19.50
Ma [22] 161 460 1150 1048 0 20 M 809 1-1.60 30 0.55 6.05-8.54
Zhu [23] 160-200 258-513 540-868 1012-1083 18.4 20 H, CR, M 500-1250 0-0.70 32 0.8 4.37-6.94
Niu et al. [24] 172 400 730 1046-110 0 15 H - 0-2.00 32-50 0.55-1.15 4.59-10.42
Peng [25] 161-167 453-460 699 1594 0 20 CR 809 0-1.60 32 0.8 6.24-8.43
Soutsos et al. [26] 198 267 805 1190 18.1-18.4 20 H, CR, F - 0-0.64 32-40 0.8 4.21-4.76
Pajak,Ponilieski [27] 205 490 808 808 0 8 S, H 1100-1250 0-1.00 50-60 0.9-1.0 2.45-8.31
Statistical indexes for the database of flexural strength (fr)

160-264 267-500 556-1150 760-1594 0-18.4 8.0-40.0 380-2200 0-3.00 12.5-60 0-1.22 2.45-19.50

(BIC) to estimate the posterior probabilities of
various models, which are then used to weigh
these models in the averaging process. The in-
fluence of each input parameter on the final out-
come is determined by its prevalence across the
models and the weighted contributions of those
models within the ensemble.

This paper employs the flexural strength of
SFRC testing values to investigate a numeri-
cal model with 11 parameters corresponding to
207 times the variables for each test (i.e., the
data contribution of 207 sets of X input and
Y output). The R programming language is
used to identify models that can forecast flexural
strength based on input parameter variables.

The BMA discovers 26 possible models. Five
of these are classified to be the best based on as-
sessment using the determination factor ( R2),
BIC criterion, and the number of variables re-
quired to predict outcomes. Fig. 3 shows the
likelihood of predictors in models that predict
SFRC’s flexural strength. The results illustrate
that the impact of uncertainty in input fiber
shape constant values has a negligible effect on
this strength. The mass of cement (X2), the
yield strength (X8), and the volume (X9) of
fiber are very important since they appear in
the models at 100% of the total. Their linear re-
gression coefficients of the predicted models are
1.80E-02 with a standard deviation of 4.97E-03,
3.60E-03 with a standard deviation of 6.78E-04,
and 2.86 with a standard deviation of 3.65E-01,
as demonstrated in Model 1 column of Table 3.
The analysis results of X1 in Fig. 3 show that

Fig. 3: Models of prediction selected via the BMA
method.

adding the water mass to the linear regression
model will reduce accuracy. The primary vari-
able that must be incorporated into the regres-
sion function is the cement mass X3. The actual
water-to-cement (w/c) ratio is crucial. However,
the cement mass X3 could somehow represent it.

The results via the BMA method analysis of
multivariable linear regression models for flex-
ural strength, a mechanical property of SFRC,
show that steel fiber’s geometrical and material
properties slightly affect the predictive models.
In particular, the parameters such as the mass
of cement, sand, aggregate, and the variables re-
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Tab. 3: A summary of BMA’s five best predictive models.

Variable Prob. EV SD Model 1 Model 2 Model 3 Model 4 Model 5
Intercept 100 -1.28E+01 7.31E+00 2.00E+01 1.12E+01 2.98E+00 8.49E+00 2.14E+01
X1 8.3 3.11E-04 3.07E-03 - - - - -
X2 100 1.34E-02 4.97E-03 1.80E-02 1.34E-02 7.95E-03 1.00E-02 1.99E-02
X3 74.5 6.33E-03 4.91E-03 1.08E-02 6.86E-03 - 3.92E-03 1.29E-02
X4 36.7 1.46E-03 2.13E-03 3.75E-03 - - - 4.11E-03
X5 4.7 9.92E-04 8.61E-02 - - - - -
X6 66.1 9.87E-02 1.17E+00 1.69E-01 1.08E-01 - - 2.23E-01
X7 18.3 4.65E-01 2.03E-01 - - 2.84E+00 - -
X8 100 3.73E-03 6.78E-04 3.60E-03 3.40E-03 3.49E-03 3.21E-03 4.22E-03
X9 100 2.86E+00 3.65E-01 2.89E+00 2.82E+00 2.82E+00 2.90E+00 2.80E+00
X10 84.1 4.49E-02 2.72E-02 4.21E-02 4.53E-02 8.00E-02 6.27E-02 -
X11 27.1 6.62E-01 1.29E+00 - - - - -
Number of variables (nVar) 7 6 5 5 6
Determination factor (R2) 0.591 0.562 0.543 0.542 0.557
The Bayes Information Criterion (BIC) -92.034 -91.39 -90.0334 -89.879 -89.875
Posterior probability 0.164 0.119 0.08 0.037 0.035
*Note: Probability (Prob.), Expected value (EV), Standard deviation (SD).

lated to the fiber’s size play a critical role in
building the SFRC’s flexural strength predictive
equation. Thus, when the step-by-step process
is over, this study suggests a predictive equation
as follows:

Fpre = β0 + β1X1 + β2X2, . . . ,+β11X11 (22)

3.3. Evaluation

Numerous indicators and techniques are used to
evaluate a linear regression equation [29]. This
study used R-squared (R2 ) and residual mean
squared error (RMSE) for evaluating the pro-
posed prediction equation. Fig. 4 evidence that
the proposed model of this study outperforms
the model of Wang [1] across both R2 and RMSE
metrics. The proposed model exhibits a signif-
icantly higher R2 value of 0.591, indicating its
superior ability to explain the variance in the
dependent variable compared to Wang’s model,
which only achieves an R2 of 0.431. This dispar-
ity suggests that the proposed model captures a
larger proportion of the underlying patterns and
relationships within the data, making it a more
robust predictive model.

Furthermore, the proposed model boasts a
lower RMSE of 1.865, implying that its pre-
dictions are, on average, closer to the observed
values compared to Wang’s model, which has
an RMSE of 2.137. The smaller RMSE of the

proposed model indicates that it produces more
accurate predictions, enhancing its reliability
for practical applications such as forecasting or
decision-making.

Fig. 4: Models of prediction selected via the BMA
method.
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4. Implementation of
sobol’s global
sensitivity analysis
method to the flexural
strength of SFRC

4.1. Application of Sobol’s
methods of sensitivity
analysis on a simple case

The study utilized a validation case study that
employs the Ishigami function model to deter-
mine the reliability of the Sobol sensitivity anal-
ysis code. The Ishigami function, developed
by Ishigami and Homma (1990) [30], is often
used as an example of uncertainty and sensitiv-
ity analysis methods. This function is partic-
ularly useful due to its prominent nonlinearity
and nonmonotonicity, making it an ideal case
for studying these methods

Y (X) = sin
(
X(1)

)
+ 7sin2

(
X(2)

)
+ ...

0.1
(
X(3)

)4

sin
(
X(1)

) (23)

where X(1), X(2) and X(3) are random variables
that follow a uniform distribution between −ß
and ß. By applying the global sensitivity analy-
sis method and, more specifically, the estimation
of the Sobol indices, the result can be gener-
ated using Monte Carlo methods to determine
the mean through 20 retrials of 10.000 samples.
The results of this sensitivity analysis were com-
pared with previously published results [7,31], as
shown in Table 5. The parameters and X(2) are
the most influential when examining the vari-
ance of Y at first-order. Additionally, the Y
value is least affected by X(3) , as evidenced by
a Sobol index of 0.001.

Table 3 shows that the theoretical analytical
sensitivity results in the section are consistent
with both prior experiments. The difference of
random variables at the relative level is the high-
est at 5,49%, and there are 0% errors. The single
in the X(3) variable has an error of up to 80%,
but it can be seen that the first sensitivity indi-
cator of the variable X(3) is approximately equal
to 0 false candles. The conclusion is that the sur-

vey demonstrates the reliability of Sobol’s meth-
ods of sensitivity analysis model in this study.

4.2. Application of Sobol’s
methods of sensitivity
analysis on SFRC’s flexural
strength predictive
equation

We use Sobol’s sensitivity analysis method to
look at how 11 different input variables affect the
variation of the flexural strength of SFRC. We
look at how these variables affect each other and
how they affect the flexural strength of the ma-
terial. Determining the probability distribution
of all inputs plays a significant role in the anal-
ysis process. The probability distributions of 11
considered variables are shown in Table 4. The
data generation is conducted using the Monte
Carlo method based on input variable distribu-
tions, which randomly generates each variable
with many data points.

For a sample size of 10000, Sobol’s indices
can be computed 10000 times by re-sampling
the Monte Carlo draws, thereby providing var-
ious estimates. Fig. 5 depicts the compari-
son of the frequency distribution between the
experimental data and the estimated value by
Sobol’s method. It is evident that there is a
slight difference between them when examining
their mean, skewness, and kurtosis. The differ-
ence between the mean of the experimental data
(9.376) and that estimated by Sobol’s method
(7.606) is approximately 1.7 times. Similarly,
the skewness and kurtosis values of the experi-
mental data and estimation by Sobol’s method
are -0.027, 0.730, and 0.318, 3.327, respectively.
Thus, the objective assessment reveals slight dif-
ferences between the two models. This difference
is mainly due to the different number of samples
in each data set, and the larger the data, the
more accurate it is, such as the 10000 samples
estimated by Sobol’s method. Fig. 6 shows the
Sobol’s sensitivity indices results. The figure dis-
plays the first and total order of all random vari-
ables. The significance of either the first-order
or total-order indices when analyzing data de-
pends on the specific context and analytical ob-
jectives. First-order indices are considered more
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Tab. 4: Summary of comparisons of applied studies with the Sobol method.

The Sobol’s indices Errors of result (%)
Xi Jérôme Morio [7] DX Hung [31] This study [7] [31]

Si STi Si STi Si STi Si STi Si STi

X(1) 0.313 0.576 0.313 0.56 0.313 0.565 0 1.91 0 1.802
X(2) 0.434 0.438 0.44 0.434 0.426 0.446 1.843 1.826 3.182 2.765
X(3) 0.001 0.254 0.004 0.241 0.005 0.255 80 0.394 25 5.49

Tab. 5: Summary of the variable distribution.

Variable Distribution
X1 Uniform
X2 Uniform
X3 Uniform
X4 Uniform
X5 Uniform
X6 Uniform

Random with three
X7 determined values

of 0.5, 0.75, and 1.0 [8]
X8 Normal [32]
X9 Uniform
X10 Uniform
X11 Uniform

SFRC’s Flexural Strength Normal [33]
(Testing)

Fig. 5: Comparision of the frequency distribution.

important since they demonstrate how certain
input variables directly influence the variability
of a model’s output and identify the components
with the most significant impact. On the other
hand, total-order indices assess the overall in-

Fig. 6: Sobol’s sensitivity indices from global sensitivity
analysis.

Fig. 7: First-order Sobol’ Indice.

fluence of each input variable, considering both
direct and interaction effects.

Fig. 7 demonstrates pie charts of first-order
Sobol indices. The fiber volume (X9) is the most
sensitive, at approximately 34.8%. Next is the
mass of sand (X3) with a percentage ratio of
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about 22.7%, the tensile yield strength of the
fibers (X8), and the mass of cement (X2) with
sensitivity percentage ratios of approximately
15.6% and 11.5%, respectively.

The cement content significantly influences
the flexural strength of concrete, as demon-
strated by empirical studies, while the quantity
of sand has a significantly smaller impact. The
Sobol index is employed to assess the impact of
a single input variable on the variability of the
output. The Sobol index denotes the percent-
age of the output variation that the input vari-
able can independently account for. Sobol’s the-
ory demonstrates that the sand mass (X3) has a
greater impact on the change in flexural strength
than the cement mass (X2) and yield strength
(X8) variables. The flexural strength variation
is 22.7%, attributable to the sand mass varia-
tion. It does not imply that the sand mass in-
fluences the flexural strength values of concrete
more than the yield strength (X8), cement mass
(X2), and fiber volume (X9).

The total-order Sobol index in Fig. 8 indi-
cates that the fiber volume fraction (X9) con-
tributes most to the variability, with a value of
approximately 37.2%. Following this are the ce-
ment mass (X2) and fiber tensile yield strength
(X8), with variability contributions of roughly
15.1% and 14.8%, respectively. It could be seen
that the order of influence remains consistent be-
tween the first-order indice and the total-order
indice.

Fig. 8: First-order Sobol’ Indice.

5. Conclusions

This study plays a critical role in constructing
the SFRC Flexural Strength Predictive model in
order to comprehend interrelationships among
variables, generate comprehensible insights, and
generate predictions predicated on linear as-
sumptions. This model is expected to be a
foundational tool in statistical analysis and var-
ious research and decision-making processes, es-
pecially sensitivity analysis. By capturing the
linear relationships between input features and
output responses, linear models offer simplicity,
transparency, and often robust performance in
implementing Sobol’s Global Sensitivity Anal-
ysis to SFRC’s Flexural Strength Predictive
Equation.

This study uses the Sobol sensitivity index
and Monte Carlo simulation technique to study
the algorithm and create a global sensitivity
analysis. The utilization of sensitivity data is
anticipated to substantially influence the ad-
vancement of technical procedures and the pro-
duction of building materials and structures. In
reliability analysis, the input parameters show-
ing a significant or minor global sensitivity to the
output parameter are considered deterministic.

The proposed predictive equation for
SFRC’s flexural strength with high verifica-
tion R2=0.591. According to Sobol’s Global
Sensitivity Analysis, the fiber volume fraction
exhibits the highest level of sensitivity, with
a value of around 34.8%. The mass of sand
accounts for approximately 22.7% of the total,
while the tensile yield strength of fiber and the
mass of cement have sensitivity percentages
of around 15.6% and 11.5%, respectively.
The order of influence is similar between the
first-order and total-order indexes.
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