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Abstract. Fractional-order controllers are rec-
ognized to guarantee better closed-loop perfor-
mance and robustness than conventional integer-
order controllers. However, fractional-order
transfer functions make time, frequency domain
analysis and simulation signi�cantly di�cult. In
practice, the popular way to overcome these dif-
�culties is linearization of the fractional-order
system. Here, a systematic approach is proposed
for linearizing the transfer function of fractional-
order systems. This approach is based on the
real interpolation method (RIM) to approximate
fractional-order transfer function (FOTF) by
rational-order transfer function. The proposed
method is implemented and compared to CFE
high-frequency method; Carlson's method; Mat-
suda's method; Chare�'s method; Oustaloup's
method; least-squares, frequency interpolation
method (FIM). The results of comparison show
that, the method is simple, computationally ef-
�cient, �exible, and more accurate in time do-
main than the above considered methods.
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1. Introduction

The concept of fractional calculus has appeared
long time ago but due to its complexity, it could
not be used in many applications. It is only in
the recent years with rapid development of hard-
ware and software applications in computer and
electronics �elds that fractional calculus theory
has been widely used in many applications of sci-
ence and engineering, including acoustics [1], [2],
robotics [3], [4], biomedical engineering, control
systems [5], [6], [7] and signal processing [8], [9].
In fact, one could argue that real world processes
are fractional order systems in general [10], [11].

Fractional-order models are in�nite dimen-
sional, and more adequate for the description of
dynamical systems than the integer-order mod-
els. In technical literature, fractional-order dif-
ferential equations are mostly analyzed using
Laplace transform techniques [10]. However, the
signals involved in these applications are charac-
terized by irrational Laplace transform, so that
the inverse transforms are generally not easily
evaluated and the time-domain analysis faces a
lot of di�culties.

As mentioned above, one of the major di�cul-
ties with fractional order representation is the
computation of frequency, and especially time
responses. Many studies have been done in or-
der to simulate fractional control systems over
the last decade. The analytical solution of the
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output is not practical and there is no a gen-
eral method for estimating it [12]. There are
also some methods based on Mittag-Le�er func-
tions, Grunwald-Letnikov fractional derivative
and Gamma functions for computation of the
impulse and step responses of commensurate-
order system [13], [14]. However, the solu-
tion methods using Mittag-Le�er functions and
Gamma function are time consuming and highly
inaccurate, occurring in solving complicated and
high fractional-order di�erential equation.

One possible approach to modelling frac-
tional order system is based on numerical ap-
proximation of the non-integer order operator
[15], [16], [17]. The methods developing integer
order approximations are attractive since, they
convert the problems related to the FOTFs into
classical transfer functions. Therefore a large
number of methods to evaluate rational approx-
imations have been developed. The most popu-
lar of these are listed: frequency interpolations,
continued fractional expansion (CFE) method,
Oustaloup's method, Carlson's method, Mat-
suda's method, Chare�'s method, and least-
square method.

The approximation methods in frequency do-
main are represented as frequency interpolation
methods (FIM) [18]. These methods require sep-
arating real and imaginary parts of the frac-
tional order transfer function when replacing the
frequency variables. The approximation results
could have high accuracy in frequency domain.
However, in time domain, accuracy is uncertain
especially with low approximated order func-
tion.

Some studies are based on a continued frac-
tions expansion (CFE) [19], or modi�ed CFE
such as Carlson method [20], [21]. Many re-
searchers have been working in this area and
have been successful in developing some ap-
proximation techniques, applied to the fre-
quency variables. These are Matsuda method
[16], Chare�'s method [15], Oustaloup's method
[22], [23] and the method proposed by Xue et
al [24]. These methods produce approximated
integer order models whose characteristics �t
closely enough to the ideal system characteris-
tics in the desired frequency bandwidth. Out
of these, some methods approximate very high

integer-order models for attaining desired accu-
racy in the desired frequency ranges. In such
cases, a reduced order model can be required
from a high integer order transfer function [24].

Most of the approximation methods are stud-
ied in the frequency domain, because of their
accuracy in the time domain might not reach
the desired value. This paper introduces an
approach for inverting the transfer function
of fractional-order systems to rational transfer
function with commensurate order. The pro-
posed approach is based on the real interpolation
method [25], [26], which is characterized by two
main features. The �rst feature involves the op-
erator method, in which the problem is solved in
the imaginary domain, where computation has
certainly more advantages than in the time do-
main. The second feature is that the models in
the RIM are a function of a real variable, com-
paring with a model producing in the imaginary
domain or in the complex domain

2. Real Interpolation

Method

RIM is one of the methods, which works on
mathematical descriptions of the imaginary do-
main. The method is based on real integral
transform,

F (δ) =

∫ ∞
0

f(t)e−δ·tdt, δ ∈ (C,∞), C ≥ 0,

(1)
which assigns the image function F (δ) in accor-
dance to the original function f(t) as a function
of the real variable δ. Formula of direct trans-
form can be considered as a special case of the
direct Laplace transform by replacing the com-
plex variable s for real δ variable. Another step
towards the development of the instrumentation
method is the transition from continuous func-
tions F (δ) to their discrete form, using the com-
puting resources and numerical methods. For
these purposes, RIM is represented by the nu-
merical characteristics {F (δi)}N . They are ob-
tained as a set of values of function F (δ) in the
nodes δi where i ∈ 1, 2, ...N , where N is the
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number of elements of numerical characteristics,
called its dimension.

Selecting of interpolations δi is a primary step
in the transition to a discrete form, which has a
signi�cant impact on the numerical computing
and accuracy of problem solutions. Distribution
of nodes in the simplest variant is uniform. An-
other important advantage of the RIM is cross-
conversion property. It dues to the fact that the
behavior of the function F (δ) for large values
of the argument δ is determined mainly by the
behavior of the original f(t) for small values of
the variable t. In the opposite case, the result
is the same: the behavior of the function F (δ)
for small values of the argument δ is determined
mainly by the behavior of the original f(t) for
large values of the variable t.

3. Rational

Approximation of FOTs

Using Real

Interpolation Method

In this paper we consider the following approx-
imation task of fractional-order systems. The
FOTF is given by the following expression:

G (s) =
K(s)

L(s)
=

∑p
i kis

βi∑q
i lis

αi
, (2)

where p, q − interger and βi, αi −
real numbers.

Let us consider rational transfer function:

W (s) =
B(s)

A(s)
=
bms

m + · · ·+ b1s+ b0
ansn + · · ·+ a1s+ a0

, (3)

where m ≤ n; m,n are the integer, which
should be used to approximate transfer func-
tion G(s) of linear fractional order system. For
(G (0) 6= 0, b0 = 1) or (G (0) = 0, a0 = 1) there
are N = n+m+ 1 real coe�cients which should
be determined from N equations obtained from
the condition of overlapping the numerical char-
acteristics in the corresponding discrete points,

G (δi)−
B (δi)

A (δi)
= 0, i = 1, N,

G (δi)A (δi)−B (δi) = 0, i = 1, N,
(4)

or for G (0) = 0, a0 = 1 one obtained

anδ
n
i G(δ1) + ...+ a1δiG(δi)− bmδmi −
−b0 = −G(δi), i = 1, N,

(5)

For �xed δi both numerator and denomina-
tor polynomials are linear combinations of the
unknown process parameters. Thus, the set of
equations (9) represents a linear system of equa-
tions having N linear equations, one obtains N
coe�cients of the rational approximation Eq. 3.

The obtained Eq. 5 are conveniently rewrit-
ten in the following matrix form, which is easily
solved using some of the modern computer alge-
bra packages, in particular, introducing

M =
δnN,1G(δN,1) . . . δN−n,1G(δN−n,1)− δmN−n−1,1 . . . −1

δnN,2G(δN,2) . . . δN−n,2G(δN−n,2)− δmN−n−1,2 . . . −1

. . .
δnN,NG(δN,N ) . . . δN−n,NG(δN−n,N )− δmN−n−1,N . . . −1

 ,
(6)

B =


−G(δ1)
−G(δ2)
...

−G(δN )

 (7)

one easily obtains the desired system of linear
equations in matrix form

M ·X = B, (8)

where X is the vector of unknown parameters,

X =



an
an−1
. . .
a1
bm
...
b0


. (9)

It is important to mention that the selected
set of points δ ∈ [ δ1, δ2, .., δN ] can produce a
singular matrix from the set of equations. In
such a case, another, more appropriate set of
points should be used. It is also signi�cant to
note that it is also possible to use more than n
incident points in the selected set. The exact
solution cannot be found in such a case.
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4. Numerical Examples

and Discussion

RIM is one of the methods, which works on
mathematical descriptions of the imaginary do-
main. The method is based on real integral
transform,

Let us select several FOTFs and compare their
Bode characteristics and response to Heaviside
excitation with those of the corresponding ra-
tional approximation determined on the basis of
the set of linear equations Eq. 5. In these exam-
ples there are comparisons between the Heavi-
side responses, Bode characteristics of the ap-
proximation models and the exact model.

The following example demonstrates a case
when the process outputs is equal to the frac-
tional capacitor. The actual transfer function
has a form: G1 (s) = 1/s0.5.

For transfer function of the fractional capac-
itor with fractional order 0.5 we carry out ap-
proximation using RIM and compare to di�er-
ent methods CFE high-frequency method; Mat-
suda's method; Carlson's method; least-squares
method then estimate the adequacy of approxi-
mation models [12].

According to considered model Eq. 6 G1 (0)→
∞ andG1 (∞) → 0, we choose approximation
model Eq. 3 with b0 = 1, a0 = 0. The orders
of the approximated rational transfer function
being considered are n = 3 in numerator, and
m = 4 in denominator. It means that number
of unknown coe�cients is N = n + m = 7.
Corresponding to 4th order of the ration ap-
proximated transfer function, the number of
unknown coe�cient is N = 7. In the RIM
we choose values of the nodes δi in range
the [0.001; 0.005; 0.01; 0.05; 0.1; 1; 5] with N=7
nodes equally spaced. The results of approxi-
mation process will be analysed in the time and
frequency domains and compared to other meth-
ods with same order of approximation model.

Fig. 1: Time responses

where h1(t) - exact time response; h1R‘(t) - time
response by RIM method; h1cfe(t) - time re-
sponse by CFE method; h1mat(t) - time response
by Matsuda's method; h1ls(t) - time response
Least-squares method; h1car(t) - time response
by Carlson's method.

The approximation errors of time responses
are illustrated in Fig. 2.

Fig. 2: Approximation error of time responses

where ∆h1R‘(t) - error of time response by RIM
method; ∆h1cfe(t) - error of time response by
CFE method; ∆h1mat(t) - error of time response
by Matsuda's method; ∆h1ls(t) � error of time
response Least-squares method; ∆h1car(t) - er-
ror of time response by Carlson's method.

Tab. 1: Maximum approximation error in time range
[0-150] (sec).

RIM CFE
Matsuda's
method

LS-
method

Carlson'
method

Error 0.158 10.66 2.674 4.168 4.889
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According to the time responses of the ap-
proximated rational transfer function, the time
response of the transfer function approximated
by the RIM demonstrates signi�cantly higher
accuracy than the other methods in considered
range of time. Maximum approximation errors
in Table 1. show that maximum approxima-
tion of the RIM model is lower than Matsuda's
method, having second place and CFE method,
having least accuracy in the error about 17 and
67 times, respectively.

The Bode plots of the approximation models
are shown in the below �gures. The Bode plots
illustrate the logarithmic magnitude, phase re-
sponses, and errors plots, respectively.

Fig. 3: Magnitude responses

where: L1(ω) - exact magnitude response;
L1R‘(ω) - magnitude response by RIM method;
L1cfe(ω) - magnitude response by CFE method;
L1mat(ω) - magnitude response by Matsuda's
method; L1ls(ω)� magnitude response by least-
squares method; L1car(ω) - magnitude response
by Carlson's method.

where: ∆L1R‘(ω) - error of magnitude response
by RIMmethod; ∆L1cfe(ω) � error of magnitude
response by CFE method; ∆L1mat(ω) - error
of magnitude response by Matsuda's method;
∆L1ls(ω)� error of magnitude response by least-
squares method; ∆L1car(ω) - error of magnitude
response by Carlson's method.

where: Arg1(ω) - exact phase response;
Arg1cfe(ω) - phase response by CFE method;
Arg1mat(ω) - phase response by Matsuda's
method; Arg1ls(ω)� phase response by least-
squares method; Arg1R‘(ω) - phase response by

Fig. 4: Errors of the magnitude responses

Fig. 5: Phase responses

RIM method; Arg1car(ω) - phase response by
Carlson's method.

Fig. 6: Errors of the phase responses

where: ∆Arg1cfe(ω) � error of phase response
by CFE method; ∆Arg1mat(ω) - error of phase
response by Matsuda's method; ∆Arg1ls(ω)� er-
ror of phase response by least-squares method;
∆Arg1R‘(ω) - error of phase response by RIM
method; ∆Arg1car(ω) - error of phase response
by Carlson's method.

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 43



VOLUME: 1 | ISSUE: 1 | 2017 | June

Fig. 4 and Fig. 6 show that the errors in mag-
nitude and phase responses of the considered ap-
proximation methods present the lowest value in
low frequency ranged [10−3, 0.1] Hz. In higher
and lower frequency regime, results of the RIM
introduce less accuracy. Generally the RIM in
Bode diagrams �t the exact model in the wide
range comparing to the other methods.

Second part of example we compare RIM
to approximation methods: Chare�'s method;
Oustaloup's method and frequency interpolation
method. The orders of the approximated ra-
tional transfer function are chosen higher the
previous example with n = 4 in numerator
and m = 5 in denominator. It means that
number of unknown coe�cients is N = n +
m = 9 with a0 = 0 and b0 = 1. In
the RIM we choose values of the nodes δi
in range [0.001; 0.005; 0.01; 0.05; 0.1; 1; 5; 10; 50]
with N=9 nodes equally spaced. The results
of approximation process will be considered in
the time and frequency domains.

The exact time response of the fractional or-
der system, as well as those of the approximation
models, are presented in Fig. 7. In additional
approximation errors are illustrated in Fig. 8.

Fig. 7: Time responses

where: h1(t) - exact time response; h1R‘(t) - time
response by RIM method; h1cha(t) - time re-
sponse by Chare�`s method; h1ous (t) - time re-
sponse by Oustaloup's method; h1F (t)-time re-
sponse by FIM.

where ∆h1R‘(t) - error of time response by RIM
method; ∆h1cha(t) - error of time response by
Charref's method; ∆h1ous(t) - error of time re-
sponse by Oustaloup's method; ∆h1F (t) � error
of time response by FIM.

Fig. 8: Approximation error of time responses

According to the Fig. 8, the maximum approx-
imations can be determined and are listed in
Tab. 2.

Tab. 2: Maximum approximation error in time range
[0-150] (sec).

RIM
Cha.

Method
Oustaloup's
method

FIM

Error 0.142 4.467 4.453 1.193

As presented in the Fig. 7 and Fig. 9, it clearly
shows that, new method provides a well-�tting.
Comparing Fig. 2 and Fig. 8, detailed in Tab. 1
and Tab. 2, it leads to the conclusion that error
of 4th order model (about 0.158) is higher than
5th order model, approximated (about 0.142) by
RIM. Consequently, the 5th order models are
more accurate than the 4th order model, approx-
imated by RIM.

The Bode plots of the approximation models are
shown in the Fig. 9�12.

Fig. 9: Magnitude responses

where: L1(ω) - exact magnitude response;
L1R(ω) - magnitude response by RIM method;
L1cha(ω) - magnitude response by Charref's

44 c© 2017 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 1 | ISSUE: 1 | 2017 | June

method, L1ous(ω) - magnitude response by
Oustaloup's method; L1F (ω) - magnitude re-
sponse by FIM.

Fig. 10: Errors of the magnitude responses

where: ∆L1R(ω) - magnitude response error by
RIM method; ∆L1cha(ω) - magnitude response
error by Charref's method; ∆L1ous(ω) - mag-
nitude response error by Oustaloup's method;
∆L1F (ω) - magnitude response error by FIM.

Fig. 11: Phase responses

where: Arg1(ω) - exact phase response;
Arg1R(ω) - phase response by RIM method;
Arg1cha(ω) - phase response by Charref's
method; Arg1ous(ω) - phase response by
Oustaloup's method; Arg1F (ω) - phase response
by FIM.

where: ∆Arg1R(ω) - phase response error by
RIM method; ∆Arg1cha(ω) - phase response
error by Charref's method; ∆Arg1ous(ω) -
phase response error by Oustaloup's method;
∆Arg1F (ω) - phase response error by FIM.

Fig. 12: Errors of the phase responses

The diagrams show that it leads to the same
above conclusion, the �tness of RIM model in
Bode characteristics is lower than the other
methods in the range [0.1-5] Hz. However RIM
in Bode diagrams �t the exact model in the wide
range about [10−3-10] Hz. In comparison to 4th

order approximation model by RIM, the accu-
racy of 5th RIM model represents more accurate.

To estimate of the RIM, we carry out nu-
merical examples with typical fractional-order
integrator systems, which is monotonic unsta-
ble. In the examples, there were conducted in-
depth analysis of the results of several typical
approximation methods and the RIM in the time
domain and the frequency domain. The above
results show that the accuracy of the RIM in
the time domain is signi�cantly higher compar-
ing to considered methods. Maximum approxi-
mation error of RIM model is smaller 8.5 times
and 67 times comparing to FIM model and CFE
model, respectively. The 5th order models is
more �tting than the 4th order model, approxi-
mated by RIM, is about 10% more accurate. In
the frequency domain as the Bode characteris-
tics, the RIM models show higher �tting than
considered methods in low and high ranges of
the considered frequencies. However, near the
medium-frequency range of the considered fre-
quency range, the RIM is less satisfactory than
other methods. Generally the RIM in Bode di-
agrams �t the exact model in the wide range
comparing to the other methods
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5. Conclusion

In this paper, a new approximation method for
fractional-order system is presented. The most
signi�cant feature of the proposed method is its
computational e�ciency. Another advantage of
the RIM is its high accuracy in the time do-
main, comparing to the conventional methods.
The higher order RIM models are more accurate
then the lower order RIM models. In fact, this
method is very simple both conceptually and
computationally. The obtained results from the
previous examples are quite satisfactory. The
main drawback of the proposed method is that
it is uncertain of the approximation model in
the frequency domain. Another limitation of the
method is not possible to guarantee the stabil-
ity a priori, in other words no constraints on
the coe�cients are enforced. Indeed, the form
of these constraint would be so complicated, so
that their introduction would impair the estab-
lished e�ciency of the solution presented in the
current paper.
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