
VOLUME: 8 | ISSUE: 4 | 2024 | December

Influential Features Analysis And AI-Driven
Accuracy Enhancement: A Study Case For

DDoS Detection

Le Ba Nguyen1,Quoc-Binh Nguyen2, Ngoc Hong Tran1,∗

1Computer Science Program, Vietnamese-German University, Binh Duong Province, Viet Nam.
2Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.

*Corresponding Author: Ngoc Hong Tran (email:ngoc.th@vgu.edu.vn)
(Received: 05-June-2024; accepted: 14-October-2024; published: 31-December-2024)

http://dx.doi.org/10.55579/jaec.202484.466

Abstract. Cybersecurity is known today as one
of the greatest challenges of the modern era.
Among the various types of cyber attacks that
threaten our security, the Distributed Denial of
Service (DDoS) attack is among some of the
most common, effective, and well-recognized
attack strategies. Since this form of attack is
meant to disrupt the availability factor covertly,
it can be detrimental to the targeted machines
and difficult to be discovered. Because of that,
there have been a number of approaches, as well
as solutions that have been devised in order to
detect it as accurately and efficiently as possible.
Impressively, data mining methods have been
employed to identify patterns of DDoS attacks
from the computer network traffic. Nevertheless,
the recent works’ results have not yet mentioned
which factors of the computer network traffic
play the most vital role in indicating the po-
tential for true positive attacks. Additionally,
with the Machine Learning approach, there are
still ample opportunities to enhance the attack
prediction accuracy of the detection model.
As such, in this paper, we attempt to explore
factors that would influence the classification
result, and leverage a variety of Machine
Learning algorithms, i.e. Random Forest, Naive
Bayes, Logistic Regression, and Multilayer
Perceptron, for the purpose of improving the
accuracy of data classification. The experiments
were deployed using CICIDS2017 dataset and

compared with the other related works on the
same dataset. The experimental outcomes of
our methodologies and analyses demonstrate
some potential and effectiveness enhancement
compared to previous works. Moreover, we
analysized and concluded the insight of how side
factors affect the attack identification result.
The collected information from our analysis
identifies dominant factors, and opens a new
view for their hidden correlationship directly
affecting the attack labeling.

Keywords: Distributed Denial of Service, Ran-
dom Forest, Naive Bayes, Logistic Regression,
Multilayer Perceptron.

1. Introduction

As of April 2023, the number of Internet users
has reached over five billion, according to [1],
which means that the number of computers and
Internet connected systems is significant, which
leaves plenty of rooms for security breaches. The
key objectives of Internet security are authenti-
cation, integrity, availability, confidentiality, and
non-repudiation [2]. Cyber attacks, particularly
the Distributed Denial of Service (DDoS) attack,
pose a serious threat to the availability aspect of
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network security by flooding a target network or
system with traffic from multiple sources, over-
loading its capacity in order to deny access for
legitimate users [3]. The consequences of DDoS
attacks can be devastating, leading to network
downtime, loss of revenue, damage to reputa-
tion, cost for damage mitigation, etc. It can
last anywhere from a few hours to days, or even
weeks. Consequently, during an attack the ser-
vice quality would attenuate, which could be fi-
nancially damaging to businesses. Depending
on the type and size of companies, a success-
ful DDoS attack could cause a loss from around
100,000 to tens of millions of dollars per hour [4].
To cope with such egregious effect from DDoS
attacks, the effective detection methods, and In-
trusion Detection Systems (IDS) for such attacks
are crucially requested. Under such a motiva-
tion, researches on applying Data Mining tech-
niques to detecting DDoS attack have been re-
markably invested, with approaches such as clus-
tering, classification, association rule, and other
techniques being used to analyze network traf-
fic data in order to gain insight and handle the
matter [5].

In [6], Konstantin Borisenko et al. conducted
a study on using data mining techniques for de-
tecting internal and external DDoS attacks on a
cloud computing platform. They used a combi-
nation of live connection data and modeled at-
tack traffic, focusing on HTTP and SYN flood-
ing attacks. Their approach employed two lay-
ers of detection: the first layer identified attack
traffic within the cloud network, while the sec-
ond layer identified victims and attackers. They
tested Naive Bayes, SVM, KNN, and Decision
Tree models for the first layer, with Decision
Tree proving to be the most effective. The first
layer achieved a 0% false positive rate and a
0.03% false negative rate, correctly identifying
all benign traffic. Despite some HTTP flood-
ing passing through, its impact was negligible.
Upon detecting an attack, the second layer ini-
tiated, successfully distinguishing victim and at-
tacker nodes with near 100% accuracy across five
steps. While the results were promising, the au-
thors noted a potential 25% error rate reduction
with binary classification.

In [7] , Rohan Doshi et al. applied a se-
lected number of machine learning techniques,

which are K-nearest neighbors (KNN), RF, De-
cision Tree, Support Vector Machines (SVM),
and Deep Neural Networks (DNN), to detect
DDoS over a simulated Internet of Things (IoT)
device network. The collected data traffic first
went through feature engineering before the clas-
sification process. Based on the outcomes of the
classification algorithms, it was noted that the
classifiers scored between 0.91 to 0.99 in accu-
racy, with SVM having the lowest accuracy and
RF having the highest score.

In the most similar works, specifically in [8,9],
the authors use the CICIDS2017 dataset for
their machine learning (ML) algorithms to de-
tect DDoS attack. In their work they used Ran-
dom Forest (RF), Naive Bayes (NB), Support
Vector Machine (SVM), and Decision Tree algo-
rithms. The results and findings in their study
are very positive and interesting. However, they
did not provide more details about their data
processing to support the ML algorithms, and
the accuracy of the employed models could be
further improved upon with different setup, and
data processing approaches. In addition, their
works did not explore much on which factors of
the dataset has the greatest impact on the pos-
sibility of a traffic to be a DDoS attack.

Additionally, the work conducted in [10] used
the same dataset, however, their goal was to ap-
ply and evaluate different ML techniques that
could classify between the traffic flows that are
normal and those that correspond to the differ-
ent attacks present in the CICIDS2017 dataset.
This is slightly different from our work in that,
we only focus on the DDoS attack. Despite not
sharing the same objective, their findings were
still quite promising, and since we shared the
same dataset, as well as many of the applied
ML algorithms used, NB, LR, MLP, and RF,
so we shall include it for the comparison of our
findings (see Section 5).

In this work, we attempt to enhance the
DDoS attack detection accuracy by refining
the CICIDS2017 dataset. When we have
a clean dataset, we employ various ML ap-
proaches, specifically, Random Forest (RF),
Multilayer Perceptron (MLP), Naive Bayes (in-
cluding Multinomial and Gaussian), and Logis-
tic Regression (LR). Beyond that, we shall try
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to address the key features that can suggest the
presence of a potentially true positive DDoS at-
tack on the computer network traffic. For con-
firming our result, we shall then get the results
in [8, 9] for a comparison.

The remainder of this paper is organized into
6 sections. Section 2. presents some related
works to DDoS detection and this paper. In sec-
tion 3. , an overview of DDoS and the deployed
ML algorithms are demonstrated. Section 4.
describes the dataset, as well as the processing
method of it. Following up in section 5. , we dis-
cuss the results of our models and compare our
findings with the most similar works. Finally,
we give our concluding remarks and potential
future research avenues in section 6. .

2. Related works

The threat of security breech, specifically those
caused by DDoS attacks, and the growing pop-
ulation of Internet users has lead to many re-
search being conducted on creating effective de-
tection techniques and datasets to accompany
them. In this section, we presents some con-
temporary works, as well as some available IDS
datasets.

2.1. IDS datasets

1) KDD99

Created by the University of California in 1999,
it is an improved version of DARPA 98 and is
created using tcpdump. It is comprised of ap-
proximately four gigabytes worth of compressed
TCP data that is collected from seven weeks of
simulated network traffic, with normal and at-
tack traffic [11]. The dataset has 4 main cat-
egories of attack, those are Denial of Service
(DOS), Remote to Local (R2L), User to Root
(U2R), and probing. Although it is no longer
up-to-date, as well as having a number of re-
dundant records, it is still widely studied and
appears in recent works, such as in [12] and [13].

2) NSL-KDD

This dataset was created as a way to address
some of the inherent problems in the KDD99
dataset [14]. The dataset consists of different
features and labeled traffic to differentiate be-
tween normal and the different types of attack
traffic. The attack categories are similar to that
of KDD99 dataset, featuring Denial of Service
(DOS), Remote to Local (R2L), User to Root
(U2R), and probing. Many works have used it
as a benchmark to evaluate the performance of
their IDS, such as in [15].

3) CAIDA-KDD

Center of Applied Internet Data Analysis
(CAIDA) possesses various types of dataset,
with three main category being ongoing, one-
time snapshot, and complete [16]. Data is gath-
ered by CAIDA from various locations, and each
dataset has unique features such as UDP prob-
ing, BGP monitoring, IPv4 census with pas-
sive traffic traces obtained from an academic
ISP, a darknet, and a residential BGP with ac-
tive measurements of ICMP ping, HTTP GET,
and traceroutes. The majority of databases
have their payload and IP addresses anonymize,
which significantly diminishes their utility [17].

4) CICIDS2017

This dataset was created in 2017 by the Cana-
dian Institute for Cybersecurity at the Univer-
sity of Brunswick [18]. The dataset, tools, as
well as the codes used for its creation are pub-
licly available. It contains 80 features for each
data record, various types of attacks, which in-
cludes Brute Force, Heartbleed, different flavors
of DoS and DDoS attacks, Web Attack, Infil-
tration, and Botnet. In addition, the dataset
contains a realistic background traffic gener-
ated based on several protocols, such as HTTP,
HTTPS, FTP, SSH, and SMTP [19]. Lastly, the
dataset is in CSV file format, making it more
convenience when using it for machine learning.
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2.2. Previous works

Previous research in [20] by Mouhammd Alka-
sassbeh et al. used Data Mining techniques to
detect DDoS attacks. The dataset used in their
experiment covers Smurf, UDP Flood, HTTP-
Flood, and SQL Injection DDoS attacks. MLP,
Naive Bayes, and RF were among the algorithms
used, their performance was assessed based on
accuracy, precision, and recall score. The re-
sults indicated that MLP had the best overall
outcome and the algorithms had difficulties in
classifying the Smurf attack.

A study by Kimmi Kumari and M. Mrunalini
[21] saw the use of a mathematical model and
two ML algorithms, LR and Naive Bayes, for
detecting DDoS attacks. In their experiment,
they used the CAIDA 2007 dataset. According
to their findings, the ML model was more accu-
rate than the mathematical model, with 100%
accuracy compared to 99.75% accuracy for the
mathematical model. Because Naive Bayes as-
sumed that dataset features are independent,
which is not true in most circumstances, LR out-
performed Naive Bayes.

In [9], Amer A. Abdulrahman and Mah-
mood K. Ibrahem presented a work that eval-
uates DDoS attack detection using ML algo-
rithms. Their work classified benign and ma-
licious DDoS traffic in the CICIDS2017 dataset
using four ML models: C5.0, RF, Naive Bayes,
and SVM. The results indicated that C5.0 and
RF outperform other algorithms, they have the
highest accuracy at 86.45% and 86.8%, respec-
tively. They found that algorithm complexity
depended on characteristics and training data
samples. More features mean that more train-
ing data is needed.

The work in [22] by Muhammad Azmi and his
team aimed to detect DDoS attacks using var-
ious classification algorithms and feature selec-
tion methods. They utilized Information Gain
and Data Reduction for feature selection and
applied Naive Bayes, Artificial Neural Network
(ANN), and Decision Table algorithms on the
UNSW-NB 15 dataset. The performance of the
algorithms were evaluated based on accuracy,
precision, true positive and false positive rate.
Results revealed that Decision Table with the

highest accuracy at 88.43%, followed by Naive
Bayes at 87.74%, and ANN at 84.66%. Feature
selection enhanced the accuracy of Naive Bayes
by 5.77%, Decision Table by 3.89%, and ANN
by 0.68%.

In [23], Priyanka Kamboj et al. conducted a
survey to review how different methods could
help with detecting DDoS attacks. In their
work, they discuss about types of DDoS attack
that could be used on targeted victims, such as
SYN Flooding, ICMP Flooding, UDP Flood-
ing. The study also discuss on some existing
detection methods that could be deployed as a
part of counter measures against DDoS, those
are Traceback Methods, Entropy Variation, In-
trusion Detection and Prevention Systems. The
research found that DDoS attacks are compli-
cated issues, with varying degrees of difficulty,
and that each detection methods have their own
strength and weaknesses.

M Devendra Prasad et al. introduced a
Stochastic Gradient Boosting (SGB) ML model
for DDoS anomaly detection in [24]. The model
is trained using a dataset generated from three
different datasets. From the result, SGB fared
better than K Nearest Neighbors (KNN), Naive
Bayes, Decision Tree, and RF. It achieved 100%
accuracy with no false classifications for bal-
anced and unbalanced datasets. They concluded
that by adapting SGB, a system for DDoS de-
tection can be fully automated obviating human
intervention. In [8], Saman Sarraf successfully
replicated the work of Prasad and his colleagues
in [11]. For his work, he used a fraction of the CI-
CIDS2017 dataset, while his work was aiming to
replicate used the complete dataset in combina-
tion with two other datasets. The study showed
that both models had an accuracy rate of almost
100% and it was possible to replicate the results
of the original research.

In [10], Maria Rodriguez et al. evaluated
the accuracy and execution time of ten ML al-
gorithms for classifying traffic flows in the CI-
CIDS2017 dataset. For their study, they applied
Naive Bayes, LR, MLP, Sequential Minimal Op-
timization (SMO), KNN, Adaptive Boosting,
OneR, J48, PART, and RF. The models went
through three rounds of training and testing,
first with the original dataset, the second had
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feature selection, the last used a dataset gen-
erated by Zeek network traffic analysis on raw
packet captures. They noted that binary clas-
sification achieved better results due to the re-
duced complexity, it need less time to test if only
the most relevant data attributes were used, but
at the cost of accuracy. Additionally, tree-based
algorithms, particularly PART and J48, outper-
formed others, consistently achieving over 99%
accuracy across all trials and proving to be faster
alternatives to RF.

Receiving such great inspiration, in this work,
we deploy the CICID2017 dataset for our study
due to its availability to the public and com-
prehensive nature, realistic network traffic sce-
narios, and extensive feature set allowing for in-
depth analysis and evaluation of detection al-
gorithms. We are only considering the studies
in [8, 9] are the most similar to ours so far be-
cause we share the same CICIDS2017 dataset.
To improve prediction accuracy, we use several
ML algorithms and data processing that are dis-
tinct from them.

Fig. 1: DDoS and DoS attack illustration.

3. Preliminary

3.1. DDoS attack

DDoS is a variant of the Denial of Service (DoS)
attack, which is a type of cyber attack that seeks
to make a machine or network resource unavail-
able to its intended users by interrupting the
device’s normal functions [2], typically by over-
whelming or flooding a targeted machine with
requests until normal traffic is unable to be pro-
cessed, denying access to additional users (see
Fig. 1). DoS attack is characterized by using

a single computer to launch the attack, while
in DDoS the attack originates from numerous
sources [3] (see Fig. 1).

The attacks are executed through the use of
a network of malware-compromised devices that
could be remotely controlled by an attacker. In-
fected machines are known as bots or zombies,
and a collection of them is called a botnet. Af-
ter the botnet is established, the attacker can
launch an attack on a victim’s server or network
by issuing instructions to each bot to overwhelm
the victim with requests.

3.2. Machine learning Methods

In this section, we introduce the ML approaches
applied to our problem. We elected to employ
these models for this study because our objective
is binary classification in nature and they are
known by many to be some of the most suitable,
as well as widely utilized techniques.

1) Logistic Regression (LR)

A type of statistical method for binary classifica-
tion that can also be applied to linear classifica-
tion [25]. It calculates the likelihood of an event,
such as "True" or "False", using a dataset of in-
dependent variables. Since the result is a proba-
bility, the dependent variable is limited between
0 and 1. LR transforms odds, the ratio of success
to failure, into a logit function.

P =
1

1 + e−(a+bX)
(1)

where P is the probability of a result we need;
e is the base of the natural logarithm (or Eu-
ler’s number); a and b are the parameters of the
model; X is the independent variable.

2) Random Forest (RF)

This popular model is used to solve both classi-
fication and regression problems. It takes the
results of multiple decision trees and through
ensemble learning combines them into a single
result [25]. It’s the same as a group of people
voting for an outcome based on their own indi-
vidual opinions (see Fig. 2). RF leverages clas-
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Fig. 2: Random Forest illustration.

sifier accuracy and dependency to establish an
upper bound on generalization error. Reducing
correlation can enhance its strength and accu-
racy. RF involves three key parameters, those
are node dimension, tree quantity, and sampled
feature count. Each decision tree in the forest
starts with a root node and gradually splits be-
tween a criteria until it arrives at a conclusion
at a leaf node. The quality of the split is judged
by metrics such as Gini index.

Gini (S) = 1−
n∑

i=1

(pi)
2 (2)

where S is the set with n classes; pi the proba-
bility of randomly picking an element of class i
from the set S.

3) Naive Bayes

The Naive Bayes classifier is a supervised ML
algorithm, it is a fast and simple classifica-
tion algorithm that makes it suitable for high-
dimensional datasets [26]. It uses Bayes’ theo-
rem (also known as Bayes’ rule) and a firm as-
sumption that the attributes are conditionally
independent, given the class.

P (A|B) =
P (A)P (B|A)

P (B)
(3)

where P (A|B) is the probability of event A
occurring given that event B has occurred;
P (B|A) is the probability of event B occurring
given that event A has occurred; P (A) is the

probability of event A; P (A) is the probability
of event B.

Despite that in practice independence condi-
tion is uncommon, Naive Bayes usually yields
competitive classification accuracy [27]. In
the Gaussian Naive Bayes (GNB) classifier the
model assumes that data from each label is
drawn from a simple Gaussian distribution [26].
Another type of Naive Bayes is Multinomial
Naive Bayes (MNB), where the features are as-
sumed to be generated from a simple Multino-
mial distribution [26].

4) Multilayer Perceptron (MLP)

A type of artificial neural network character-
ized by its fully connected feed-forward archi-
tecture [25]. It consists of a minimum of three
layers, namely the input layer, the output layer,
and at least one hidden layer. The MLP archi-
tecture consists of interconnected layers of input
nodes, also known as neurons, forming a directed
graph structure, wherein edges have specific di-
rectional connections from the input layer out to
the output layers (see Fig. 3).

Hidden layers consist of all of the layers that
lie from after the input layer to before the output
layers [28]. The application of back-propagation
is suitable for training both MLPs as well as
deep neural networks, which can be considered
as multilayered MLPs. The output of a neuron
in the network is typically computed using the
equation in Eq. 4.

y = f ×

(
n∑

i=1

wi × xi + b

)
(4)

where y is the output of the neuron; f is the
activation function; wi is the weight of the con-
nection between the neuron and its inputs; xi is
the input value; b is the bias term.
We selected these models based on the model

effectiveness in binary classification task, their
ability to handle both linear and nonlinear re-
lationships, and their interpretability and com-
putational efficiency. Some models, such as
Support Vector Machines (SVM) and K-Nearest
Neighbors (KNN), were considered but excluded
from the study due to their slower performance
and lower effectiveness found in other works.
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Fig. 3: Multilayer Perceptron illustration.

4. Dataset processing

This section provides an overview of the dataset
that was used for this study, as well as the uti-
lized approach in processing of the data before it
could be used to train and test the ML models.

4.1. Dataset description

For this work, the CICIDS2017 dataset was
utilized due to it containing bidirectional traf-
fic flows with benign traffic and different types
of up-to-date attacks, it is also a widely used
dataset, in addition to it being publicly acces-
sible. Other datasets were considered but they
were not as accessible and they didn’t have as
many features as CICIDS2017. The dataset
was created by the Canadian Institute for Cy-
bersecurity (CIC) and is publicly accessible on
their website. The dataset imitates real-world
data traffic and contains common cyber attack
types [18] that were recorded over the course
of five days by the CIC, with each day hav-
ing a different type of attack, except for Mon-
day that only has Benign data. Since our in-
terest lies in DDoS, we only used the file cre-
ated on Friday named "Friday-WorkingHours-
Afternoon-DDos" that contains this type of at-
tack.

The dataset comprises of 85 features and a
total of 225,745 instances, each associated with
one of two class labels "Benign" or "DDoS".
The features encompass labeled flows contain-
ing pertinent details such as time stamps, IP
addresses, ports, protocols, and other elements

that closely resemble authentic network traffic
data. It has 128,027 occurrences of "DDoS" and
97,718 instances of "Benign", which is around
1.31:1 ratio, a mild imbalance which does not
impact much on the result. Therefore, the data
consists of around 43% "Benign" instances and
57% "DDoS" cases.

There are analytical data of network traffic
created from CICFlowMeter, which is a tool cre-
ated by the CIC for generating and looking into
network traffic flow. The source code of the tool
is open to the public and can be accessed on
their website [29] and it possesses the capacity
to create a maximum of 84 attributes that are
linked to bidirectional flows. However, there ex-
ist a number of flaws within the dataset. In a
study by Arnaud Rosay and his team [30], there
are some issues with the tool used for the cre-
ation of the dataset, as well as the dataset itself.
These issues is likely to cause a reduction to the
system performance. Further details of the re-
ported issues are discussed in section B.

4.2. Existing challenges

The dataset contains a number of challenges
that need to be address before it can be used
to train the models.

1) Unclear Version and Inability to
Replicate Data

The CICFlowMeter tool has received changes
over time, however, the absence of a definitive
version tag in its source code has rendered it
challenging to determine the precise version re-
quired for replicating the extracted dataset fea-
tures, as well as features that are in earlier ver-
sions of the tool but is unavailable in the public
access version of the source code.

2) Feature Duplication

Some of the features were detected to be redun-
dant within the dataset due to it being a copy of
other features. The first pair is "Average Packet
Size" and "Packet Length Mean", because they
both use the same average length of packets
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per flow values, so they are duplicated features.
Next, the feature "Fwd Packet Length Mean" is
found to be overlapped with "Fwd Segment Size
Avg". A similar thing happens when you look
at the features "Fwd Header Length" and “Fwd
Header Length.1” features, they have identical
names and values. "Bwd Packet Length Mean"
and "Bwd Segment Size Avg" are another pair
of features that are duplicated.

3) Feature Miscalculation

Several features within the dataset were found
to be flawed due to calculation mistakes. There
are around 23 flaws in the feature calculation;
if we consider only the non-duplicated features,
then we have 21 miscalculations left.

- The most common flaw is the calculation er-
rors, such as dividing integers when they should
be diving floating point values. This mistake af-
fected 6 bulks related features, 4 related to sub-
flows and 1 to downlink/uplink ratio.

- Each new packet updates backward bulk fea-
tures regardless of packet direction. Also, the
forward bulk features never get any updates.
This leads to all 6 of the bulk-related features
having false values.

- Subflow count gets updated by timestamp
testing values. Misplaced parenthesis make the
test always true, raising subflow count for each
packet received.

- Each flow’s first packet gets used twice
for updating features related to packet length,
which affects the standard deviation, total
packet length, and mean values.

- There are flaws in TCP-related features, the
counts for SYN, PSH, FIN, and URG flags are
all reversed. PSH and URG counts never get up-
dated for any direction. Every time a packet is
received, the backward initial TCP window size
is changed to the most recent number instead of
the first one.

4) Wrong protocol detection

CICFlowMeter processes the packets in line with
the identified protocol. Regretfully, there are

times when the tool is unable to identify it. In-
adequate analysis of the Ethernet frames results
in different kinds of protocol detection issues.

- The initial detection level in the CI-
CFlowMeter tool relies on inspecting whether a
packet contains an IPv4 or IPv6 header, rather
than the Ethertype field in the Ethernet header
as intended. Regardless of the Ethertype field,
packets are classified as IPv4 or IPv6 if their
payload resembles these headers. This leads to
misclassification of Address Resolution Protocol
(ARP), Link Layer Discovery Protocol (LLDP),
and Cisco Discovery Protocol (CDP) packets, as
observed in a PCAP file analysis. For instance,
some ARP packets are misinterpreted as IPv4
packets due to matching IP addresses with ARP
header fields.

- CICFlowMeter’s second analysis level, in-
tended to rely on the protocol field of the IPv4
header, often misidentifies packets containing
TCP or UDP headers due to potential confusion
with payload bytes. This leads to misclassifica-
tion of various protocols such as Stream Control
Transmission Protocol (SCTP), Internet Group
Management Protocol (IGMP), and Internet
Control Message Protocol (ICMP), with most
packets being associated with protocol "0". Ad-
ditionally, there are observed instances of broken
frames, particularly with UDP fragments not be-
ing correctly identified and categorized.

5) Inconsistent TCP Termination
Flows

The CICFlowMeter tool ends connection flows
either after 120 seconds or upon encountering a
’FIN’ flag in a packet. In a TCP connection,
the first flow is established when a connection is
made, which includes the 3-way handshake and
data transfer packets. Closure of this flow occurs
upon receiving the initial packet of the last 4-
way handshake. The subsequent flow includes
the second and third packets of this handshake.
The final packet initiates a third flow. The tool
used to create the dataset left some issues.

- If there is no other communication that uti-
lizes the exact same addresses or ports then the
third flow will timeout and close. Else, the last
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flow packet will be added to a new communica-
tion.

- Flow-based features like 4-way handshakes
during normal and attack traffic can signifi-
cantly impact ML models. Inconsistent attack
labels may confuse algorithms, as some second
and third flows are benign while others represent
attacks.

- CICFlowMeter does not close a TCP com-
munication aborted by an "RST" flag. So any
subsequent communication that has the same
identification would be absorbed into the flow
that normally would have gotten aborted with
the "RST" flag.

4.3. Dataset cleansing

Before training the ML models, we performed
data preprocessing to address the issues present
in the dataset.

1) Duplicate Feature Removal

Based on [30] and examining the dataset our-
selves, we identified and removed any dupli-
cated features, features such as "Avg Fwd Seg-
ment Size" and "Fwd Packet Length Mean" con-
tained identical values. For these cases, we re-
tain only one of them to reduce the dimensional-
ity without losing information. We dropped the
features "Packet Length Mean", "Fwd Header
Length.1", "Avg Fwd Segment Size", "Avg Bwd
Segment Size".

2) Removing Error Features

Additionally, we found that there are features
that either contains a lot of zero, infinity, nega-
tive values when positive ones are expected, or
have empty values. This matches with the dis-
covery in [30] where certain features were found
to be inaccurately calculated due to errors in
the tool used to generate the dataset. As these
features may cause problem and introduce noise
into the model, we chose to remove them. We re-
moved features that had over 90% of their entries
populated with zero or negative values. For fea-
tures where negative values did not make sense,

we dropped those specific rows with negative
values, such as "Init_Win_bytes_backward",
which represents number of bytes sent in the
initial backward window. For empty and infin-
ity values, we only removed the rows that have
them.

3) Label encoding

The dataset has a combination of numerical and
categorical values, so label encoding technique is
used so that it is easier and faster for the learning
models to process. Afterwards, the label "Be-
nign" is set to 0 and "DDoS" to 1.

At the end of this stage, we have 137329 data
objects left, consisting of 55851 instances of "Be-
nign" and 81478 instances of "DDoS".

Fig. 4: Selected feature information gain graph.

4.4. Feature selection

To improve the effectiveness of the ML mod-
els, we reduce the dimensionality of the dataset
by selecting the most pertinent and informa-
tive data attributes, while removing the redun-
dant ones, or those with high correlation of each
other. By reducing the features count, we are
reducing the computational complexity, which
helps to decrease the execution time of algo-
rithms. The utilized techniques and the criteria
for selection are described in this section.
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1) Information gain

Mutual information, also known as information
gain [31], is a metric that assesses how much
information one variable has regarding another.
It is the decrease in entropy of one random vari-
able due to the knowledge of a different one [32].
High information gain features are considered
more relevant and could improve the accuracy
and efficiency of ML models. From our anal-
ysis, we find that each feature possesses vary-
ing degrees of information in relation to the tar-
get feature. Some features, such as "ECE Flag
Count", "Idle Mean", "Active Std", showed very
low or even zero information gain. This indi-
cate that these features have little to no im-
portance, as a result, we dropped them. How-
ever, some features have a high level of informa-
tion gain, for example, "Source IP", "Average
Packet Size", "Fwd Header Length", which pro-
vide substantial information gain value so they
are kept. Given that the highest observed infor-
mation gain was close to 0.7, we set a threshold
of 0.35, half of the maximum value, to select
most relevant feature. As a result, we have se-
lected the top 20 features for further analysis
(see Fig. 4).

Fig. 5: Selected feature information gain graph.

2) Correlation

Feature correlation helps us identify both rele-
vant and redundant features by offering insights
into their relationships and dependencies. If a
feature is relevant only to the target feature and
has low correlation with others, it is good [33].
We applied this technique and analyzed the cor-
relations of the 20 selected feature to identify
pairs that are highly related. Specifically, we
focused on identifying pairs with a correlation
value of 1, indicating that one feature is redun-
dant in the presence of the other. Based on Fig.

5, we found some feature pairs that are com-
pletely correlated, for example, "Bwd Packet
Length Mean" and "Bwd Packet Length Max",
"Total Fwd Packets" and "Fwd Header Length",
etc. For these cases, we removed one feature
from each pair, leaving us with 16 features that
exhibited no perfect correlation to each other.

3) Data normalization

Data normalization, also known as the Min-Max
scaling, is the process of scaling each input vari-
able separately in the range between 1 and 0. We
have applied the Min-Max method in Eq. 5 on
each of the remaining features to attempt to en-
hance the efficiency and dependability of the ma-
chine learning models, this means that the data
were standardized for each feature. This type of
technique helps with improving the model per-
formance, reducing the impact of outliers, and
ensuring that the data is all on the same scale.

Xscaled =
x− xmin

xmax − xmin
×(maxnew −minnew)+min

new

(5)
where Xscaled is the scaled value of x; xmax and
xmin are the minimum and maximum values of x
in the original dataset, respectively; maxnew and
minnew are the minimum and maximum values
of the desired range for the scaled data (com-
monly 0 and 1), respectively.

5. AI accuracy
improvement and
feature analysis

For this work, we aimed to improve the accu-
racy of ML models for DDoS attack detection,
as well as analyzing the features in the dataset
to explore their influential factors. In this sec-
tion, we shall discuss our findings, while using
the works done by Saman Sarraf in [8] and Amer
A. Abdulrahman in [9] as a comparison.

In [9], the authors used a combination of
ML models, those are C5.0, Naive Bayes, SVM
and RF, to classify DDoS attack from Benign
traffic over the CICIDS2017 dataset, they used
225711 samples along with 80 features for the
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study. They start by pre-processing the dataset,
several data normalization approaches were ap-
plied on the numerical features, such as min-
max, z-score, and decimal scaling normaliza-
tion. Afterward, they conducted feature se-
lection to find features that are significant so
they could ignore the irrelevant ones from the
dataset, this would help reduce dimensional-
ity, enhance processing speed, and save time
and resource. Based on the information gain
method, their study found 10 most important
features to perform the classification, such as
"Fwd.IAT.Total", "Flow.IAT.Max", etc. The
ML algorithms were then applied on the 10 se-
lected features. The results from the classifica-
tion show that RF and C5.0 outperformed other
algorithms, with average accuracy of 86.80%,
86.45% respectively, and precision score for both
was approximately 99%. Meanwhile, SVM had
very high false positive rate at 75%. They con-
cluded that the quantity of features and training
data samples determines the complexity of clas-
sification algorithms. More features would mean
that more training data would be needed.

The work in [8] attempted to detect DDoS
attack by using Decision Tree and SVM over a
significant fraction of the CICIDS2017 dataset,
which included 200,000 samples and 84 data fea-
tures. First, the samples of DDoS and Benign
class was randomly divided and shuffled, 100,00
samples from each class were selected to form
the dataset for the experiment. The next step
involves pre-processing the data. To speed up
training and enable faster model convergence,
the author decided to apply one-hot encoding
to convert categorical values to numeric ones,
convert the timestamp feature to absolute to-
tal second values, and map the data into an in-
terval with data normalization. Afterwards, the
author applied feature correlation analysis to as-
sess the importance of each feature, it was noted
that "Flow ID", "SYN Flag Cnt" and "Dst IP"
are among the most practical features to identify
DDoS in the dataset. Finally, the dataset was di-
vided into two parts: 75% for training and 25%
for testing, using the machine learning models
to classify the data with every of its features
included. The result of the accuracy was very
good, it appears that the SVM scored 99.97% ac-
curacy, while Decision Tree scored 100%. How-

ever, even though the outcomes of the study
were excellent, they were obtained by utilizing
every features in the dataset, which may have
required more time and money than was neces-
sary.

5.1. Features highlight

From what we have gathered after processing the
data, the remaining features play the most cru-
cial role in determining if the traffic show sign of
a DDoS attack. This means that we would only
need to use those features to train our model and
ignore the rest of the other ones, this will help
reduce the burden on the time and resources
needed.

From the information gain table (see Tab. 1),
it is shown that the Source IP is the most im-
portant feature with roughly 0.68 score. This is
most likely due to denial of service can be caused
by an address overloading the server by send-
ing multiple requests at short interval. Packet
length-related features have an average score of
0.62, this is because DDoS attack can cause
long packets, which would consume network re-
sources that could be used by legitimate users.
The same can be said for features relating to
packet size and number of bytes or packets be-
ing sent out.

Tab. 1: Parameters of two controllers.

Features Name Information Gain
Source IP 0.687346
Bwd Packet Length Mean 0.67414
Subflow Bwd Bytes 0.673551
Fwd Packet Length Mean 0.66937
Fwd Packet Length Std 0.669333
Bwd Packet Length Std 0.668721
Subflow Fwd Bytes 0.668364
Destination IP 0.660092
Initial Win Bytes Bwd 0.656791
Fwd IAT Mean 0.521564
Packet Length Variance 0.519593
Average Packet Size 0.515128
Bwd Header Length 0.514985
Fwd IAT Total 0.506117
Destination Port 0.504383
Actual Data Packet Fwd 0.504362
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5.2. Prediction result

The dataset is partitioned into three subsets to
assess the effectiveness of each algorithm. The
algorithms are trained using 60% of the dataset,
while 20%is allocated for testing purposes and
the other 20% is designated for validating. The
experiment is implemented using Python and
its libraries on Google Collaboratory. Follow-

Tab. 2: Parameters of two controllers.

Algo-rithms TP TN FP FN FPR
LR 81382 55809 42 96 0.000752
RF 81476 55851 0 2 0
GNB 81375 55851 0 103 0
MNB 81348 51066 4785 130 0.085674
MLP 81475 55851 0 3 0

ing the splitting of the datset into different sub-
sets, we applied the LR, RF, GNB, MNB, and
MLP classification algorithm over the subsets in-
dividually. Ultimately, the results for each clas-
sification techniques are obtained and analyzed.
The scores of the algorithms are derived from
the number of correct predictions, they are de-
noted as True Positives and True Negatives (TP
and TN), as well as the number of incorrect pre-
dictions, denoted as wrong Positives and False
Negatives (FP and FN), and False Positive Rate
(FPR) (see Tab. 2).

The metrics we use for assessing the algo-
rithms are Accuracy, Precision, Recall, F1 score,
and the Mean Squared Error (MSE) all of which
are calculated based on the formulas in Eq. 6,
Eq. 7, Eq. 8, Eq. 9 and Eq. 10.

Accuracy =
TP + TN

TP + TN + FB + FN
(6)

Recall =
TP

TP + FN
(7)

Pr ecision =
TP

TP + FB
(8)

F1 = 2× Pr ecision× Recall

Pr ecision+Recal
(9)

MSE =
1

n
×

n∑
i=1

(yi − pi)
2 (10)

Where n is the number of observations; yi is the
true value of observation i; pi is the predicted
value for observation i.

Upon examining the results, both RF and
MLP models demonstrate a negligible number
of occurrences of FP and FN, practically zero.
In contrast, the MNB model has the highest oc-
currences for both FN and FP, with a total of
130 and 4785, respectively. The GNB model ex-
hibits better results, having just 103 instances of
FN and zero instances of FP. In the result, FPR
is also computed for each model. The results
show that all FPRs are smaller than 1% which
are accepted in average industrial benchmarks.
Next, we assess their score for the metrics men-
tioned previously in their training, testing, and
validation phase.

Tab. 3: Parameters of two controllers.

Model Train Test Validation
LR 0.9991 0.9989 0.9986
RF 1 1 0.9999
GNB 0.9992 0.9994 0.999
MNB 0.964 0.9626 0.9662
MLP 0.9999 0.9999 0.9997

From the result in Tab. 3, it is evident that
all of the algorithms achieved either near-perfect
or perfect scores for the accuracy metric. RF
has the best score overall with 99.99% accu-
racy during validation and 100% during training
and testing. MLP closely follow behind it with
99.97% accuracy over validation, while MNB has
the lowest score at around 96.62%accuracy. It is
shown that LR and MNB algorithms have strong
results in training, reaching 99.91%and 96.4%
respectively, however when applied to over the
testing set, their scores have a slight decrease
by around 0.02% for LR and 0.14% for MNB.
It’s interesting to note that, in contrast to LR,
which drops to 99.86%, the MNB score improves
during the validation phase, reaching 96.62%.
Moreover, these accuracy rates all are in the
range of 90% and 99% which is adopted as an
average industrial benchmark.

Meanwhile, the GNB algorithm performs far
better than MNB, achieving 99.9% accuracy
throughout the validation set. The recall score
presented in Tab. 4 demonstrates some slight
fluctuations in the scores of some of the algo-
rithms, RF and MNB demonstrate a consistent
performance with a slight reduction. For this
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Tab. 4: Parameters of two controllers.

Model Train Test Validation
LR 0.9988 0.9992 0.9984
RF 1 1 0.9998
GNB 0.9987 0.9991 0.9983
MNB 0.9985 0.9984 0.9978
MLP 0.9999 1 0.9998

metric, RF and MLP continue to have the best
score over validation, both of them have 99.98%
recall score. LR achieved 99.88% recall score
over training set, the score increases to 99.92%
over testing, but decreases to 99.84% during val-
idation. With a training score of 99.85%, MNB
appears to have the lowest score once again; nev-
ertheless, this score reduces somewhat to 99.84%
during testing, and then drops even further to
99.78% during the validation set. The GNB al-
gorithm performs somewhat better compare to
its MNB variant; it starts off at 99.87% during
the training set and rises to 99.91% in testing;
however, during validation, the score drops to
99.83%.

The precision score from Tab. 5 shows that
the RF and GNB outperformed the other algo-
rithms, scoring 100% on all three subsets. Both
LR and MNB have training scores of 99.97% and
94.4%, respectively, they exhibit a decrease dur-
ing testing, with LR decrease slightly to 99.89%
and MNB at 94.19%, however, their score im-
prove slightly during validation, with LR rising
to 99.92% and MNB at 94.8%. On the other
hand, MLP achieves consistent score of 99.99%
during training and testing, it only has a minor
decrease to 99.97% in the validation phase.

Tab. 5: Parameters of two controllers.

Model Train Test Validation
LR 0.9997 0.9989 0.9992
RF 1 1 1
GNB 1 1 1
MNB 0.944 0.9419 0.948
MLP 0.9999 0.9999 0.9997

The F1 score results in Tab. 6 show that
RF has the best score once again, it achieves
100% over training and testing, with a minor
decrease to 99.99% over validation. In this met-

ric, MLP is the second highest by persistently
achieving 99.99% score during training and test-
ing, with a slight decrease to 99.98% over valida-
tion. The MNB model has a score of 97.05%over
the train set, it decreases to 96.94% during test-
ing, but rises to 97.23% over the validation set.
Meanwhile, GNB has a score of 99.93% during
training, it has a tiny increase during testing at
99.95%, but decreases to 99.91% in validation.
LR consistently decreases over the three sub-
sets; it begins at 99.92% during training, drops
to 99.9% during testing, and finally drops to
99.88% during validation.

Tab. 6: Parameters of two controllers.

Model Train Test Validation
LR 0.9992 0.999 0.9988
RF 1 1 0.9999
GNB 0.9993 0.9995 0.9991
MNB 0.9705 0.9694 0.9723
MLP 0.9999 0.9999 0.9998

In Tab. 7, the mean squared error of the algo-
rithms is shown, we can see that each model has
very low error measured. LR has consistently
low MSE values across train, test, and validation
sets, with values around 0.0018. Meanwhile, RF
demonstrated no error, with an MSE of 0 across
all subsets. Similarly, GNB has very low error,
with an MSE of approximately 0.00002 across
all sets. The highest MSE values is seen with
the MNB model, at 0.227, indicating a greater
prediction error. Finally, the MLP showed ex-
tremely low error, with MSE values close to 0.

Tab. 7: Parameters of two controllers.

Model Train Test Validation
LR 0.0018 0.0019 0.0017
RF 0 0 0
GNB 0.00002 0.00002 0.00002
MNB 0.227 0.2257 0.2278
MLP 0.000014 0.000022 0.00002

Overall, the ML models employed in this
study demonstrated excellent performance
across all evaluated metrics, indicating high
accuracy and minimal error.
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5.3. Result comparison

Because of the danger that DDoS poses to in-
formation security, many research works have
been done in applying ML techniques for intru-
sion detection using various datasets, some of
those works shared the same dataset and algo-
rithms used for this work. In this section, we
shall make comparison, where possible, between
the results that we obtained and the ones found
in the previous works.

The comparison between the prediction re-
sults of the shared algorithms and assessment
metric of our work and those of [9] can be found
in Tab. 8. Upon inspection, it is evident that we
have made some improvements in the accuracy,
precision, and recall metrics for the shared algo-
rithms. We are unable to make comparison for
the F1 score metric because it was not consid-
ered in their work, and we included both GNB
and MNB since we are unaware of the type of
Naive Bayes that was employed in their research.

Tab. 8: Parameters of two controllers.

Algorithm Accuracy Precision Recall
Present RF 0.9999 1 0.9998
Present GNB 0.999 1 0.9983
Present MNB 0.9662 0.948 0.9978
[9] RF 0.868 0.9963 0.8629
[9] Naive Bayes 0.79996 0.86031 0.90069

Looking over both of the results of RF, it can
be seen that we have managed to raise the ac-
curacy score from 86.8% to 99.99%, the recall
score has grown to 99.98% from 86.29%, and the
precision score has reached 100% from 99.63%.
For the Naive Bayes model, both of our GNB
and MNB results have achieved better scores,
with accuracy having 79.99% vs our 99.9% and
96.62%, the recall has 90.06% vs our 99.83% and
99.78%, and precision has 86.03%vs our 94.8%
and 99.97%. It is possible that because we con-
sidered the limitations of the dataset, we were
able to obtain a better classification result than
they were.

For the study conducted in [8], we compare
the most significant features that were identified
in their study and ours. The selected essential
features in their study were "Flow ID", "SYN

Flag Count" and "Destination IP". Meanwhile,
our study identifies "Source IP", "Bwd Packet
Length Mean" and "Subflow Bwd Bytes" as the
top three features, however "Destination IP" is
also in our list of key features. The author of the
study failed to account for the dataset limita-
tions identified by Arnaud Rosay and colleagues
in their previous work [19]. This oversight, along
with the difference in dataset version used may
have contributed to discrepancies between our
findings and theirs.

In the work done by Maria Rodriguez and her
team in [10], although the study is for classifying
the entire CICIDS2017 dataset and not just the
DDoS portion, their result is still interesting so
we will attempt to compare between ours results
and their binary classification with feature selec-
tion results, because that is the most similar one
out of the three strategies that they employed.
Since only the F1 results were shown in their pa-
per, we shall compare our F1 score with theirs.
The results comparison can be found in Tab. 9.

Tab. 9: Parameters of two controllers.

Algorithms F1
Present GNB 0.9991
Present MNB 0.9723
Present MLP 0.9998
Present LR 0.9988
Present RF 0.9999
[10] Naive Bayes 0.504
[10] MLP 0.605
[10] LR 0.577
[10] RF 0.976

Although the goal of our work and [10] is dif-
ferent, the result still have some similar trend
that parallel with each other. The tree-based
RF algorithm has the highest score for both side,
with ours has 99.99% and 97.6% in their study.
Following along, MLP has the second highest
result with 99.98% and 60.5%. Next, our LR
scored 99.88%, and theirs scored 57.7%. As for
the last algorithms, they scored 50.4% for the
Naive Bayes results, compared to 99.91% and
97.23% for our GNB and MNB, respectively.
The reason we have such different result is be-
cause our models are only applied to the DDoS
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portion of the CICIDS2017 dataset, whereas the
models in their paper are applied to every attack
file in the dataset. Furthermore, the excellent
performance result of RF on both sides suggests
that it might be the ideal algorithm for this kind
of task.

5.4. Limitations

Despite the near perfect performance of the ML
models employed in this study, there are still
limitations and challenges warrant considera-
tion. This study did not address real-time de-
tection, hence, this need to be looked at in fu-
ture work. The scalibility factor presents an-
other possible issue, the models performed well
on the utilized dataset, but they may not per-
form as well on a more complex dataset. Addi-
tionally, the dataset employed is outdated and
contains numerous deficiencies, which may im-
pact the effectiveness of the models in practi-
cal environments. Furthermore, this study was
conducted using only the CICIDS2017 dataset,
which lead to the generalization and reliability
of the models to be uncertain. Therefore, we
recognized that testing across multiple datasets
would further validate the robustness and gen-
eralizability of the employed models.

6. Conclusion and future
works

This paper is an attempt to improve the ac-
curacy of DDoS detection with ML algorithm,
while using the studies in [8], [9], and [10] as a
base for comparison. In terms of the accuracy,
precision, recall, and F1 score of the ML algo-
rithms that we employed, which are LR, RF,
Naive Bayes (including Multinomial and Gaus-
sian), and MLP, we have successfully attained
remarkably high scores, ranging from 94.8%to a
flawless 100%. This is a noticeable increase com-
pare to the results collected in the two studies [8]
and [9]. Our findings also indicate that features,
such as source IP, packet length, size-related at-
tributes, and features relating to packet count,
play a crucial role in the identification of DDoS
attacks.

For future investigations of this subject, there
exist opportunities for enhancement and expan-
sion of the present study, which have a number
of limitations. One of which is the deployment
of the models in a real-time network environ-
ments to evaluate their effectiveness in detect-
ing attacks under dynamic conditions. When
we deploy it to the real time environment, the
dynamic feature of realtime data collection, re-
altime data preprocessing, and the volumne size
of the collected live data can be a challenge.

Additionally, since the results of the study is
only from a single dataset, we can use additional
datasets from different sources to further vali-
date the generalizability and robustness of the
employed models. Furthermore, the future work
could utilize a more up-to-date and varied net-
work traffic dataset to address issues of the one
used in this study. Lastly, we could also perform
more intricate data analysis, and employ alter-
native algorithms and data mining methodolo-
gies, among other potential avenues for improve-
ment.
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