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Abstract. In the realm of energy networks, effi-
ciently distributing the required load among all
online generating units is crucial for meeting
demand effectively. This is achieved through
the Economic Load Dispatch Problem (ELD).
ELD is problem of operating of thermal power
plants; however, this operation can be opened
by integrating renewable power plants, leading
ELD problem turn into new one, called NELD
problem. By employing various methods to
solve ELD and NELD problems, we can cre-
ate a strategic power distribution plan that op-
timally balances the output of online generat-
ing units. This study suggests three methods
including Skill Optimization Algorithm (SOA),
War Strategy Optimization Algorithm (WSO)
and particle swarm optimization (PSO) to im-
plement the optimal power distribution plan for
these plants while minimizing the cost per unit
of energy generated. Simulations are conducted
to assess the effectiveness of the proposed algo-
rithm in solving a variety of test systems, en-
compassing multiple load levels and diverse con-
straints. The results highlight the SOA’s strong
performance, demonstrating its potential to com-
pete effectively with other advanced methods in
the field.

Key Words: new economic load dispatch, Skill
Optimization Algorithm, power system opera-
tion, renewable power plants.

1. Introduction

Economic growth in the 21st century has led to
increased electrical energy consumption through
different activities such as production, services,
and daily household needs. For the increase,
traditional power plants such as thermal power
plants (TPs) and hydropower plants (HPs) have
generated a large amount of electricity. It is no-
ticed that TPs use a significant amount of fossil
fuels, leading to a total increase in the cost of
the power system. Nevertheless, efficient fossil
fuel exploitation is an extreme task for managers
and operators of TPs. For dealing with such a
challenge, Economic Load Dispatch (ELD) has
become the focal point of attention for them.
The ELD problem provides an optimal strat-
egy to minimize fuel costs by assigning an op-
timal generation planning of units available in
the power system while meeting operational re-
quirements [1].

In the first time, the cost function is usu-
ally presented under quadratic or convex func-
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tion forms; however, the constraints and char-
acteristics of power systems must be consid-
ered in practical operations. As incorporating
the actual constraints and characteristics, such
as prohibited operating zones (POZ), transmis-
sion loss, ramp rate limits, valve-point effects
(VP), and different fuel selections (FS), into nat-
ural power systems, the cost function becomes
non-smooth, non-convex, and multi-modal [2-5],
resulting to more challenges to the problem.
With these characteristics, if operators incor-
rectly operate, economic losses or faults can be
happened [6-8]. In determining the best solu-
tions for ELD problem, conventional optimiza-
tions like Interior point method (IPM) [9], gradi-
ent method (GM) [10], lambda iteration method
(LIM) [11], quadratic programming (QP) [12],
hopfield model (HM) [13], enhanced lagrange ar-
tificial neural network (ELANN) [14] and en-
hanced augmented lagrange hopfield network
(EALHN) [15] have been adopted. Among these
methods, the neural network-based ELANN and
EALHN methods effectively have solved the
ELD problem with multiple fuel types repre-
sented by piecewise quadratic cost functions.
However, these methods have struggled to ad-
dress nonlinear constraints. Although they en-
dured excessive numerical iterations, their con-
vergences are slow, and their solutions are lo-
cal. Similar to ELANN and EALHN methods,
other methods are also suitable for ELD prob-
lems with a basic quadratic function and with-
out FSs, POZs, and VPs. In other words, this
group faces limitations in solving highly com-
plex, non-linear, and non-convex optimization
problems, making it challenging to identify the
optimal solution [16].

To overcome such challenges, Artificial Intel-
ligence (AI) based approaches and a variety of
techniques inspired by natural phenomena or
behaviors of animals were developed, including
genetic algorithm (GA) [17], tabu search algo-
rithm (TSA) [17], particle swarm optimization
(PSO) [18], firefly algorithm (FA) [19], differ-
ential evolution (DE) [20], group search opti-
mizer (GSO) [21], ray optimization (RO) [22].
These methods are adept at handling real-world
constraints of the ELD problem and effectively
solving optimization problems of any level of
complexity within a reasonable timeframe. In

this group, PSO has been introduced by James
Kennedy and Russell C. Eberhart in 1995. This
method can find optimal solutions in a variety
of optimization fields with the significant per-
formance and benefits of simplicity in imple-
mentation, adaptability, rapid convergence and
less computational ability. Compared to algo-
rithms in the literature, PSO has performed
well thus far and has been used extensively to
solve real-world problems [23-25]. In addition
to PSO, DE is an algorithm with fewer parame-
ters. The benefit makes DE find solutions fast,
robust, easy to implement, and efficient to search
in global spaces. For these advantages above,
PSO and DE performance can be attributed to
their natural capacity for processing a popu-
lation of potential solutions, allowing them to
conduct comprehensive exploration within the
search space of the optimization problem [26].
However, both PSO and DE still have some dis-
advantages that scholars need to be noted as
applying them to deal with optimal engineer-
ing problems. Namely, DE’s drawbacks are the
need for careful parameter tuning, the possibil-
ity of unstable convergence, suboptimal compu-
tational efficiency, and a tendency to get trapped
in local optimums [26] and PSO’s include prema-
ture convergence, sensitivity to parameters, and
challenges with constrained optimization. Thus,
to effectively improve the convergence and iden-
tify optimal solutions on a global scale within
expansive spaces, numerous enhanced and mod-
ified versions of original methods have been put
forward such as hybrid distributed Sobol PSO
and TSA methods (DSPSO-TSA) [17], Anti-
predatory PSO (APSO) [18], improved firefly
algorithm (IFA) [19], quick GSO (QGSO) [21],
one rank cuckoo search algorithm (ORCSA) [27],
modified PSO (MPSO) [28], improved social
spider optimization algorithm (ISSO) [29], im-
proved antlion optimization algorithm (IALO)
[30].

Over time, numerous algorithms have success-
fully tackled the ELD problem; however, each
has unique strengths and weaknesses. As a re-
sult, researchers have strategically selected top-
performing algorithms and integrated them to
create innovative algorithms that deliver more
promising results than their predecessors. There
is considerable interest in various hybrid meth-
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ods for solving the ELD problem, including Jaya
algorithm with multi-population (Jaya-M) [31],
Jaya algorithm with self-adaptive strategy and
multi-population method (Jaya-SML) [31], Jaya
algorithm with self-adaptive multi-population
and Levy flights (Jaya-LF) [31], Greedy sine-
cosine non-hierarchical grey wolf optimizer (G-
SCNHGWO) [32], improved orthogonal design
PSO (IODPSO) [33], imperialist competitive al-
gorithm with PSO (PSO-ICA) [34]. In [31], au-
thors have implemented Jaya on ELD because
it stands out as an effective meta-heuristic due
to its minimal requirement of algorithm-specific
parameters for effective execution. However,
Jaya still has drawbacks, and some techniques
have been suggested to cover them. Namely, the
multi-population (MP) technique is presented to
enhance the population diversity of Jaya (called
Jaya-M), or a self-adaptive strategy is used to
cope with the tuning problem for extra param-
eters (called Jaya-SM). Lévy flight distribution
is included in the population iteration phase to
prevent getting trapped by local optima. Fi-
nally, self-adaptive multi-population and Lévy
flights are integrated into the Jaya algorithm
(called Jaya-SML) that can effectively solve var-
ious constraints such as power balance con-
straints, capacity limits, ramp rate limits, pro-
hibited operating zones, valve-point effects, and
multi-fuel options. In [34], PSO-ICA is shown as
a new hybrid approach that combines ICA and
PSO methods to find the feasible optimal solu-
tion for the non-convex ELD while considering
the valve point effect. The outcomes demon-
strate the applicability of PSO-ICA in resolving
the power system economic load dispatch issue,
especially in large-scale power systems. How-
ever, their successful implementation requires
proper design, parameter adjustment, and inte-
gration to ensure that their advantages outweigh
any drawbacks.

In modern society, the rapid development of
renewable energies (RES) like wind and solar
power has led to significant contributions to elec-
tricity generation. These resources have the po-
tential to mitigate greenhouse gas effects effec-
tively, address global warming, and replace the
depletion of fossil energy sources. As a result,
these energy sources are promising and viable
alternatives to traditional fossil fuels globally.

However, the RES have their limitations like cli-
matic constraints resulting in a variation in re-
source disposal, ample source availability at far-
off locations from the load, and system stability
due to the integration of these intermittent re-
sources into the existing power system [35, 36].
The integration of RES in power systems turns
ELD problem to become new one called NELD
problem. In the study referenced in [37], the au-
thors address the ELD for different combinations
of TPs, wind turbines, and PV systems. The au-
thors considered the penalties associated with
wind-based power generation but did not factor
in the cost of the PV system. The authors in ref-
erence [38| propose a two-stage low-carbon eco-
nomic scheduling model that considers the char-
acteristics of wind, solar, and TPs and demand
response at different time scales. This model
addresses the challenges of large-scale renewable
energy, mainly focusing on the high-demand pe-
riods for TPs.

This paper introduces Skill Optimization Al-
gorithm (SOA) [39], a novel metaheuristic algo-
rithm for optimization problems. SOA method
draws inspiration from the human endeavor to
acquire and enhance skills in problem-solving.
The stages of SOA are embodied in two fun-
damental phases: exploration, in which peo-
ple learn from experts, and exploitation, which
involves enhancing one’s skills through self-
motivated practice. The efficiency of SOA in
optimization applications is evaluated by test-
ing on a set of twenty-three standard benchmark
functions, including various unimodal, high-
dimensional and fixed-dimensional multimodal
types. The optimization results show SOA can
provide good performance and appropriate solu-
tions for optimization problems. This is a reason
that SOA is introduced in this study for touching
the solutions of two problems such as ELD and
NELD. In addition to SOA, PSO [40] and War
Strategy Optimization Algorithm (WSO) [41]
are applied to search solutions of two problems.

PSO is an effective population-based opti-
mization technique inspired by the natural be-
haviors of birds and fish. This approach offers
a systematic way to tackle optimization chal-
lenges by continuously refining candidate solu-
tions, known as particles. Each particle learns
from its own experiences while benefiting from
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the insights the entire swarm shares. By ad-
justing its velocity and position based on both
its personal best solution (pBest) and the global
best solution (gBest), PSO enhances the search
for optimal solutions. This method has proven
to be highly valuable and applicable across var-
ious fields of scientific research, including hy-
perparameter tuning, neural network training,
and data clustering [42]; gene selection, protein
structure prediction, and medical image segmen-
tation [43-45] and portfolio optimization, finan-
cial forecasting, and risk analysis [46]. WSO is
an innovative metaheuristic algorithm grounded
in military tactics and strategies. It perceives
optimization as a strategic conflict in which can-
didate solutions compete like armies, execut-
ing attack, defense, reinforcement, and retreat
maneuvers. WSO masterfully balances explo-
ration and exploitation by dynamically adjust-
ing its tactics based on performance. This capa-
bility not only prevents premature convergence
but also enables adaptation to complex, multi-
dimensional problem environments. The algo-
rithm is effectively utilized across various fields
to solve intricate optimization challenges by sim-
ulating strategic movements with precision. In
the biomedical field, it has been utilized to im-
prove treatment techniques for patients with
autism spectrum disorder [47]. In energy fore-
casting, WSO helps to provide an effective and
dependable energy supply [48], while in battery
storage systems, it improves system performance
and efficiency [49].

The key innovations and significant contribu-
tions of the study can be summarized as follows:

e The successful application of three novel
meta-heuristic algorithms SOA, WSO, and
PSO for optimizing power allocation of
these available power plants in both ELD
and NELD problems.

e A discussion and demonstration of the supe-
rior performance of SOA compared to WSO
and PSO within these contexts.

e An examination of the relevance of solar
power plants in two provinces of Vietnam
concerning the ELD.

2. Problem Formulation

2.1. The Objective

The difference between ELD and NELD is that
the ELD problem only focuses on allocating
power among TPs, whereas the NELD problem
concentrates on sharing power from TPs and
renewable power plants (ie, solar power plant
(SP)). However, two problems have the same ob-
jective: to minimize the system’s total operating
cost (TOC). In addition, the power generating
scheduling of these power plants is implemented
in one day. In the study, the objective can be
defined as the following equation:

24 N; 24 Ny

MinimizeTOC = Z Z Crpi+ Z Z Cspn
=1 i=1 I h=1

(1)

In Eq.1, Crp; and Cspyp, denote cost function
of ith TP and hth SP; N; and N, stand for
a number of TPs and SPs. These costs are
described in the following subsection.

Modelling TP cost

The Crp of thermal power plant is defini-
tively represented by a second-degree polyno-
mial equation and formulated by:

CTP7i = ai‘i‘biPTP,i‘f'CiP']%P,i; i=1,...,N; (2)

In some cases of increasing and decreasing load
demand, TPs must be adjusted for power gen-
eration by control of the physical characteristics
of steam boilers, leading the objective function
in Eq.2 to become a new one, as shown in Eq.3
below.

Crpi = a; +biPrp; + ¢iPip;
+ ’62‘ sin (dl(Prlrﬂn}lp?l — PTP,i))‘ ; 1= 1, ,Nl
(3)

where a;, b;, ¢;, ¢;, and d; denote the fuel burn-
ing factors for TP 1.

The fuel cost function of TP with different fuel
alternatives and VPs can be calculated mathe-
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matically using the following formula:

2
a;1 + b Pre i1 + cin Pip ;1

+ |eq sin (din (PR, — Pre.i))]

min . max

fuel 1,  Prp’y < Prear < Prghy

iz + b Prp iz + cioPhp io
+ |ei sin (dia (PR, — Prei2))|

min max
Crp,i = fuel 2, PTP,i2 < Prpag < PTP,i2

ik + biwPrpik + cinPip i
+ | ek sin (dlk(Pr[r{‘ﬁntk - PTP,ik))

fuel k,  Pip"y < Prea < PPE%,

)

(4)
where the fuel burning factors for type k' of
TP ¢ are specified by a;, bk, Cik, €irx and d;.

Modelling SP cost

The cost function of SP can be ignored be-
cause the plant does not consume fossil fuel.
However, most solar power plants belong to pri-
vate entities, so the cost function should be con-
sidered as specific contracts of selling electric-
ity [50]. The Cgp formulation of SP can be in-
vestigated by:

Cspn= [ Pspn (5)

In Eq.5, f denotes the price in ($3/MWh); Psp 5,
denotes the power output of SP h, which is cal-
culated by:

A2
Pspp——"2—, 0< Ay <R,
’ As + Rc
Psp(Ap) = Azd
PSP,thd, Ay > R,

; b=1,...,24 hours (6)
For calculating power from SP, the study
recommends the application of global solar
data of two SPs at two southern Vietnamese
provinces to determine irradiation. After that,
Eq. 6 will be used for computing power at each
hour in one day.

Constraints

This study establishes that generators and
systems must comply with equality and inequal-
ity constraints to address ELD issues effectively.
This approach promotes a clear framework for
optimal performance and system reliability.

Active power balance

The total real power output from all power
plants is designed to effectively meet the total
load demand (Ppp) while also accounting for
system power losses (Pross). This ensures a re-
liable and efficient energy supply as given in Eq.
7

24 N; Ny, 24
5 (z Pras+ 3 P) S (Pup + P
=1 1=1 h=1 =1

(7)

Generated power limitation

It is essential to strictly adhere to the min-
imum and maximum generation limits for the
power plant to operate effectively. This practice
promotes efficient and sustainable power gener-
ation while ensuring the power plant functions
within its designated power range, reducing the
risk of overload or underutilization.

Prps < Prpi < Prp; (8)
sph < Pren < P§p), (9)

3.  Skill Optimization

Algorithm

Implementing new solutions for SOA method in-
volves two important phases: the acquisition
phase and the self-improvement phase. These
phases are designed to enhance the balance be-
tween exploration and exploitation capabilities.
The mathematical models for each phase are de-
scribed below.

3.1. Expert’s acquisition phase

In the initial phase of the SOA algorithm, each
member of the population develops a skill under
the guidance of a community expert member.
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The quality of each member is defined by the
objective function value they achieve. The "ex-
perts set" consists of members with superior ob-
jective function values. A randomly chosen ex-
pert is assigned to train the member in question.
The expert member leads the population to var-
ious positions in the search space, thereby im-
proving the algorithm’s global search and explo-
ration capabilities. If a new position enhances
the objective function value, it is deemed ac-
ceptable for each member. The best candidate
solution becomes a permanent member of the ex-
perts set for all SOA members. Therefore, the
first phase of the update can be modelled ac-
cording to the mentioned concepts using Eq.10.

Ap = Apy + Ry x (Ap — Ry x Ayp) - (10)

In Eq. 10, the new and current positions of the
mth solution are A"¢“! and A,,; Ag is the best
solution among population; R; random number
within 0 and 1; Ry random number within 1 and
2.

3.2.  Self-improving phase

During the second phase of the SOA algorithm,
every member of the population is focused on
refining their skills through dedicated individual
practice and activity. This local search strategy
is aimed at maximizing the use of their existing
knowledge by elevating the value of their objec-
tive function, which is an indicator of their skill
level. Any newly calculated position is deemed
acceptable only if it results in an enhancement
of the objective function value. The concepts of
this phase of SOA updating are mathematically
modelled using Eq.11.

1—2a

A, + X Am, ifa<0.5
Ayrmnew'.) — Ami" + w(Am,ax _ Amin)
A, + Lm }n m otherwise

(11)

Where, a is a random number; I is the current
iteration; and A™ and AN are the lower and
upper boundaries of the m*" solution.
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4. Results and discussion

Two test systems have been designed to show-
case the effectiveness of the ELD problem-
solving algorithm based on SOA, WSO, and
PSO, in which System 2 is more complex than
System 1 due to the inclusion of more power
plants and additional constraints.

4.1. Discussion on System 1

In this section, ten thermal power plants are
the power system under investigation. The
data about the system is taken from [17, 18].
Enough power must be supplied by the system
to satisfy the load requirement of 2700 MW.
In order to determine the system’s ideal power
output, we have used SOA, WSO, and PSO
while taking into account various constraints like
power balancing, valve point effect, and several
fuel options. To fairly evaluate these methods,
some comparison criteria such as minimum cost
(Min.c), mean cost (Mean.c), maximum cost
(Max.c), and standard deviation (Sd) are rec-
ommended. These optimal costs are found by
three methods via different investigations of the
population size (PS), highest iterations (HI) and
number of trial runs based on previous studies.
As a result, PS of 50 and HI of 150 are selected
for SOA, WSO and PSO to run for searching
solutions of System 1.

Figure 1 shows the results of three methods
based on 100 independent runs. The three-color
lines in the figure — black for PSO, blue for WSO,
and red for SOA — define the 100-cost of the
three techniques. Basically, three lines fluctuate;
however, the red line has lesser fluctuation, the
black line has larger fluctuation, and the blue
line has medium correspondingly. In addition,
a lot of cost values from SOA are under those
from WSO and PSO. From 100 cost values by
running 100 times, we select the best run to show
the process of touching the best solution with
the best cost from three methods, as shown in
Figure 2. As seen from such a figure, the solution
searching process of SOA is considered the best
because from about 45 to the final iterations, the
red line is always below the blue line of WSO
and the black one of PSO. For further evidence,
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from about 100 to 150 iterations, we zoom out
the Figure 2 to display the positions of three
methods. As a result, the red line is under the
blue and black ones.

670

o]
D
@)

o))
w
@)

Fuel cost ($)
N
5

N
Lo
o

620

0 20

40 Runs®0 80 100

Fig. 1: The 100 results of SOA, WSO and PSO methods
with 100 runs for System 1.

The Min.c, Mean.c, Max.c and SD of SOA,
WSO and PSO from the best run are collected
and given in Figure 3. As seen from the blue
bars, we observe that the Min.c of SOA is
$623.96, which is less than that of WSO and
PSO by $0.16 and $1.31, respectively. From the
orange and gray bars, the Mean.c and Max.c of
SOA are also lower than those from WSO and
PSO. In terms of SD, SOA has a value of 2.12,
the lowest among the three methods. From the
comparison of the four terms, we can conclude
that SOA is more effective than WSO and PSO.

The costs of SOA are compared with previous
methods shown in Table 1. In the table, Min.c
of these methods is reported in column 1, and it
is a key criterion for proving the performance of
the compared methods. If the method’s Min.c
is smaller than others, the method is considered
the best. Otherwise, the method is the worst.
The Min.c is divided into two groups: Group 1
is under $624, and another is over $624. For
easy viewing, Min.c in Table 1 is presented un-
der different bars displayed in Figure 4. SOA is
allocated in group 1, which is marked in red.

In a comparison of Mean.c and Max.c,
IODPSO-G [33] and IODPSO-L [33] are the
best, while FA [19] is the worst. Regarding SD,
SOA is 2.12, and others are from 0.01 to 1.1593.
Considering PS and HI, SOA has values of 50
and 150, while others have different values.

I ——S0A — = ‘WSO =PSSO

Iteration

Fig. 2: The best run among 100 runs from three meth-
ods for System 1.
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Fig. 3: The result comparison of three methods for Sys-
tem 1.
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Fig. 4: The Min.c of three methods for System 1.

4.2. Discussion on System 2

The applied methods (PSO, WSO, and SOA)
will be carefully examined in this part to deter-
mine how effective they are at finding the opti-
mum solution and how reliable their search pro-
cess is on System 2. System 2 contains ten ther-
mal power plants and two solar power plants.
The data of ten TPs is from [28,29], and the
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data of two SPs is accessed from a global solar
map [51].

SP1 is located at Vu Bon com-
mune with geographical coordinates of
(12.660647°,108.420719°) and SP2 is located at
Yang Mao commune with geographical coordi-
nates of (12.407423°,108.508808°). Moreover,
SP1 and SP2 have a rated power of 50 MVA
and 45MVA, respectively. By accessing the
geographical coordinates of SP1 and SP2, the
output power over one day can be obtained
and reported in Table 2. The mission of three
methods is to recommend the optimal output
power of these plants while considering the
operation cost of System 2 at a lower level,
satisfying all constraints and meeting loads
over one day. Namely, load demand over one
day with 24 different levels is also presented in
Table 2.

For implementing three methods to System
2, the population size and maximum iterations
are set to 50 and 150, respectively. With 100
runs, Min.c, Mean.c, and Max.c obtained by
three methods every 24 hours are collected and
shown in Figures 5, 6, and 7. Figure 5 shows the
Min.c while Figures 6 and 7 show the Mean.c
and Max.c. The shape of the three figures is
similar; however, the height bar of SOA, WSO,
and PSO at the same load level is different. To
prove this, the cost of PSO at the 12th hour of
three figures will be boxed and marked in red.

mSOA = WSO

=PSO

1000
800
600

400

Cost (3)

200
0

Wl

12345474
89 1011121314151617181920"12’"‘3”4
hour -

Fig. 5: The hourly Min.c of three methods over 24 hours
for System 2.

The total cost for one day of SOA, WSO and
PSO is presented in Figure 8. In the figure,
Min.c, Mean.c and Max.c of SOA are $18,140.37,
$18,177.62, and $18,351.44, respectively. These
are lower than those from WSO and PSO. For
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Fig. 6: The hourly Mean.c of three methods over 24
hours for System 2.
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Fig. 7: The hourly Max.c of three methods over 24
hours for System 2.
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Min.c Mean.c Max.c
SBOA 18140.37 18177.62 18351.44
WSO 18142.56 18213.56 18527.05
PSO 18202.84 18399.00 18959.89
Fig. 8: The total cost for one day of SOA, WSO and

PSO.

one day, a cost saving of SOA over WSO and
PSO is $2.19 and $62.47 for Min.c, $35.93 and
$221.46 for Mean.c, and $175.62 and $608.46 for
Max.c. If we consider cost for one year,

the cost saving of SOA over WSO and PSO is
significant. Optimal solutions suggested by SOA
are reported in Table 3.
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Tab. 1: Result comparison of SOA and other methods for System 1

Methods Min.c ($) Mean.c () Max.c($§) SD PS HI
GA [17] 624.5050 624.7419 624.8169 0.1005 NA 100
TSA [17] 624.3078 624.8285 635.0623 1.1593 NA 100
DSPSO-TSA [17] 623.8375 623.8625 623.9001 0.0106 10 100
PSO [18] 624.3506 625.8198 629.1037 NA NA 200
APSO [1§] 624.0145 627.3049 624.8185 NA 20 200
FA [19] 624.5306 675.5344 679.4260 NA 10 100
IFA [19] 623.8768 625.2704 629.2765 NA 10 100
DE [20] 623.8090 NA NA NA 10 40

GSO [21] 623.8465 623.9829 624.2570 NA NA 300
QGSO [21] 623.8349 623.8276 623.8501 NA 400 300
RO [22] 624.0922 625.2564 627.1189 NA 100 2000
ORCSA [27] 623.8608 623.8963 623.9353 NA NA 1000
MPSO [28] 623.8090 NA NA NA NA NA
ISSO [29] 623.8286 623.8490 624.1641 NA 40 50

TALO [30] 623.8347 623.9930 626.4434 0.4232 40 200
Jaya [31] 624.6819 626.1531 637.5108 1.6584 30 1000
Jaya-M [31] 624.4959 625.9222 630.7652 0.8578 30 1000
Jaya-SM [31] 624.0850 624.2788 624.9105 0.1139 30 1000
Jaya-SML [31] 623.9738 624.0468 624.1300 0.0327 30 1000
G-SCNHGWO [32] 623.9491 623.9914 624.7415 0.0418 30 NA
IODPSO-G [33] 623.8300 623.8400 623.8300 0.0100 40 NA
IODPSO-L [33] 623.8300 623.8300 623.8300 0.0000 40 NA
PSO-ICA [34] 623.8257 NA NA NA  NA 300
SOA 623.9600 625.5500 635.4100 2.1200 50 150

Tab. 2: The output power of SP1 and SP2 for System 2

Output Power (MW)
1 2 3 4 5 6 7 8

SP1 (MW) 0.00 0.00 0.00 0.00 0.00 0.17 4.62 13.17
SP2 (MW) 0.00 0.00 0.00 0.00 000 0.16 429 12.61
PLD 2700 2660 2650 2510 2510 2590 2710 2926

Output Power (MW)
9 10 11 12 13 14 15 16

SP1 (MW) 21.80 28.63 32.63 34.01 33.46 30.30 23.85 15.49
SP2 (MW) 20.47 2596 29.19 30.17 29.63 2540 19.14 12.19
PLD 3012 3015 3042 3049 3053 3031 3023 2993

Output Power (MW)
17 18 19 20 21 22 23 24

SP1 (MW) 738 146 0.00 0.00 0.00 0.00 0.00 0.00
SP2 (MW) 496 092 0.00 0.00 000 0.00 0.00 0.00
PLD 2902 2902 2940 2930 2920 2900 2700 2600

Hour

Hour

Hour
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Tab. 3: Solutions reached by SOA of System 2

Hour 1 2 3 4 5 6 7 8
TP1 (MW) 219.68 215.99 213.53 207.62 208.83 217.12 219.12 237.17
TP2 (MW) 210.91 208.93 209.42 206.69 205.96 211.41 212.65 219.83
TP3 (MW) 283.16 277.58 273.59 269.09 265.62 275.65 282.41 310.39
TP4 (MW) 239.28 239.82 238.34 236.19 235.79 236.46 239.69 245.46
TP5 (MW) 279.67 274.36 277.05 260.61 262.60 277.05 280.06 310.74
TP6 (MW) 238.86 238.59 237.78 236.03 235.36 236.84 239.80 244.90
TP7 (MW) 288.63 283.38 284.00 267.06 271.79 285.83 290.19 344.07
TP8 (MW) 239.55 240.63 238.48 235.25 237.00 239.28 239.96 245.06
TP9 (MW) 424.42 415.25 408.19 330.95 328.65 340.99 423.47 439.97
TP10 (MW) 275.84 265.47 269.61 260.51 258.39 269.04 273.75 302.61
SP1 (MW) 0.00 0.00 0.00 0.00 0.00 0.17  4.62 13.17
SP2 (MW) 0.00 0.00 0.00 0.00 0.00 0.16 4.29 12.61
Hour 9 10 11 12 13 14 15 16
TP1 (MW) 22253 222.87 223.46 228.25 227.05 225.90 223.02 224.28
TP2 (MW) 212.66 213.65 212.40 213.64 214.11 214.63 214.38 212.14
TP3 (MW) 499.57 499.80 499.98 499.76 499.71 499.53 499.73 499.96
TP4 (MW) 241.03 239.15 241.70 242.64 241.96 241.43 241.97 240.49
TP5 (MW) 287.18 291.96 290.02 292.04 293.47 286.53 290.77 283.87
TP6 (MW) 241.68 241.81 241.14 241.81 242.21 241.14 241.41 241.01
TP7 (MW) 301.34 295.05 304.04 302.35 300.43 301.01 300.13 299.57
TP8 (MW) 240.90 239.28 242.11 242.91 241.43 240.09 241.84 241.43
TP9 (MW) 436.43 437.73 439.91 440.00 439.96 439.79 439.50 439.93
TP10 (MW) 286.42 279.11 285.41 281.41 289.56 285.26 287.25 282.62
SP1 (MW) 21.80 28.63 32.63 34.01 33.46 30.30 23.85 15.49
SP2 (MW) 20.47 2596 29.19 30.17 29.63 25.40 19.14 12.19
Hour 17 18 19 20 21 22 23 24
TP1 (MW) 236.23 236.56 213.92 217.81 219.35 236.61 216.05 218.67
TP2 (MW) 218.84 221.29 213.11 211.41 211.16 220.55 210.19 208.69
TP3 (MW) 301.70 304.08 499.71 498.00 497.76 304.76 284.79 279.74
TP4 (MW) 245.33 243.58 241.57 238.88 239.42 245.33 238.88 238.61
TP5 (MW) 310.57 310.82 279.01 282.32 283.13 315.84 277.09 277.87
TP6 (MW) 244.50 246.52 239.80 239.93 239.93 243.96 239.12 237.64
TP7 (MW) 341.38 344.19 290.14 293.65 293.20 341.09 291.15 282.93
TP8 (MW) 243.31 244.79 241.97 239.41 240.23 245.06 240.09 238.21
TP9 (MW) 439.43 439.88 438.73 429.67 424.91 439.95 423.75 344.32
TP10 (MW) 308.36 307.91 282.04 278.92 270.91 306.86 278.89 273.32
SP1 (MW) 7.38 1.46 0.00 0.00 0.00 0.00 0.00 0.00
SP2 (MW) 4.96 0.92 0.00 0.00 0.00 0.00 0.00 0.00
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5. Conclusions

This paper proposes a Skill Optimization Algo-
rithm (SOA) to address non-convex economic
dispatch problems involving solar power plants.
The performance of SOA is compared with that
of the Water Strategy Optimization (WSO) and
Particle Swarm Optimization (PSO) algorithms
by analyzing the costs associated with System 1,
which consists of ten thermal power plants. The
analysis demonstrates that SOA outperforms
the two other methods. Additionally, SOA is
benchmarked against other methods found in
the literature. Three methodologies are also
tested on System 2, which includes varying load
levels and constraints. The results indicate
that SOA remains more effective than WSO
and PSO, with significant cost savings over one
day—specifically, SOA saves $2.19 compared to
WSO and $62.47 compared to PSO. To enhance
SOA performance moving forward, refining its
mechanisms for integrating new solutions to the
method is important. Additionally, this study
will investigate the uncertainties associated with
renewable energy sources, highlighting how en-
ergy instability influences the power system’s
technical and economic dimensions.
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