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Abstract. Excessive heat generation in systems
often leads to their thermally-induced failures,
continuous technical progress is important for
high-performance equipment. Therefore, there is
a need for an effective cooling of the such ther-
mal equipment. In this present work, the ther-
mal behavior of a convective rectangular porous
fin exposed to an electric and magnetic field and
with temperature-dependent internal heat gener-
ation was studied using differential transforma-
tion method. A good agreement was established
between the results of the differential transfor-
mation method and the numerical method’s re-
sults. Consequently, the significance of elec-
tromagnetic, porosity, convective, internal heat
generation on the thermal performance of the
porous fin are investigated using the approximate
analytical method. The exploration of the im-
pacts of the parameters on the passive device
reveals that increasing the electromagnetic field,
porosity and convective heat transfer parameters
cause increase in the rate of heat transfer from
the base of the fin. However, an increase in the
internal heat generation and the thermal conduc-
tivity parameters cause the fin temperature to in-
crease. It is believed that the present work will

help in the better design of the passive device es-
pecially in an electromagnetic environment.

Keywords: Electromagnetic Field; Porous Fin;
Heat transfer, Internal heat generation; Differ-
ential Transformation Method.

1. Introduction

Advancements in technology are always needed
for high-performance systems, yet excessive heat
generation can lead to thermally-induced fail-
ure in these systems. Therefore, the ther-
mal equipment of this kind needs to be effec-
tively cooled. Numerous practical and theoreti-
cal studies have been prompted by this require-
ment. Such studies are developed for evaluat-
ing the thermal performance of porous fins in
natural convection situations as a result of the
pioneer work of Kiwan and Al-Nimr [1]. Fur-
ther studies have been presented by some re-
searchers on the study of porous fins in ther-
mal systems, electronic components, and sen-
sitive devices (Kiwan [2–4], Gorla and Bakier
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[5], Kundu and Bhanja [6], Kundu et al. [7],
Taklifi et al. [8], Bhanja and Kundu [9] and
Kundu et al. [10], Gorla et al. [11], Moradi et
al. [12], Ha et al. [13], Hoshyar et al. [14], Hatami
and Ganji [15, 16], Rostamiyaan et al. [17], and
Ghasemi et al. [18]). These researchers employed
a variety of mathematical methods for assessing
the thermal response porous fins in conditions
of natural convection. The approximate an-
alytical techniques adopted include variational
iterative method (VIM), Adomian Decomposi-
tion method (ADM), Spectral Collocation, Ho-
motopoy Perturbation method (HPM), Homo-
topy Analysis method (HAM0), and Differential
Transformation method (DTM). Also, with the
aid of various approximate analytical and nu-
merical techniques, Oguntala et al. [19–28] and
Sobamowo et al. [3, 28–30] have studied exten-
sively on porous fins under convective-radiative
heat transfer and magnetic field.

The above review works applied some ap-
proximate analytical methods. However, these
methods have inherent limitations. It has been
stated that the HPM is limited to weakly non-
linear problems while ADM poses some chal-
lenges in the determination of Adomian poly-
nomials. The lack of rigorous theories or appro-
priate guidance for selecting initial approxima-
tion, auxiliary linear operators, auxiliary func-
tions, and auxiliary parameters limits the use
of HAM [29–33]. Furthermore, reviewed re-
search indicates that the differential transfor-
mation method’s use has been restricted to the
thermal analysis of solid fins in non-magnetic
environments. Zhou first proposed the differen-
tial transform method (DTM), which has since
gained popularity and been used in several en-
gineering and scientific research publications to
handle nonlinear issues due to relative benefits
over other approximate analytical techniques.
This method works without linearization, dis-
cretization, restricted assumptions, perturba-
tion, or discretization round-off error. It solves
nonlinear integral and differential equations very
efficiently. It lessens the computing challenges as
compared to the other conventional methods as
well. A closed form series solution or an approxi-
mate solution can be produced with DTM since
it offers highly accurate and good approxima-
tions to the solution of non-linear equations. It

can provide the series solution with a quick con-
vergence rate and accuracy while drastically low-
ering the amount of computational work, cost
and time. When compared to other approxima-
tive analytical or numerical methods, this ap-
proach is more practical for engineering compu-
tations because of its ability to lower calculation
costs, it seems more enticing than the numerical
solution in solving nonlinear problems. There-
fore, this paper utilized differential transforma-
tion method to analyzed the thermal behavior of
a convective-radiative porous fin under the influ-
ence of electromagnetic fields with temperature-
dependent internal heat generation. With the
aid of the thermal model solution, the effects
of electromagnetic fields, internal heat genera-
tion, radiative and convective heat transfer on
the porous fins are analyzed, presented and dis-
cussed.

2. Problem formulation

Examine a convective-radiative porous fin with
length L and thickness t that is subjected to
a magnetic field and exposed on both faces to
a convective environment at a specific tempera-
ture, as illustrated in Figure 1. In order to fa-
cilitate the problem analysis, the following pre-
sumptions are made.

1. The fluid in the porous medium is homo-
geneous, isotropic, and saturated with a
single-phase fluid.

2. Both solid and fluid physical properties
are taken as constants, with the excep-
tion of the liquid density, which could have
an impact on the buoyancy term when
the Boussinesq approximation that is em-
ployed.

3. In the domain, porous and fluid media are
in a locally thermodynamic equilibrium.

4. Radiative transfers, surface convection, and
non-Darcian effects are neglected.

5. The temperature varies steadily only one-
dimensional,

6. The fin tip is of the adiabatic type, and the
fin base has no thermal contact resistance.
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Fig. 1: Schematic of the convective-radiative longitudi-
nal porous fin.

The thermal energy balance may be repre-
sented in accordance with the previously given
assumptions and Darcy’s model (Oguntala et
al., [19, 20,27,28]; Sobamowo et al., [29–33]).

qx −
(
qx +

δq

δx
dx

)
+ q (T ) dx = ṁcp(T − Ta)

+ hP (1− ε̃)(T − Ta)dx+ σεP (T 4 − T 4
a )dx

+ δbζE
2dx+

Jc × Jc

σ
dx

(1)
where

Jc = σ (E+V ×B) (2)
The mass flow rate of the fluid through the
porous material is given as

ṁ = ρu(x)Wdx (3)

Adopting the Darcy’s Model

u(x) =
gKβ

v
(T − Ta) (4)

Then, Eq. (1) becomes

qx −
(
qx +

δq

δx
dx

)
+ q (T ) dx =

ρcpgKβ

v
(T − Ta)

2dx+ hP (1− ε̃)(T − Ta)dx

+ σεP (T 4 − T 4
a )dx+ δbζE

2dx+
Jc × Jc

σ
dx

(5)
As dx → 0, Eq. (5) reduces

− dq

dx
+ q (T ) =

ρcpgKβ

v
(T − Ta)

2

+ hP (1− ε̃)(T − Ta) + σεP (T 4 − T 4
a )

+ δbζE
2 +

Jc × Jc

σ

(6)

Using Fourier’s law of heat conduction, the rate
of heat conduction in the fin is given by

q = −keffAcr
dT

dx
(7)

where
keff = ϕkf + (1− ϕ)ks

Based on Rosseland diffusion approximation,
the radiation heat transfer rate is

q = −4σAcr

3βR

dT 4

dx
(8)

q = −keffAcr
dT

dx
− 4σAcr

3βR

dT 4

dx
(9)

The substitution of Eq. (9) into Eq. (6), pro-
vides

d

dx

(
keffAcr

dT

dx
+

4σAcr

3βR

dT 4

dx

)
+ q (T ) =

ρcpgKβ

v
(T − Ta)

2 + hP (1− ε̃)(T − Ta) + σεP (T 4 − T 4
a )

+ δbζE
2 +

Jc × Jc

σ
(10)

Further simplification of Eq. (10) gives the gov-
erning differential equation for the fin as

d2T

dx2
+

4σ

3βRkeff

d

dx

(
dT 4

dx

)
− ρcpgKβ

keff tv
(T − Ta)

2

− h(1− ε̃)

keff t
(T − Ta)−

σε

keff t
(T 4 − T 4

a )

− δbζE
2

keffAcr
− Jc × Jc

σkeffAcr
+

q (T )

keffAcr
= 0

(11)
The boundary conditions are

x = 0, dT
dx = 0

x = L, T = Tb
(12)

But
Jc × Jc

σ
= σB2

ou
2 (13)

After substitution of Eq. (13) into Eq. (11),

d2T

dx2
+

4σ

3βRkeff

d

dx

(
dT 4

dx

)
− ρcpgKβ

keff tv
(T − Ta)

2

− h(1− ε̃)

keff t
(T − Ta)−

σε(T 4 − T 4
a )

keff t

− δbζE
2

keffAcr
− σB2

ou
2

keffAcr
+

q (T )

keffAcr
= 0

(14)
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In this paper, a situation where there is a small
temperature differential within the material is
taken into account. Actually, this meant that
the temperature-invariant thermal and physical
properties of the fin had to be used. Moreover,
the term T 4 in this instance has been demon-
strated to be a linear function of temperature.
As such, we have

T 4 = T 4
∞ + 4T 3

∞ (T − T∞) + 6T 2
∞(T − T∞)

2
+ ... ∼= 4T 3

∞T − 3T 4
∞

(15)
Given that

q (T ) = q0 [1 + λ (T − T∞)]

when Eq. (15) is substituted into Eq. (14), then

d2T

dx2
+

16σ

3βRkeff

d2T

dx2
− ρcpgKβ

keff tv
(T − Ta)

2 − h(1− ε̃)

keff t
(T − Ta)

− 4σεT 3
a (T − Ta)

keff t
− σB2

ou
2

keffAcr
− δbζE

2

keffAcr

+
qo

keffAcr
[1 + λ (T − T∞)] = 0

(16)
Using following dimensionless parameters in Eq.
(15) into Eq. (16),

X =
x

L
, θ =

T − Ta

Tb − Ta
, Ra = Gr.Pr =

(
β

′
gTbt

3

ν2f

)(
ρcpνf
keff,a

)
,

Rd =
4σstT

3
∞

3βRkeff
, Hm =

σB2
0u

2L2

keffAcr(Tb − Ta)

Da =
K

t2
, Q =

qo
keffAcr(Tb − Ta)

, M2 =
h(1− ε̃)L2

keff,at
,

Nr =
4σstT

3
aL

2

keff,at
, Eb =

δbζE
2L2

keffAcr(Tb − Ta)
,

Sh =

(
β

′
g(Tb − Ta)t

3

ν2f

)(
ρcpνfK

keff,at2

)
(L/t)

2

keff,a
=

RaDa(L/t)
2

keff,a

γ = λ(Tb − Ta)

(17)
we arrived at the dimensionless form of the gov-
erning Eq. (16) as

(1 + 4Rd)
d2θ

dX2
−Raθ2 −M2θ −Nrθ

−Hm − Eb +Q (1 + γθ) = 0

(18)

Or
d2θ

dX2
− Ra

(1 + 4Rd)
θ2 − Nc(1− ε̃)

(1 + 4Rd)
θ − Nr

(1 + 4Rd)
θ

− Hm

(1 + 4Rd)
− Eb

(1 + 4Rd)
+

Q

(1 + 4Rd)
(1 + γθ) = 0

(19)
Which can be written as

d2θ

dX2
−Shθ

2 −M2
aθ−H +G (1 + γθ) = 0 (20)

where

Sh = Ra
(1+4Rd) ,M

2 = Nc(1−ε̃)
(1+4Rd) +

Nr
(1+4Rd) ,

G = Q
(1+4Rd) , EH = Hm+Eb

(1+4Rd) ,

The dimensionless boundary conditions

X = 0, θ = 1,
X = 1, dθ

dX = 0,
(21)

3. Method of Solution:
Differential Transform
Method

The nonlinearities in Eqs. (20) and (21) call for
the use of an approximate analytical method or
a numerical method. In this study, we use dif-
ferential transformation method. The definition
and the operational properties of the method
can be found in our previous study [25].

If u(t) is analytic in the domain T , then it
will be differentiated continuously with respect
to time t.

dpu(t)

dtp
= φ(t, p) for all t ∈ T (22)

for t = ti , then φ(t, p) = φ(ti, p) , where p
belongs to the set of non-negative integers, de-
noted as the p-domain. Therefore Eq. (22) can
be rewritten as

U(p) = φ(ti, p) =

[
dpu(t)

dtp

]
t=ti

(23)

where Up is called the spectrum of u(t) at t = ti
If u(t) can be expressed by Taylor’s series, the
u(t) can be represented as

u(t) =

∞∑
p

[
(t− ti)

p

p!

]
U(p) (24)

Where Equ. (24) is called the inverse of using
the symbol ‘D’ denoting the differential trans-
formation process and combining (23) and (24),
it is obtained that

u(t) =

∞∑
p=0

[
(t− ti)

p

p!

]
U(p) = D−1U(p) (25)
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3.1. Operational properties of
differential transformation
method

If u(t) and v(t) are two independent functions
with time (t) where U(p) and V (P ) are the
transformed function corresponding to u(t) and
v(t), then it can be proved from the fundamental
mathematics operations performed by differen-
tial transformation that.

1. If z(t) = u(t) ± v(t), then Z(p) = U(p) ±
V (p)

2. If z(t) = αu(t), then Z(p) = αU(p)

3. If z(t) = du(t)
dt , then Z(p) = (p− 1)U(p+1)

4. If z(t) = u(t)v(t), then Z(p) =∑p
r=0 V (r)U(p− r)

5. If z(t) = um(t), then Z(p) =∑p
r=0 U

m−1(r)U(p− r)

6. If z(t) = u(t)v(t), then Z(k) =
∑p

r=0(r +
1)V (r + 1)U(p− r)

d2θ
dX2 − Shθ

2 −M2
aθ − EH +G (1 + γθ) = 0

The differential transformation of the Eq.
(20) are given as

(p+ 1) (p+ 2)θ(p+ 2)−M2θ(p)−

Sh

p∑
r=0

θ (r)θ (p− r) +Gγθ(p) + (G− EH) δ (p) = 0

(26)
where

θ(p+ 2) =
M2θ(p)+Sh

p∑
r=0

θ(r)θ(p−r)−Gγθ(p)−(G−EH)δ(p)

(p+1)(p+2)

(27)
With the boundary conditions,

θ(0) = 1, θ(1) = a,

We arrived at

θ(2) =
− (G− EH)

2
+

aSh

2
+

M2

2
− Gγ

2

θ(3) =
aSh

3
+

M2a

6
− aGγ

6

θ(4) =
−ShGγ

8
− Sh (G− EH)

12
+

S2
h

12
+

ShM
2

8
− M2Gγ

12

+
a2S2

h

12
− M2 (G− EH)

24
+

M4

24
+

M2G2γ

24
+

M2G2γ2

24

θ(5) =
−Sha (G− EH)

20
− S2

ha

12
+

ShaM
2

12
− ShaGγ

12
+

aM4

120

− aM2Gγ

60
+

M2aG2

120
(28)

Therefore, from the definition

θ(X) = 1 + aX +

(
aSh

2
− (G−H)

2
+

M2

2
− Gγ

2

)
X2 +

(
aSh

3
+

M2a

6
− aGγ

6

)
X3

+


ShM

2

8
− ShGγ

8
− Sh (G−H)

12
+

S2
h

12
− M2Gγ

12
+

aS2
h

12

−M2 (G−H)

24
+

M4

24
+

M2G2γ

24
+

M2Gγ2

24

X4

+


S2
haM

2

12
− Sha (G−H)

20
− S2

ha

12
− ShaGγ

12

+
aM4

120
− aM2Gγ

60
+

M2aGγ2

120

X5 + ....

(29)
In order to find ‘a’, we apply the end boundary
condition X = 1, θ = 1 which gives

1 = 1 + a+

(
aSh

2
− (G−H)

2
+

M2

2
− Gγ

2

)
+

(
aSh

3
+

M2a

6
− aGγ

6

)
+

(
ShM

2

8 − ShGγ
8 − Sh(G−H)

12 +
S2
h

12 − M2Gγ
12 +

aS2
h

12

−M2(G−H)
24 + M4

24 + M2G2γ
24 + M2Gγ2

24

)

+

(
S2
haM

2

12 − Sha(G−H)
20 − S2

ha
12 − ShaGγ

12

+aM4

120 − aM2Gγ
60 + M2aGγ2

120

)
+ ....

(30)

4. Results and Discussion

MATLAB is used to code and simulate the de-
veloped solutions of the thermal model. How-
ever, prior to being utilized for parametric stud-
ies, the solutions of DTM f must first be veri-
fied. Consequently, in order to do this, the gov-
erning differential equation is numerically solved
using the fourth-order Runge-Kutta method (4th
RKM). The outcomes of the 4th RKM and
DTM are shown, as Table 1 illustrates. Accord-
ing to the Table, the DTM is highly accurate
and exhibits good agreement with the numeri-
cal method. This section presents the graphical
representations of the outcomes using the devel-
oped models. Figure 2 shows how the temper-
ature distribution in the porous fin is affected
by porosity, or the porous parameter. As can
be seen in the figures, the temperature in the fin
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Tab. 1: Comparison of results.

X 4th RKM Present (DTM)
0.0 1.000000 1.000000
0.2 0.958709 0.958714
0.4 0.927017 0.927029
0.6 0.904595 0.904613
0.8 0.891243 0.891256
1.0 0.886794 0.886807

drops faster as the porosity parameter increases,
and as the temperature reduces faster, the rate
of heat transfer—that is, convective-radiative
heat transfer—through the fin increases. The
Raleigh number rises in tandem with the poros-
ity parameter, increasing the porous fin’s per-
meability and the working fluid’s capacity to
flow through its pores. As a result, the buoy-
ancy force is increased, causing the fin to con-
vect more heat and rapidly drop in temperature.
The fin performs better thermally and has bet-
ter heat transmission. Fin porosity rises with
increased convective heat transfer, improving fin
efficiency.

(a) (b)

(c) (d)

Fig. 2: Impacts of porosity on the fin temperature when
(a) M = 0.5, Q = 0.2, γ = 0.4, (b) M = 1, Q =
0.2, γ = 0.4, (c) M = 5, Q = 0.4, γ = 0.2, (d)
M = 10, Q = 0.2, γ = 0.4.

Figures 3a-d and 4a-b illustrate how the inter-
nal heat parameter affects the porous fin’s ther-
mal response. It is evident that the fin’s thermal
performance is reduced by the internal heat pa-
rameter. Furthermore, it is demonstrated that
the fin retains heat instead of dissipating it, thus

defeating the goal of heat dissipation by the
porosity when the internal heat parameter rises
to specific values.

(a) (b)

(c) (d)

Fig. 3: Influences of internal heat parameter on the
fin temperature distribution when (a) M =
0.1, Sh = 0.5, γ = 0.2, (b) M = 0.5, Sh =
0.5, γ = 0.2, (c) M = 0.75, Sh = 5.0, γ = 0.2,
(d) M = 1.0, Sh = 0.5, γ = 0.2.

(a) (b)

(c) (d)

Fig. 4: Effects of the internal heat parameter on fin tem-
perature when (a) M = 0.1, Q = 0.4, Sh = 0.5,
(b) M = 1.0, Q = 0.4, Sh = 0.5, (c) M =
1.5, Q = 0.4, Sh = 0.5, (d) M = 2.0, Q =
0.4, Sh = 0.5.

While Figure 4 illustrates the impacts of
a temperature-dependent internal heat produc-
tion parameter on the temperature distribution
in the fin, Figure 7 show the effects of an in-
ternal heat generation parameter on the tem-
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perature distribution in the porous fin. Accord-
ing to the figures, the temperature gradient of
the fins diminishes as the internal heat generat-
ing parameters increase, which in turn causes a
drop in the fin’s rate of heat transmission. It
should be noted that because of their low heat
conductivity and high surface area when in con-
tact with the cooling fluid, fins made of porous
material function better and weigh far less than
fins made of solid metal.

Figure 7 shows the effects of an internal heat
generation parameter on the temperature distri-
bution in the porous fin, whereas Figure 4 shows
the effects of a temperature-dependent internal
heat production parameter on the temperature
distribution in the fin. The figures show that
when the internal heat generating parameters in-
crease, the fins’ temperature gradient decreases,
leading to a decrease in the fins’ heat transmis-
sion rate. It should be mentioned that fins made
of porous material perform better and weigh sig-
nificantly less than fins made of solid metal due
to their low heat conductivity and high surface
area when in contact with the cooling fluid.

Figure 3 shows how the conduction-convection
parameter affects the temperature distribution
of the fin. The figure illustrates how the
conduction-convection parameter grows with
the rate of heat transfer through the fin. This is
due to the fact that the fin becomes steeper and
reflects higher base heat flow rates as its tem-
perature drops more quickly. A profile with a
smaller value of the conduction-convection term
has the steepest temperature gradient. But be-
cause of its lower thermal conductivity com-
pared to the values of Nc in the other profiles,
which leads to a reduced heat-transfer rate, its
value is noticeably higher. This indicates that
while the objective (high effective use of the fin)
is to minimize the convective parameter, the fin’s
thermal performance or efficiency is preferable
at low convective parameter values. The opti-
mal situation is T = Tb everywhere, where there
is a temperature drop throughout the fin length.
It’s crucial to remember that a small value for M
denotes a thin, comparatively short fin with low
thermal conductivity, while a high value for M
denotes a lengthy, low thermal conductivity fin.
Since the fin’s thermal performance or efficiency
is optimum at low convective fin parameter val-

(a) (b)

(c) (d)

(e) (f)

Fig. 5: Impacts of internal heat values on when (a) S =
0,M = 2, G = 0.5, (b) S = 0,M = 2, G = 1.5,
(c) S = 0,M = 3.35, G = 1.5, (d) S = 0,M =
5.0, G = 1.5, (e) S = 0,M = 5, G = 0.5, (f)
S = 0,M = 5.0, G = 0.5.

ues, very long fins should be avoided in practice.

Fig. 6: Dimensionless temperature distribution in
the fin parameters for varying convection-
conduction parameter.

The effect of the conduction-radiation param-
eter is seen in Figure 4. The graph shows how
increasing the conduction-radiation parameter
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Fig. 7: Dimensionless temperature distribution in the
fin parameters for varying magnetic parameter.

improves the rate of heat transfer through the
fin. Figure 5 shows how the magnetic parameter,
also known as the Hartman number, affects the
temperature distribution in the porous fin. The
graphic shows how the induced magnetic field
within the fin might lead to improved heat trans-
fer via porous fins. The effect of the electric field
on the thermal performance of the fin showed the
similar pattern. Thus, figures 2–6 show how im-
proving the fin’s porosity, convective, radiative,
and magnetic properties increases the fin’s effi-
ciency by hastening heat transfer from the fin.

5. Conclusion

This work adopted the differential transforma-
tion method to assess the impacts of electromag-
netic field on the thermal behavior of a convect-
ing porous fin with temperature-dependent in-
ternal heat generation. Also, the significances of
other controlling parameters on the thermal per-
formance of the porous fin were examined using
the established symbolic heat transfer models.
It was found that increasing the electric field,
magnetic field, porosity, convective heat trans-
fer parameters cause increase in the rate of heat
transfer from the base of the fin. However, an
increase in the internal heat generation and the
thermal conductivity parameters cause the fin
temperature to increase. The work will help in
the better design of the passive device especially
in an electromagnetic environment.

Nomenclature

J conduction current intensity

A cross sectional area of the fins

Ab porous fin base area

As porous fin surface area

B0 magnetic field intensity

cp specific heat of the fluid passing through
porous fin

Da darcy number

E electric field

g gravity constant

h heat transfer coefficient over the fin sur-
face

hb heat transfer coefficient at the base of
the fin

Jc conduction current intensity

K permeability of the porous fin

k thermal conductivity of the fin material

kb thermal conductivity of the fin material
at the base of the fin

kr thermal conductivity ratio

keff effective thermal conductivity ratio

L length of the fin, (m)

M dimensionless thermo-geometric param-
eter

m mass flow rate of fluid passing through
porous fin

Nu nusselt number

P fin perimeter (m)

P perimeter of the fin

Q dimensionless heat transfer rate per unit
area

q internal heat generation
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qb heat transfer rate per unit area at the
base

Qs dimensionless heat transfer rate the base

R2 surface-ambient radiation parameter

Ra Rayleigh number

Ra∗ modified Rayleigh number

Rd radiation–conduction parameter

Sh porosity parameter

T fin temperature

t thickness of the fin

Ta ambient temperature

Tb temperature at the base of the fin

u axial velocity

v average velocity of fluid passing through

w width of the fin

X dimensionless length of the fin

x axial length measured from fin tip

Greek Symbols

α Thermal diffusivity

βR Rosseland extinction coefficient

ε Emissivity

µ Dynamic viscosity

ν Kinematic viscosity

σ Electric conductivity

σst Stefan–Boltzmann constant

ρ Density of the fluid

ρε Electrical density
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