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Abstract. This paper proposes a new and ro-
bust numerical framework for the buckling anal-
ysis of multilayer composite plates by integrating
the Chebyshev Moving Kriging (CMK) mesh-
free method with a Third-Order Chebyshev Shear
Deformation Theory (TCSDT). The novelty of
this study lies in the combined use of Cheby-
shev polynomials for both interpolation and shear
deformation modeling. The TCSDT inherently
satisfies the zero-traction boundary condition,
thereby eliminating the need for shear correction
factors, while the orthogonality and fast con-
vergence of Chebyshev polynomials enhance nu-
merical stability and accuracy compared to tra-
ditional polynomial formulations. The govern-
g equations are systematically derived using
the principle of wvirtual work, and the critical
buckling loads are obtained through the CMK
scheme. Benchmark studies demonstrate that
the proposed method mot only reproduces re-
sults from three-dimensional elasticity theory
and established higher-order models with excel-
lent accuracy but also offers improved robust-
ness and efficiency. The findings confirm that
the CMK-TCSDT framework provides a reli-
able and efficient computational tool for analyz-
ing the buckling behavior of laminated composite
structures.
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1. Introduction

Multilayer composite plates have a crucial role
in numerous engineering applications and are
widely utilized across industries like shipbuild-
ing, aerospace, and civil engineering [1]. Ow-
ing to their superior mechanical properties and
structural efficiency, laminated composite plates
have become indispensable in modern engineer-
ing. Their high strength to weight ratios and
the stiffness to weight ratios, combined with su-
perior wear resistance and reduced weight char-
acteristics, make them ideal for applications in
aerospace, marine, automotive, and civil engi-
neering structures. In addition, their inherent
design flexibility-enabled by tailoring stacking
sequences, fiber orientations, and layer thick-
nesses allows engineers to optimize structural
performance for specific loading and environ-
mental conditions.

Although three-dimensional elasticity models
[2, 3] offer detailed predictions, their high com-
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putational cost limits practical application to
complex structures. To overcome this limita-
tion, scientists have developed Equivalent Sin-
gle Layer (ESL) theories [4, 5], which achieve
a practical balance between accuracy and ef-
fectiveness. With their simple implementation
and reliable performance valid for both thin and
thick plates, ESL theories have become a pre-
ferred tool for analyzing laminated composites.
Within the ESL framework, three well-known
plate theories have been formulated. Classi-
cal Plate Theory (CPT), formulated using the
Love—Kirchhoff hypotheses, is applicable to thin
plates but neglects transverse shear effects. In
contrast to CPT [6], the First-Order Shear De-
formation Theory (FSDT) accounts for shear de-
formation and thus improves accuracy for mod-
erately thick plates. However, because FSDT as-
sumes a constant transverse shear strain across
the thickness, it becomes inaccurate near the
surfaces and requires shear correction factors
(SCFs) [7-10], which depend on geometry and
material properties. To address these limita-
tions, Higher-Order Shear Deformation Theo-
ries (HSDTs) have been acquired. HSDTs elim-
inate the need for SCFs and provide more ac-
curate predictions of displacements and inter-
laminar stresses. Numerous HSDT models have
been proposed using different functions to rep-
resent transverse shear strain and stress distri-
butions through the thickness of plate. Ambart-
sumian [11] first introduced a polynomial-based
HSDT for anisotropic plates, later extended by
Reddy [4], Levinson [12], and Reissner [13] us-
ing higher-order polynomials for laminated com-
posites. Other formulations, including trigono-
metric, exponential, and hyperbolic functions,
have been presented by Stein [14], Touratier [15],
Soldatos [16], Grover [17] and Arya [18], and
others [7,19-26] for more complex structures. In
this study, Chebyshev polynomials are employed
as the shear function due to their orthogonality,
recursive nature, and superior numerical stabil-
ity. These properties enhance convergence and
reduce ill-conditioning, offering a reliable alter-
native to conventional polynomial forms [27,28].

Solving three-dimensional elasticity problems
remains challenging due to geometric complex-
ity and computational intensity. This has mo-
tivated the development of efficient numerical
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methods such as the finite element method
(FEM), isogeometric analysis (IGA), and mesh-
free methods. Among these, meshfree methods
are particularly effective, allowing flexible mod-
eling with unstructured node distributions and
direct calculation of displacements and stress in
the physical domain. Unlike FEM and IGA,
which are formulated in natural (or paramet-
ric) coordinates, meshfree methods operate di-
rectly using nodal data defined in global coor-
dinates. Previous studies have commonly uti-
lized the Moving Kriging (MK) shape function
for solution approximation. For example, Lam
et al. [29] introduced the weak-form MK method
for 2D structural analysis. Thai et al. [30, 31]
extended it to study static, dynamic, and buck-
ling responses of FG plates using HSDT and re-
fined plate theories, as well as size-dependent
models for FG and carbon nanotube-reinforced
nanoplates [32,33]. Nguyen et al. [34] applied an
improved MK method to investigate nonlinear
static bending and dynamic responses of FGM
plates. Additional developments can be found
in [35-37].

This study proposes an innovative MK mesh-
free technique that integrates Chebyshev inter-
polation with the conventional MK approach.
While CMK formulations, like other meshfree
approaches, are effective for solving complex
problems, they are often computationally de-
manding. By combining the advantages of ra-
dial basis functions (RBFs) and Chebyshev poly-
nomials, the present method substantially im-
proves both accuracy and efficiency. Chebyshev
polynomials, known for their fast convergence
and numerical stability, outperform traditional
polynomials in terms of computational robust-
ness. Furthermore, a Chebyshev Shear Defor-
mation Theory (CSDT) is introduced to cap-
ture shear stress variation along the thickness
while automatically satisfying the zero-shear-
stress condition at the plate surfaces. To the
best of our knowledge, this is the first study to
integrate the Chebyshev Moving Kriging (CMK)
approach with third-order Chebyshev Shear De-
formation Theory (TCSDT) for buckling analy-
sis of multilayer composite plates. Benchmark
comparisons confirm the accuracy and effective-
ness of the proposed methodology.

In comparison with other referenced models,
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the proposed CMK-TCSDT framework exhibits
several advantages. First, the TCSDT in-
herently satisfies the zero-shear-stress bound-
ary condition at the plate surfaces, eliminat-
ing the need for shear correction factors that
are required in the First-Order Shear Defor-
mation Theory (FSDT). Second, the use of
Chebyshev polynomials improves numerical sta-
bility and convergence compared to traditional
polynomial-based Higher-Order Shear Deforma-
tion Theories (HSDTs). Third, the CMK mesh-
free interpolation provides flexibility in modeling
complex geometries, such as plates with cutouts,
without the need for a predefined mesh. On the
other hand, a limitation of the present method is
its higher computational cost compared to clas-
sical FEM-based models, particularly for very
large-scale problems. Nevertheless, this trade-
off is justified by the significant improvements
in accuracy, robustness, and versatility offered
by the proposed approach.

2. Kinematic modeling of

plate behavior

The HSDT provides a more accurate represen-
tation of the displacement field at any point on
the plate, which can be expressed as [38]

where
U U
a=<vy;ut=<vy;
w w
(2)
, (o o

"/}y ; u? = d)y
0 0

where u, v, and w imply the displacements along
the z, y, and z directions, respectively; while ¢,
and ¢, represent two rotations of the y — z plane
and = — z plane, respectively; ¥, = w , = ow .

Bz
Py = Wy = 9w The parameter h is the plate
thickness.

oy *
The function f(z) characterizes the variation
of shear stress along the plate’s thickness direc-

tion. Within the HSDT framework, different
plate theories emerge by selecting specific forms
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of f(z), such as polynomial [39,40], trigonomet-
ric [15,19,41], exponential [21,42], and hyper-
bolic [22,43] functions, as summarized in Table
1. In this study, we present an innovative use of
the Chebyshev polynomial function. This study
introduces the function , denoting p the polyno-
mial order. For illustrative purposes, the third-
order case (p = 3) is adopted. The proposed
formulation inherently satisfies the zero trans-
verse shear stress boundary condition at both
the top and bottom plate surfaces, as illustrated
in Table 1 and Figure 1. The bending and shear

0z A

= . —&— Chatrpabars (psd]
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Fig. 1: Characteristics and derivation of Chebyshev
Polynomials (p = 3).

deformation terms can be written as follows
T
e={eax &y 7wy} =c'+28"+ f(2)€%,

Y= {’sz 'Vyz}T = 581 + f/(z)552
(3)

in which
L U g ) w.L,‘L
€ = Uy , € = Vyy )
Uy + Vo Yoy + Yy a
Gu 2
3 o s1 _ JWg — Vg (4)
€ = by.y I T Uy [
d)z,y + ¢y,m Y Y

e-{hp o=

The constitutive stress—strain relation for the
kth layer of an orthotropic laminate in its local
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Tab. 1: Mathematical formulations characterizing the variation of shear stress in the transverse direction through

the plate thickness.

Kinds f(2) Theories

Polynomial functions

Reddy [39] fz)=2- 4z2/3h TSDT (third order)
Nguyen-Xuan et al. [40]  f(2) = Z& — 22 + 2;4 HSDT (fifth order)

Present flz)= 005(3 x cos™1(z/h)) TCSDT (Third-order Chebyshev)

Trigonometric functions

Arya et al. [41] f(z) =sin (32) TrSDT (Trigonometric shear deformation theory)
Touratier [15] f(z = b gin (22) TrSDT
Thai et al. [19] f(2) =htan"! (22) — 2 TrSDT

Exponential functions

flz)=2x 672(%)

Karama et al. [21]
Mantari et al. [42]

F(2) = = x 2.85¢~2(%)" 1 0.0282

ESDT (Exponential shear deformation theory)
ESDT

Hyperbolic functions

Soldatos [22] f(2) = hsinh (ﬂ) — zcosh (3) HySDT (Hyperbolic shear deformation theory)
Thai et al. [43] f(z) =sinh™" (sin (%2)) HySDT
coordinate system is given by: where CA’i(j@ refers to the elastic parameters
® ro o 0 0 0 1® ) mapped into the global coordinate system. A
Tz CH 012 o o0 0 E“ detailed explanation of these transformed coef-
(;f;’ g ! 52 Cos 0 0 ’YZZZ ficients can be found in Ref. [1].
Tuz 0 0 0 Cs 0 Vaz For linear buckling analysis, the weak formu-
Tyz 0 0 0 0 Cu Vy= lation of a plate under in-plane loading is given
k by
where Ci(j) is formulated by
/ 0T Qb + / 7T Q*HAQ + h / VT 5wNoVwdQ = 0
E(k) (k) E(k) Q ) Q
o) = ok - M2 7 (8)
1- V12) gf) 1- uf;)ué’f) where
B k k (6) el sl
C(k) 2 , C( ) _ G( ')’ _ 9 _ e
1—pByfe e 12 TN (07T es2 (0
€
k k k
Cés) = G§3)7 C44 = G( ) Al B E?
AS BS
b s
Here E%k) and Eék) are the Young’s moduli along Q' = BZ D;: Fl; , Q= [BS DS]
the local 1 and 2 axes, respectively; G§’§> , Ggg) , E F H )
G(llg) correspond to the shear modoli in the 1-2,
* ®)

2-3, and 1-3 planes, respectively; and v5", vy,
indicate the Poisson’s ratios relating strains in
the 1 and 2 directions, respectively.

For multilayer composite plates, the
stress—strain relations of each kth layer are
required to undergo transformation from the
local coordinate system to the global coordinate
system. This transformation is expressed as

ot oy el o o0 o el
JNEE % RIAIE
i (O I e A I I
il SO S I 4
Tyz 0 0 0 Cis’ Ciy VYyz

(7)

(© 2025 Journal of Advanced Engineering and Computation (JAEC)

b b b b b b

(AZ]’B’L]7D’L]7E2]7F1]3H )
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(1, 2,22, f(2), zf(z)) Cikjdz

where (7,5 = 1,2,6)

h/2 )
(@W”mﬂ/WOW@j%mﬁw
where (i, = 4,5)
T N, N,
T _ |90 9 . _ x xy
V= [81 ay} ) NO - |:ny Ny:|

where €2 denotes the area of the plate’s mid-
surface.
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3. Meshfree interpolation
function using
Chebyshev moving
Kriging approach

To construct the Moving Kriging (MK) inter-
polation, the neutral surface of the plate (€ is
discretized into a number of nodal points xj,
where I = 1,2,..., N and N denotes the entire
set of nodes. Based on this discretization, the
displacement field over the plate can be approx-
imated by

N
u’(x) = Z I7x7Ni(x)ar (10)
I=1
in  which  the degrees of freedom

(DOFs) of node I are given by q; =

A
{ur v wi Gor Gy Vur Vyr} and
MK interpolation shape function is expressed as

Ni(x) = p (x)A +17 (x)B

S 004+ S m)B Y
j=1 k=1

Here, n indicates the number of nodes within
the considered domain, and m is the total of
the polynomial terms. The following terms are
defined as:

p(x) = [p1(x) p2(x) pm(x)] "
r(x) = [R(x1,x) R(x2,x) R(xp,%)]
A=(PTR'P)', B=R (I-PA)

(12)
where I is the identity matrix of n x n and

T

p1(x1) Pm(X1)
PeO=| ¢ .|
p1(%n) pm(Xn) (13)
R(x1,x1) R(x1,X,)
RG)=| z
R(xp,x1) R(xp,X%p)
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The components of p(x) and R(x;,x;) are fur-
ther described by

1z y 22 2y 92 i
p(x) = ,

m=6

R(xi,%;) = exp {— (21, —xj)Q}

with 7 is the correlation parameter (n = 1) [44],
and d. is represents the average nodal spacing.

In this study, a new interpolation method is
proposed by combining radial basis functions
(RBFs) with Chebyshev polynomials. By substi-
tuting the conventional polynomial terms with
Chebyshev polynomials, the resulting Cheby-
shev Moving Kriging (CMK) interpolation sig-
nificantly enhances the accuracy of displacement
field approximations. The formulation begins
with the one-dimensional Chebyshev polynomial
defined as

Cp(z) = cos (p x cos™'(z)), p=0,1,2,...
(15)
where p denotes the polynomial degree.
Utilizing the orthogonality condition, the tradi-
tional polynomial terms in Eq. (13) are replaced
by two-dimensional Chebyshev polynomials,
expressed as

Co (1) Co (y1) Cyp (21) Cq (Y1)
P (x) = : :

Co (2n) Co ()~ Cp(n) Cy ()

nxm
(16)
where g denotes the Chebyshev polynomial’s or-
der in the y-direction, and m is the total sum of
the Chebyshev polynomial’s terms, as expressed
by m=(p+1)x(g+1).
In this work, only the first derivative of the
CMK is required. Therefore, a simplified form
based on the second-order Chebyshev polyno-
mial is adopted. This choice provides a bal-
ance between computational efficiency and ac-
curacy. Accordingly, m is assigned the value of

9(m=(24+1)x(2+1)).

Based on the CMK interpolation shape func-
tions, the relationship between in-plane and
shear strains and the displacement field is ob-
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tained by substituting Eq. (10) into Eq. (4) as

N N
=Y Bla, y=) Bjar  (17)
I=1 I=1

The corresponding displacement derivatives are

given by
w N
R g9
{w7y} = ;B](H (18)

where

Nrz 0 0000 0
Bi=1|0 Niy 00 0 0 O],

Nry Nrpe 0 0 0 0 0

00000 Nryp O
Bf=-|0 000 0 0 Ny |,

00000 N;, Np,

00 0 Nryp O 0 0
Bi=|[0 0 0 0 N, 0 0|,

000 Ny Niyp 00
lez OONI@OO—NIO
I 00 Njy 000 —Nr |’
g2_|[0 00 N 0 00
d 0000 Ny O O]
ge_ |0 0 Ny 000 0
I 00 Njy 000 O

(19)

Now, we can express the ending equations for
the buckling investigation of laminated compos-

ite plates as follows:
(K-X-K,)g=0 (20)

where K, K, and represent the global stiffness
matrix, the geometric stiffness matrix, and the
critical buckling value, respectively and are for-
mulated as

K= [ (B") QB0 B%)"Q*B*d0,
| @) @Bans [ (597

q=ge" K, = h/ (BY) "NBYdQ
Q
(21)

4. Results

In this section, a series of benchmark prob-
lems are conducted to evaluate the efficiency
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and accuracy of the proposed method for lami-
nated composite plates. The test cases encom-
pass both square plates and plates with complex
cutouts, incorporating diverse fiber orientation
angles and a wide range of span-to-thickness ra-
tios (a/h). Each laminate is composed of equal
thickness and identical linear-elastic composite
material. For numerical integration, three-node
triangular elements are employed in conjunction
with a (3 x 3) Gaussian quadrature scheme.

4.1. Square plates

1) Square plate subjected to uniaxial
compressive loading

In the first case, a four-layer (0°/90°/90°/0°)
laminated square plate with simply supported
edges under axial compressive loading is exam-
ined. The critical load factor for the plate is
expressed as A = \..a’/(Exh®) where )., , a,
FE5, and h correspond to the buckling load at
instability, the structural length, the material’s
elastic modulus along the second axis, and the
plate’s thickness, respectively. The parameters
of the material are Fy = 40E5, G1o = G2 =
0.6F5, Goz = 0.5F5, 1o = 0.25. The plate is
modeled by 588 nodes, as shown in Figure 2.
Figure 3 illustrates the geometric model of lam-
inated composite plates subjected to both uni-
axial and biaxial compression. The influence of
different a/h and E;/FEs ratios is analyzed. A
constant length-to-thickness ratio of a/h = 10
is considered, while the elastic modulus ratio
E1/FE5 is varied. Table 2 compares the present
results with several reference solutions, includ-
ing the three-dimensional elasticity solution [45],
the Radial Point Interpolation Method (RPIM)
with HSDT [46], Isogeometric Analysis (IGA)
incorporating trigonometric shear deformation
theories (TrSDTs) [41], FEM based on HSDT
[47], IGA based on FSDT [48], and a meshfree
approach employing Naturally Stabilized Nodal
Integration (NSNI) using HSDT [44]. The nu-
merical results exhibit excellent agreement with
these established methods, validating its accu-
racy. As shown in Table 2, the non-dimensional
critical buckling load consistently increases with
higher values of the modulus ratio E;/FEs. This
trend reflects the enhanced stiffness in the fiber
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direction, which improves structural stability.
The results are consistent with the expected
mechanical behavior of laminated composites,
where increasing anisotropy improves resistance
to buckling under axial loading.

The following analysis explores how varia-
tions in the span-to-thickness ratio (a/h) influ-
ence the buckling performance of simply sup-
ported square plates with two and four lami-
nae. Table 3 presents the normalized buckling
load factors for various a/h values. The results
show excellent agreement with those obtained
from established methods, including FEM us-
ing FEM-FSDT [49], FEM-HSDT [47], IGA-
TrSDTs [41], NSNI-HSDT [44], IGA-FSDT [48],
and the MISQ20 quadrilateral element [50]. As
expected, the normalized buckling load factor
increases with larger a/h, confirming the robust-
ness and accuracy of the present approach.

a2

(a) Geometry  (b) Node distribution (580 nodes)

Fig. 2: Geometry and node distribution of square plate.

N,
N - T AREEEEERS
- o Nx - -
i I ON. : N
= - L [
N,
Fig. 3: Configuration of multilayer composite plates

subjected to uniaxial and biaxial loading con-
ditions.

2) Square plate subjected to biaxial
compressive loading

Next, a simply supported three-layer
(0°/90°/0°) laminated square plate subjected
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Tab. 2: The effect of E1/E2 ratios on the normalized
critical buckling load for a simply supported
four-layer (09/90°/90°/0°) square plate with

a/h =10.
; E\ /By

Methods 3 0 20 30 10
RPIM-HSDT [46] 5.401 9.985 15374  19.537  23.154
IGA-TrSDTs [41]  5.3846 9.9120 15.2324 19.5654 23.1858
IGA-FSDT [48] 5.3884 9.9303 15.2841 19.6558 23.3152
FEM-HSDT [47] 5.114  9.774 15298  19.957  23.340
Elasticity [45] 5.294 9.762 15.019 19.304 22.881
NSNI-HSDT [44] 5.4040 9.9628 15.3226 19.6901 23.3405
Present 5.3855 9.9318 15.2814 19.6436  23.2908

Tab. 3: The effect of a/h ratios on the normalized
critical buckling load for a simply supported
four-layer (0°/90°/90°/0°) square plate with

E1/Es = 40.
ers : a/h

Number players  Methods 10 50 0 100

(09/90°) MISQ20 [50] 11.169 12,520 12967  13.033
FEM-FSDT [49] 11.349 12510  12.879  12.934
FEM-FSDT [47] 11.353 12,515  12.884  12.939
FEM-HSDT [47] 11.563 12,577  12.895  12.942
IGA-FSDT [48] 11.097 124301 12.8724 12.9415
Present 11.5101 12.5587 12.8911 12.9431

(0°/90°/90°/0%)  MISQ20 [50] 23.236  31.747  35.561  36.190
FEM-FSDT [49]  23.409  31.625 35.254  35.851
FEM-FSDT [47] 23471  31.707  35.356  35.955
FEM-HSDT [47] 23.349  31.637  35.419  35.971
IGA-TrSDTs [41]  23.1858 31.6313  35.3458  35.9529
NSNI-HSDT [44] 23.3405 31.7333 35.4808 36.1246
IGA-FSDT 48] 23.1328 31.5511 35.3288  35.9566
Present 23.2908 31.6365 35.3407 35.9571

to biaxial compressive loading is considered.
A range of span-to-thickness ratios and elastic
modulus ratios is investigated to assess their in-
fluence on the critical buckling factor. Tables 4
and 5 summarize the non-dimensional buckling
loads for different cases. A comparison is made
between the present results and established
reference data which is reported by Fares and
Zenkour [51], Khdeir and Librescu [52], Liu et
al. [46], and Thai et al. [48] and Thai et al. [44]
using NSNI. The comparisons show excellent
agreement across all examined cases, further
confirming the accuracy and reliability of the
proposed methodology.

Tab. 4: The biaxial buckling behavior of a simply sup-
ported three-layer (0°/90°/0°) square plate for
multiple E/E> ratios with a/h = 10.

‘ E\/Es
Methods 10 %0 30 10
FEM-FSDT [51]  4.963 7588 8575  10.202
FEM-HSDT [52] 4.963 7516  9.056  10.259
IGA-FSDT [48]  4.9130 74408 87550  9.8795
NSNLHSDT [44] 4.9278 7.45960 8.81694 8.81694
Present 4.9128  7.4401 8.7935 9.9291
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Tab. 5: The biaxial buckling behavior of a simply sup-
ported three-layer (0°/90°/0°) square plate for
multiple a/h ratios with E1/E2 = 40.

a/h

Methods 2/ 5 10 15 20
RPINCISDT [46] 1457 5510 10251 12230  13.164
RPIM-FSDT [46] 1419 5484 10189 10189  13.132
FEM-HSDT [52] 1465 5526 10.250 12226  13.185
IGA-FSDT [48] 14316 53236 0.8795 119978  13.0239
NSNLHSDT [46] 14540 5.3630 9.93146 12.08169 13.1309
Present 14523 54185 9.9291 12,0219  13.0377

4.2. Square plates designed

with complex cutout
geometries

To further verify the accuracy of the proposed
approach, a simply supported three-layer square
plate containing a central cutout is analyzed un-
der uniaxial compressive loading. The material
employed for the analysis is 1 = 2.45F5, G12 =
0.48E27 G23 = 02E2 and V19 = 0.23. The defini-
tion of the buckling load element is given by A =
)\cr/(ﬂ'zDo) in which DQ = E1h3/12(1 — 1/12V21>

The geometry and nodal distribution are il-
lustrated in Figure 4. Various angle-ply lami-
nate configurations and side-to-thickness ratios
are considered. For validation, the numerical
outcomes are compared with those obtained by
Yin et al. [53] using IGA based on CLP for thin
plates, and with the NSNI-HSDT method [44].
In Table 6, the normalized buckling responses of
a simply supported three-layer square plate with
an intricate cutout are provided for both uni-
axial and biaxial compression. Excellent agree-
ment is observed across all examined side to
thickness ratios and ply orientations. Figure
5 depicts the buckling mode shapes of a sim-
ply support four-layer (0°/90°/90°/0°) square
plate with a/h = 10, E1/E> = 40. The pre-
dicted mode shapes are consistent with physical
expectations, further validating the effectiveness
of the proposed method.

5. Conclusion

This study presented a novel Chebyshev Moving
Kriging (CMK) meshfree method combined with
the Third-Order Chebyshev Shear Deformation
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(a) Geometry (b) Node distribution

Fig. 4: Geometric configuration and nodal distribution

of a square plate with a complex cutout.

Mode 5

Mode 6

Fig. 5: Fundamental buckling modes of a simply sup-

port four-layer (0°/90°/90°/0°) square plate
with a/h =10, El/Ez = 40.

Theory (TCSDT) for the buckling analysis of
laminated composite plates. By incorporating
Chebyshev polynomials into both the interpola-
tion functions and shear deformation formula-
tion, the proposed framework achieves high ac-
curacy, numerical stability, and computational
efficiency.

From the numerical investigations, several im-

portant physical insights can be drawn:

e The normalized critical buckling load
increases with a higher modulus ratio
(E1/E2), indicating that enhanced stiffness
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Tab. 6: The effect of a complicated cutout on the normalized buckling load of a simply supported three-layer square

plate.
, Angled fiber layers
o/l Methods © /%/0) (15/-15/15)  (30/-30/30) (45/-45/45) (0/90/0)
Uniaxial compression
166.67 IGA-CLPT [53] 1.360 1.479 1.715 1.827 1.359
NSNI-HSDT [44] 1.3560  1.4773 1.7180 1.8328 1.3547
Present 1.3617  1.4818 1.7195 1.8330 1.3610
100 NSNI-HSDT [44] 1.3461 1.4661 1.7043 1.8186 1.3452
Present 1.3563 1.4752 1.7110 1.8242 1.3456
10 NSNI-HSDT [44] 1.2098 1.3059 1.5059 1.6130 1.2200
Present 1.2138 1.3088 1.6165 1.2281
5 NSNI-HSDT [44] 0.9894  1.0548 1.1927 1.2656 1.0084
Present 0.9876  1.0527 1.1909 1.2656 1.0148
Biaxial compression
166.67 Present 0.6870  0.7542 0.8899 0.9584 0.6878
100 Present 0.6853  0.7521 0.8870 0.9550 0.6863
50 Present 0.6811 0.7469 0.8802 0.9476 0.6827
10 Present 0.6342 0.6904 0.8082 0.8701 0.6397
5 Present 0.5419  0.5839 0.6742 0.7229 0.5552

in the fiber direction significantly improves
the structural resistance against buckling.

e An increase in the span-to-thickness ratio
(a/h) leads to higher normalized buckling
factors, consistent with the expected me-
chanical behavior of laminated composites,
where slender plates provide better buckling
stability.

e For plates with complex cutouts and differ-
ent fiber orientations, the proposed method
captures realistic buckling responses and
mode shapes, showing strong agreement
with established benchmark results.

The main advantages of the proposed
CMK-TCSDT approach can be summarized as
follows:

e Accurate shear stress representation: The
TCSDT inherently satisfies the zero-shear-
stress condition at plate surfaces, eliminat-
ing the need for shear correction factors.

e Superior numerical stability: Chebyshev
polynomials, due to their orthogonality
and fast convergence, improve the robust-
ness of the interpolation and reduce ill-
conditioning compared to traditional poly-
nomial functions.

e High versatility: The CMK framework al-
lows meshfree modeling of both simple and
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complex geometries, providing flexibility in
handling laminated composite structures
with arbitrary cutouts and boundary con-
ditions.

Overall, the proposed methodology provides a
reliable and efficient numerical tool for the buck-
ling analysis of laminated composites. It not
only reproduces benchmark solutions with excel-
lent accuracy but also offers physical clarity and
computational advantages, making it a promis-
ing approach for future studies of advanced ma-
terial systems and structural configurations.
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