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Abstract. The high dependence of the transport
sector on fossil fuels has raised serious concerns
worldwide. It accounts for most greenhouse gas
(GHG) emissions in many countries and is a
major driver of climate change and air pollu-
tion, both of which affect health and the envi-
ronment. Reducing carbon dioxide (CO2) emis-
sions in this sector is urgently needed, along
with measures to increase resilience to climate
change. One promising solution is the adop-
tion of electric vehicles (EVs), which produce
no emissions. However, the benefits of EVs
depend on installing enough EV charging sta-
tions (EVCSs) where people live, work, and play.
Charging EVs from the electrical distribution
network (DN) adds extra load, so optimal place-
ment of EVCSs is essential to serve the EV pop-
ulation efficiently. Integrating distributed gener-
ation (DG) into the DN can help mitigate the
negative impact of EVs, but it must be done care-
fully to avoid exceeding grid capacity. To ad-
dress these challenges, the hybrid Bacterial For-
aging Optimization - Particle Swarm Optimiza-
tion (BFO-PSO) technique is proposed for effec-
tively allocating EVCSs alongside photovoltaic
(PV) systems within the DN. This approach
aims to reduce power loss and the average volt-
age deviation index while improving voltage pro-
file and stability. The study utilizes the standard

IEEE 69-node test distribution network (DN),
modelled as a purely commercial network com-
prising retail shops, marketplaces, and offices.
Simulation results show the effectiveness of the
BFO-PSO in optimally integrating the EVCSs
and the compensating PV systems into the dis-
tribution network. For example, without EVCSs
and PVs, the network’s power loss was 138.89
kW. This slightly increased to 142.99 kW with
EVCSs but decreased significantly to 48.64 kW
when PV systems were added. To verify the ef-
fectiveness of the hybrid BFO-PSO, results were
compared with those obtained when each opti-
mization, PSO and BFO, is used standalone for
the same task, confirming its superiority. The
successful integration of EVCSs and PV systems
in current distribution networks will depend on
coordinated efforts between the transport sector
and utility companies.

Keywords: BFO-PSO, Greenhouse gas, Elec-
tric vehicles, Photovoltaic, Charging stations.
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1.0 Introduction

As a result of the enormous greenhouse gas
(GHG) release coming from the field of trans-
portation, electric vehicles (EVs) are quickly be-
ing adopted in many nations worldwide as a sub-
stitute for petroleum-based cars [1]. The fast
endorsement of EVs today is also due to the in-
creasing exhaustion of crude oil, as well as the
impact it has on the environment [2]. Conse-
quently, the rapid propagation of EVs, which
are tranquil and free from emissions [3]. De-
spite the sales of electric cars having dramati-
cally increased over the years, these are primar-
ily concentrated in the developed world, such
as Europe, the United States of America, and
China [4]. Developing countries are still signifi-
cantly lagging, but several countries like Kenya
are putting in numerous efforts to increase their
EV fleets. Nowadays, it is very easy to find
public transportation EVs like e-buses, taxis, e-
bikes, etc, in large cities like Nairobi. One of the
challenges in the uptake of EVs is the ease of ac-
cess to charging facilities where people work and
live, as the rapid increase in the number of EVs
relies on the fast growth of these charging facil-
ities [5]. EV chargers can be placed into three
categories, Level 1, 2, and 3, with Level 3 being
the fastest, having the capability of fully charg-
ing an EV within an hour [6].

The substitution of conventional vehicles with
EVs benefits not only the environment but the
power distribution network (DN) as well, as
the EVs could aid in voltage/frequency support
and spinning reserve to take charge of genera-
tion loss or sudden load increase [7]. Notwith-
standing, the misappropriation of EVs in the DN
could be fatal in terms of voltage variation away
from permitted limits, power loss increase, and
power quality degradation [8]. This disagreeable
impact could be remedied by optimally sizing
and allocating distributed generations (DGs) [9].
Distributed generation is the generation of elec-
tricity at load centers [10]. The most envi-
ronmentally friendly and sustainable distributed
electricity generation technology of recent years
is solar photovoltaic [11]. Photovoltaic (PV) sys-
tems have become the most distinguished DG
because of the continuous drop in the cost of
PV panels and accompanying components, with

the massive energy from the sun being a major
factor [12]. The installation rate of PVs world-
wide is more than 70 GW per year [13]. PV sys-
tems could mitigate the adverse effects of EVs in
the DN through voltage support and peak shav-
ing [14].

The accelerated multiplication of EVs in to-
day’s transportation area has resulted in count-
less research works on the delicate fitting of EV
charging stations (EVCSs) in the DN. Some re-
search focuses on dynamic parameters, such as
the driving patterns of EV owners, the EV bat-
tery, arrival times, and departure times, among
others. Meanwhile, other research works focus
mainly on placing the EVCS in the DN, looking
at the EVCS as static loads. P. V. K. Babu and
K. Swarnasri in [15] optimally placed EVCSs
in the DN, accompanied by DGs using Har-
ries Hawk Optimization (HHO) and Teaching-
Learning Based Optimization (TLBO), with the
optimization problem minimizing power loss, av-
erage voltage deviation index, and maximizing
voltage stability index. The authors went fur-
ther to optimally size and site DGs to reduce
the impact of the EVCSs on the network. They
used the IEEE 33 and 69 bus test DNs to test
their proposed solution. The results obtained
showed that the HHO could find better loca-
tions for the EVCSs and the DGs compared to
the TLBO. The authors did not hybridize both
techniques to see whether it would yield the best
results compared to using both techniques sep-
arately. E. A. Rene et al. in [16] used the
hybrid Genetic Algorithm and Particle Swarm
Optimization (GA-PSO) to allocate EVCSs in a
DN with high penetration of DGs (60% penetra-
tion), with the objective being power loss min-
imization and voltage deviation index improve-
ment. The model was tested on the standard
IEEE 33 and 69 node test feeders, and the results
demonstrated the effectiveness of the proposed
method. Notwithstanding, considering PV sys-
tems as DG, the daytime variation of PV pro-
duction of the PV systems was not considered.
The PV systems were studied as static gener-
ation systems producing constant power at a
power factor of 0.95. In [17], Levels 1, 2, and
3 chargers were optimally placed by M. Z. Zeb
et al. to effectively manage EV loads while min-
imizing the cost of installation of the charging
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stations, the loading of the distribution trans-
formers, and losses. The EVs were modeled as
stochastic loads as a result of the uncertain na-
ture of the EV users, and the proposed method
was validated on the DN of the National Univer-
sity of Sciences and Technology (NUST), Pak-
istan. PVs were also integrated to limit the ad-
verse impact of the EVs on the DN. Despite the
PSO being able to solve the problem at hand,
PSO has an issue of being stuck on the local
minimum solution and therefore never obtain-
ing the global solution. In [18], Genetic Algo-
rithm (GA) was proposed by S. Pazouki et al.
for planning EV charging stations in a DN with
capacitors to reduce power loss and boost volt-
age, with the IEEE 34 bus radial DN used as a
test network. GA was able to suitably integrate
the EVCSs and capacitors in the DN. Notwith-
standing, GA, when used standalone, has well-
known issues like slow and premature conver-
gence, parameter sensitivity, and a lack of as-
surance that the global solution will be found.
S. K. Injeti and V. K. Thunuguntla used Par-
ticle Swarm Optimization (PSO) and Butterfly
Optimization (BO) techniques in [19] to inte-
grate DGs in the DN in the presence of EVs to
solve the multi-objective optimization problem
to reduce daily power loss and enhance the DN’s
voltage characteristics. The test network used
was the IEEE 33-node DN, and the simulation
results demonstrated the superiority of the BO
over PSO in solving the optimization problem.
It would have been interesting to hybridize both
techniques and investigate the strengths of the
resulting hybrid in solving the problem at hand.
Using a metropolitan test network, S. Nugraha
et al. in [20] used the hybrid Genetic Algorithm-
Modified Salp Swarm Algorithm (HGAMSSA)
to size and site EVCSs in the DN with PVs to
minimize the impact on power loss, voltage, and
overload. Three scenarios were considered to
find the optimal size and location of the EVCSs:
the first being that the EVCSs were a mixture
of Level 1, 2, and 3 chargers, the second sce-
nario considered the EVCS to be Level 2 and 3
chargers, and the third considered the EVCSs to
be only Level 3 chargers. The overall simulation
results demonstrated the capability of the net-
work to be optimized by at least 75.53% when
the EVs interact with the grid in grid-to-vehicle
(G2V) mode. M. Bilal et al. in [21] used the

hybrid Grey Wolf-Particle Swarm Optimization
(GWOPSO) technique to allocate EVCSs and
DGs in the DN to maintain the system reliabil-
ity within limits, with the IEEE 33 and 69 node
test feeders used as test networks. The DGs used
in this study are at a unity power factor, mean-
ing they did not inject reactive power into the
network. In the research paper [22], S. Deb et
al., the focus was on allocating EVCSs using a
Pareto dominance-based hybrid Chicken Swarm
Optimization (CSO) and TLBO, minimizing the
cost of the EVCSs, while ensuring sufficient grid
stability, and the accessibility of the EVCSs to
the EV users. The results obtained showed that
the combination of CSO and TLBO could pro-
duce promising results, and it was demonstrated
to be effective in addressing the practical prob-
lem of charging station placement.

This work proposes a hybrid Bacterial Forag-
ing Optimization - Particle Swarm Optimization
(BFO-PSO) technique to effectively distribute
electric vehicle charging stations (EVCSs) in a
commercial DN to service the EV fleet (taxis,
private cars) during peak periods. To enhance
the utilization of the EVCSs, it strategically in-
serts distributed PV systems to remedy the ad-
verse effects of massive EV charging on the DN.
The optimization problem is elaborated as a
multi-objective function minimizing power loss
and average voltage deviation index while en-
hancing the voltage stability index of the net-
work. The contribution of this paper includes,

• Solving the placement of the EVCSs in
a purely commercial DN using the hy-
brid BFO-PSO, considering that EV users
charge their EVs during peak load hours
from 10 am to 3 pm daily.

• Using the hybrid BFO-PSO to optimally
size and integrate compensating PV sys-
tems into the DN with the EVCSs to al-
leviate the adverse impacts of the EVs on
the DN during peak load hours, which also
corresponds to peak sun hours, hence peak
PV production hours. In so doing, enhance
the full utilization of the EVCSs.

This paper’s remaining sections are arranged
as follows: the methodology comes next, then

186 ©2025 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 9 | ISSUE: 4 | 2025 | DECEMBER

the findings and discussions, and finally the con-
clusion.

2.0 Methodology

2.1 Test Distribution Network

The test network utilized in this study is the
standard IEEE 69-node DN, shown in Fig. 1. Its
nominal voltage is 12.66 kV, and it is balanced.
The total demand of the network is shown in
Table 1 as obtained from [23]. In this study,
the DN is a purely commercial DN with retail
shops, marketplaces, and offices, with its nor-
malized daily load curve obtained from [24], as
shown in Fig. 2, the daily solar irradiance ob-
tained from [25], and shown in Fig. 3.

Tab. 1: IEEE 69 bus power demand

Active Power
(kW)

Reactive
Power (kVAr)

Apparent
Power (kVA)

3801.4 2693.6 4658.98

2.2 Estimation of the EV
Population

An estimate of the number of business entities in
the study network is needed to estimate the EV
population. Assuming every business unit in the
study network has an average three-phase power
demand of 5 kVA, the number of business enti-
ties is therefore calculated to be approximately
932. Considering that an average of 5 people
work in each business entity, the number of peo-
ple in the area is 4660. Amongst all these people
working in this study area, 20 own EVs, work
in different business entities, and charge them
while at work.

The number of EV taxis that service the cus-
tomers visiting the business entities daily needs
to be estimated. To do this, it is estimated that
an average of 100,000 customers visit daily, and
that 180 EVs are used to move people from one
point to another and need to be charged regu-
larly. This, therefore, means that the study area
has a total EV fleet of 200 EVs.

2.3 EV Power Demand

It is considered that the EV population (pri-
vately owned and taxis) is a mixture of 4 differ-
ent models of battery electric vehicles, as shown
in Table 2. To service the EV population, 152

Tab. 2: EV Models and Quantities [2]

EV Model Battery Spec-
ifications

Charging
Point

Volkswagen e-
UP!

32.3kWh 3-phase 32A
(22kW)

Peugeot e-208 45.0kWh 3-phase 32A
(22kW)

Mazda MX-30 30kWh 3-phase 32A
(22kW)

Hyundai
IONIQ Elec-
tric

38.3kWh 3-phase 32A
(22kW)

EV charging points (CPs) will be strategically
installed across 5 EVCSs in the network. All
the CPs consist of Level 2 chargers, as they are
faster and more efficient than Level 1 chargers,
and will stress the DN less compared to Level
3 chargers. The number of CPs and the power
rating of each EVCS are shown in Table 3. All
the 200 EVs in the study area are not expected
to be charged simultaneously. A maximum of
152 could be charged at the same time.

Tab. 3: Characteristics of EVCS and the number of CP

Rating per
CP (kW)

Number of
CP

Rating
of EVCS
(kW)

EVCS 1 22 20 440
EVCS 2 22 25 550
EVCS 3 22 40 880
EVCS 4 22 35 770
EVCS 5 22 32 704
TOTAL 152 3344

According to [26], from the viewpoint of the
DN, an EV can be seen as:

• A straightforward load that draws steady
power from the network when charging.
This is usually uncontrolled EV charging,
wherein the EV battery is charged with a
constant current when the EV is plugged
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Fig. 1: IEEE 69 bus DN

Fig. 2: Normalized daily load profile of the study
area [22]

into a CP in an EVCS. This is called grid-
to-vehicle (G2V).

• A power bank that discharges (vehicle-to-
grid (V2G)) and charges (G2V) as per
the network conditions. Here, the charg-
ing point is designed to operate in two
directions and is equipped with a regula-
tory system that determines the direction
of power flow based on the network condi-

Fig. 3: Average daily solar irradiance

tion. Therefore, the EV could be used as a
spinning reserve and voltage/frequency reg-
ulator for valley filling and peak shaving.

• A compounded load whose charging period
can be adjusted. This is another form of
controlled EV charging wherein the EV is
only charged during favorable network con-
ditions.

In this study, the EVs are considered per op-
tion one above, which is a straightforward load
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that draws steady power from the network when
charging.

2.4 PV System Characteristics

The PV systems, optimally sized and placed to
alleviate the adverse impact of the EVCSs on
the network, are modeled as negative PQ loads.
To incorporate the capability of the PV inverters
to feed reactive power into the network, the PVs
are modeled at a power factor of 0.95. Five (5)
PV systems are used for compensation.

2.5 Assumptions and
considerations

The following assumptions and considerations
are made in this study:

• The EVs are static loads that draw constant
power from the DN when plugged into a CP.

• The EV battery state of charge, arrival
time, and departure time are not consid-
ered.

• All CPs are equipped with Level 2 charg-
ers, and therefore, the EV owners have no
charging preferences.

• All the 152 CPs are fully utilized during
peak load hours (from 10 am to 3 pm).

• The PV systems deliver rated power to the
distribution network during peak sun peri-
ods.

• The intermittent behaviour of PV systems
is not considered.

• The PV systems do not have storage capa-
bilities and therefore feed all their power to
the grid.

2.6 Optimal Allocation of the
EVCSs and the PV Systems

2.6.1 Formulation of the Optimization
Problem

The optimization problem is constructed as an
overall minimization problem.

a. Power loss minimization

fi (a) = min

br∑
a=1

Rbr ∗ I2br (1)

where fi(k) represents the sum of active power
loss, br the sum of the network’s branches, Rbr

the branch resistance, and Ibr the branch cur-
rent.

b. Average voltage deviation index
(AVDI) minimization

fii (a) =
1

Nn

Nn∑
z=1

|1− Vz|2 (2)

Where fii(j) is the AVDI, Nn is the sum of buses
in the DN, Vz is the bus z’s voltage.

c. Maximization of the Voltage stability
index (VSI)

At a given end bus, z, the VSI is evaluated as:

fiii (a) = [|Vz|4 − 4 (Pzxyz +Qzryz)
2

−4 (Pzryz +Qzxyz) |Vz|2
(3)

Where Vz is bus z’s voltage, Pz is bus k’s ac-
tive power, Qz is node z’s reactive power, ryz is
the resistance of the y-z branch, and xyz is the
impedance of the y-z branch.

Therefore, the multi-objective function is
given by:

F (a) = min {w1f i (a) + w2f ii (a)− w3fiii (a)}
(4)

Where w1, w2, w3 are initial weights.

2.6.2 Constraints

The multi-objective function is applicable
when placing the EVCSs as well as when siz-
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ing and siting the PV systems. Nevertheless, for
both cases, the constraints slightly vary.

a. Equality constraints

- Power balance constraints for EVCSs

PG =

Nn∑
k=1

Pl +

NEV CS∑
j=1

PEV CS +

br∑
i=1

Ploss (5)

Where PG represents the grid’s active power, Pl

the loads’ active power demand, Nn the number
of buses, PEV CS the EVCSs active power de-
mand, NEV CS the number of EVCSs, Ploss the
network active power loss, and Nbr the network’s
total number of branches.

QG =

Nn∑
k=1

Ql +

Nbr∑
i=1

Qloss (6)

Where QG is the grid’s reactive power, Ql is
the loads’ reactive power demand, QEV CS is the
EVCS reactive power demand, and Qloss is the
network reactive power loss.

- Power balance constraints for PV siz-
ing and siting

PG+

Npv∑
k=1

Ppv =

Nn∑
k=1

Pl+

NEV CS∑
k=1

PEV CS+

Nbr∑
k=1

Ploss

(7)
Where Ppv is the active power of a PV system.

QG +

Npv∑
k=1

Qpv =

Nn∑
k=1

Qload +

Nbr∑
k=1

Qloss (8)

Where Qpv is the PV system’s total reactive
power.

b. Inequality constraints

- Bus voltage constraints

V min
k ≤ Vk ≤ V max

k

0.95 ≤ Vk ≤ 1.05
(9)

- Current constraints

The current flowing through each feeder
should not exceed the feeder’s limits.

Ik ≤ Imax
k (10)

- PV active power constraints

Pmin
pv ≤ Ppv ≤ Pmax

pv

100kW ≤ Ppv ≤ 500kW
(11)

- PV reactive power constraints

Qmin
pv ≤ Qpv ≤ Qmax

pv

50 kVar ≤ Qpv ≤ 200 kVar
(12)

2.7 Utilization of the Hybrid
BFO-PSO

The hybrid BFO-PSO is utilized to integrate
the EVCSs and to size and position the compen-
sating PV systems.

2.7.1 Bacterial Foraging Optimization
(BFO) algorithm

The BFO is an algorithm that was brought
to life by K. M. Passino, who got inspiration
from the “chemotaxis” activity of foraging bac-
teria like E. Coli [27]. The foraging activities
of E. Coli that live in the human intestine are
accomplished in the following steps: chemotaxis,
swarming, reproduction, and elimination disper-
sal [28].

a. Chemotaxis: This is the process wherein
the bacteria swim and tumble due to the move-
ment of the flagella. For a single bacterium
given by θk(l,m, n) at lth chemotaxis, mth repro-
duction, and nth elimination-dispersal step, and
unit of the run-length parameter C(a), repre-
senting the step dimension of chemotaxis at ev-
ery run, the bacterium’s computational chemo-
tactic displacement is represented as:

θa(b+ 1, c, d) = θa(b, c, d)

+ C(a)
∆(a)√

∆T (a)∆(a)

(13)

Where: ∆ is a vector in any direction having
elements in the set [−1, 1].

b. Swarming: During swarming, the bac-
teria interact either attractively or repulsively
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with the signals between them given by:

Jcc(θ, P (b, c, d)) =
S∑

k=1

Jcc(θ, θ
a(b, c, d)) =

S∑
k=1

[−dattractant · exp(

−wattractant ·
P∑

c=1
(θc − θic)

2 )
]
+

S∑
k=1

[hrepellant · exp(

−wrepellant ·
P∑

c=1
(θc − θic)

2 )
]

(14)
where Jcc(θ, P (b, c, d)) is the objective function
value, S is the bacteria population, p is ev-
ery bacterium variable, θ = [θ1, θ2, . . . , θp]

T is
a given point in the search domain, dattractant,
wattractant are depth and width attraction pa-
rameters and hrepellant, wrepellant are height and
width repulsion parameters.

c. Reproduction: Here, healthier bacteria
asexually reproduce while the rest die. In so
doing, the bacterial population is kept constant.
Reproduction occurs at NC step of chemotaxis,
and it is expressed mathematically as:

J i
health =

Nc+1∑
j

J(a, b, c, d) (15)

d. Elimination and Dispersal: It hap-
pens at Nre reproduction steps, where some-
thing happens, and that leads to the sudden
death or dispersal of the bacteria. Ped is the
likelihood that a bacterium will be put through
elimination and dispersal, and Pe is the likeli-
hood that some bacteria will be killed and the
rest dispersed to another location for the pro-
cess to repeat. Ned is the sum of elimination
and dispersal.

2.7.2 Particle Swarm Optimization
(PSO)

Just like BFO, PSO is also a technique brought
to life in 1995 by Kennedy and Eberhart, draw-
ing inspiration from birds and fish behavior, and
it is well-suited for optimizing nonlinear prob-
lems [29]. In PSO, two concepts exist: the global
optimum gbest which is the swarm’s optimum so-

lution, and the local optimum pbest which is ev-
ery particle’s optimum solution. For a swarm
made up of particles, P , there exists a position
vector Xt

i = (xi1, xi2, xi3, . . . , xin)
T and a veloc-

ity vector V t
i = (vi1, vi2, vi3, . . . , vin)

T at iter-
ation t, for each particle i, part of the swarm.
The position and velocity vectors of every par-
ticle are renewed at each iteration via the j di-
mension using equations(16) and(17):

V t+1
ij = wV t

ij + c1r
t
1

(
pbestij − Xt

ij

)
+ c2r

t
2

(
gj − Xt

ij

) (16)

Xt+1
ij = Xt

ij + V t+1
ij (17)

Where i = 1, 2, 3, . . . , P , c1 and c2 are the
acceleration factors, j = 1, 2, 3, . . . , n, rt1 and
rt2 are any numbers among 0 and 1, w is an initial
weight used to balance the global as well as the
local searches.

2.7.3 Hybrid BFO-PSO

Blending BFO with PSO was first done by Ko-
rani in 2008, utilizing the ability of PSO to in-
terchange information among the particles and
BFO’s capacity to search for novel solutions by
way of elimination and dispersal [30]. In Hybrid
BFO-PSO, the unit length direction of the tum-
ble behavior of every bacterium is decided upon
by using the bacterium’s global best position as
well as its local best position. In every chemo-
taxis, an update of the direction of the tumble
is determined using equation (18):

∅(j + 1) = w ·∅(j) + c1 · r1(Plbest − Pcurrent)

+ c2 · r2(glbest − Pcurrent)
(18)

Where Plbest is each bacterium’s best position
and glbest is the bacteria’s global best.

The flowchart of the hybrid BFO-PSO is
shown in Fig. 4. The hybrid BFO-PSO pseudo
code is as follows:

Step 1: Initialization of BFO-PSO pa-
rameters

• Dimension of solution space, d

• Sum of bacteria, S

• Sum of swarming, Ns

©2025 Journal of Advanced Engineering and Computation (JAEC) 191



VOLUME: 9 | ISSUE: 4 | 2025 | DECEMBER

• Sum of elimination and dispersal, Ned

• Sum of chemotaxis steps, Nc

• Sum of reproduction steps, Nre

• Probability of elimination and dispersal,
Ped

• Size of each step, C(k)

• Position vector, θk(b, c, d)

• Inertia weight, ω

• Position vector θa(b, c, d) at lth chemotaxis,
mth reproduction, and mth elimination-
dispersal step for ith bacterium

• Velocity vth of ith bacterium

• PSO acceleration parameters, c1, c2

• PSO random numbers, r1, r2

Step 2: Update

• The fitness function value, J(a, b, c) of kth

bacterium at lth chemotaxis, mth reproduc-
tion

• The global best position θ_gbest of the bac-
teria

• The best fitness function Jbest(a, b, c) found
so far

Step 3: Reproduction loop, k = k + 1

Step 4: Chemotaxis loop, a = a+ 1

For each bacterium, B, in the population:

(i) Calculate the fitness function J(a, b, c)

(ii) Let Jfinal = J(a, b, c) as there is a likeli-
hood of getting a better fitness

(iii) Tumble: Create an arbitrary vector ∆(i)
with −1 ≤ ∆(a) ≤ 1

(iv) Move: Let θ(a, b+1, c) = θ(a, b, c)+C(i) ·
∆(k)√

∆T (k)·∆(k)

(v) Evaluate J(a, b+ 1, c)

(vi) Swim: Considering that just the kth bac-
terium is swimming with the others, stagnant:

• Let the swim length counter x = 0

• While x < Ns:
If J(a, b+ 1, c) < Jfinal (Doing better?)
Let Jfinal = J(a, b+1, c) and θ(a, b+1, c) =

θ(b, c, d) + C(k) · ∆(a)√
∆T (a)·∆(a)

Use the re-

sulting θ(a, b + 1, c) to compute the new
J(k, l + 1,m) as done in step 4(v). Oth-
erwise x = Ns. While loop ends.

Step 5: Modification with PSO

For a = 1, 2, 3, 4, . . . , S:

• Update θgbest and Jbest(a, b, c)

• Update the kth bacterium’s position and ve-
locity as follows:

•
V new
ae = wV new

ae +

C1φ1

(
θbestae

− θolde (b+ 1, c, d)
)

• θolde (b+ 1, c, d) = θolde (b+ 1, c, d) + V new
ae

Step 6: Sr =
S

2

The bacteria Sr having the highest fitness
function values, die while the other fifty percent
of the population separates into two, with the
new bacteria occupying the space of the dead
bacteria.

Step 7: If x < Nre, signifying that the speci-
fied sum of reproduction steps is still a distance
away; hence, return to Step 1. The next gener-
ation starts in the chemotaxis loop.

Table 4 shows the BFO-PSO parameters used
in this work, which are a slight deviation from
the empirical values used in [30], with the aim
of the solution’s speed and accuracy.

2.8 Simulation Scenarios

The optimization technique is formulated to

- Solve the placement of the EVCSs in the
commercial DN, considering that EV users
charge their EVs during peak load hours.
That is 10 am to 3 pm.
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Fig. 4: BFO-PSO flowchart
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Tab. 4: Simulation values for the hybrid BFO-PSO

Parameter Value
Sum of bacteria, S 30
Sum of iterations 50
Chemotaxis steps, Nc 4
Swim steps, Ns 4
Reproduction steps, Nre 4
Sum of elimination and disposal, Ned 2
Probability of elimination and disposal,
Ped

0.5

Highest inertia, wmax 4
Lowest inertia, wmin -4
Acceleration vectors: c1 0.02
c2 0.02
Objective function weight: w1 1
w2 1
w3 1

- Optimally sized and placed PV systems to
alleviate the negative impact of the EVs on
the DN during peak load hours, which also
corresponds to peak sun hours, hence peak
PV production hours.

3.0 Results and Discussions

3.1 Optimal EVCS allocation,
and optimal sizes and sites of
PV systems

Table 5 shows the best locations of the EVCSs,
and the careful sizes and sites of the PVs as ob-
tained by the BFO-PSO. Fig. 5 depicts the opti-
mal locations of the EVCSs and PVs as picked by
the BFO-PSO optimization technique. One can
see that the EVCSs are placed not too far from
the slack bus where grid power is injected. This
permits the EVCSs to operate with an overall
minimal network power loss, voltage deviation,
and enhanced voltage stability since they are an
extra load burden to the DN. At those locations,
they stress the DN less. On the other hand, it
is observed that the best nodes for the PVs are
faraway buses. These are buses with the lowest
voltages, especially buses 59 to 65, and there-
fore picked by the hybrid technique to place the
PVs. Having the PVs at these weakest buses en-
hances the functionality and robustness of the

DN. With this, the variations in the network
voltage profile, voltage stability index (VSI) pro-
file, minimum VSI, AVDI, and power losses in
the network are presented and discussed.

3.2 Network voltage profile

The bus voltages of the DN without EVCSs and
PV systems, with EVCSs only, and with EVCSs
and PV systems, are shown in Fig. 6. The strate-
gic allocation of the EVCSs by the BFO-PSO is
very effective and only leads to a slight drop in
some node voltages, mostly those from nodes 37
to 46, as shown in Fig. 7. These voltage drops
are a result of the EVCSs being extra loads to
the network. The introduction of the EVCSs
slightly decreases the lowest node voltage of the
network from 0.9287 p.u. experienced on node
65 to 0.9286p.u. Nevertheless, the hybrid opti-
mization technique upgrades this voltage profile
by accurately sizing and locating the compen-
sating PVs in the network. It is viewed that
the lowest node voltage with the incorporation
of PVs is increased to 0.9493p.u., still on node
65, compared to 0.9286p.u with EVCSs. The
compensating PV systems lead to an increase
beyond 1p.u. of the node voltages of nodes 39
and 40 (1.001p.u.). This is still within the ac-
ceptable voltage margin. The PV systems can
ameliorate the DN voltage profile because they
are installed at the load centers where the energy
is consumed, leading to a drop in the power de-
manded from the grid by both the EVCSs and
the local loads.

3.3 AVDI and VSI

The AVDI, which is the measure of how far the
average voltage of the network has deviated from
the reference voltage (1p.u.), is slightly increased
when the EVCSs are brought into the DN, as
shown in Fig. 8. Nevertheless, the increase in the
AVDI as a result of the EVCS is very minimal
(from 0.020976p.u. to 0.021129p.u.). The fine
sizing and placement of the PV systems amelio-
rate the AVDI by reducing it to 0.016282p.u.

On the other hand, the minimum VSI of the
network is slightly reduced due to the EVCSs
from 0.74372 to 0.74363. Also, the introduction
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Fig. 5: Optimal locations of the EVCSs and PVs as found by the hybrid optimization technique
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Tab. 5: EVCS allocations and PV sizes, and sites

EVCS Rating (kW) EVCS locations Optimum PV Sizes PV Location(kW) (kVar)
440 2 302 99.263 59
550 37 334 109.781 69
880 29 350 115.039 40
770 3 293 96.304 61
704 49 212 69.681 64
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Fig. 7: Network voltage variations

of the PV systems compensates for this drop in
minimum VSI by raising it up to 0.86676, as
shown in Fig. 9. VSI is an indication of how sta-
ble the network voltage is. The higher the VSI
value, the less sensitive the network is to any
voltage collapse and vice versa. On the other
hand, the lower the AVDI, the closer the net-
work operates to the reference voltage. The VSI
profile of the network is shown in Fig. 10.

3.4 Power loss

The introduction of the EVCSs leads to a mi-
nor rise in active and reactive power losses from
138.8786 kW and 63.1915 kVar to 142.9875 kW
and 73.2178 kVAr, respectively, as shown in
Fig. 11. This is because, despite the virtue of the
BFO-PSO in getting the finest locations for the
EVCSs, the EVCSs remain additional loads to
the network. Hence, this results in extra stress
on the generating units to cater for the addi-
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Fig. 9: Minimum voltage stability index

tional load demand and therefore extra power
losses due to the increase in the feeders’ cur-
rent flow. It is noticed that the percentage in-
crease in reactive power is 15.867%, and the per-
centage increase in active power is 2.959%. The
choicest sizing and quintessential placement of
the PVs drastically reduce the network power
losses to 48.6442 kW, giving a percentage de-
crease of 65.98%, and 31.9676 kVAr, giving a
percentage decrease of 56.34%, respectively. It
is noticed that the power losses upon the inte-
gration of the compensative PV systems are far
lower than the power losses in the base case, as
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shown in Figs. 11. This is accounted for by the
fact that the PVs are installed directly at load
centers where the power produced is consumed.

3.5 Validation of the Proposed
Method in Placing EVCSs

To validate the supremacy of BFO-PSO for the
allocation of EVCSs and PVs in the DN, its re-
sults are compared with those obtained when
each optimization, PSO and BFO, is used stan-
dalone for the same task, as can be seen in Ta-
bles 6 and 7. From Table 6, it is seen that in the
case of PSO, all five EVCSs are placed on the
same bus (bus 5) of the DN, making the place-
ment inefficient. This clustering of the EVCS
on the same bus of the network could be due to
PSO getting stuck in the local best, hence not
getting to the global best solution. This prob-
lem is easily solved by hybridizing the PSO with
BFO, as the chemotactic steps of the BFO pre-
vent the PSO from being stuck in the local op-
timum solution, and therefore, the global best
solution is obtained. Also, from Table 7, it is
seen that for the total reactive power loss, the
network parameters upon placing the EVCS us-
ing the hybrid BFO-PSO algorithm are better
than when PSO and BFO are used separately.
This proves the precedence of the hybrid algo-
rithm over the standalone algorithms, as the hy-

brid algorithm uses the individual techniques’
advantages to solve each other’s disadvantages.
The lowest voltage of the DN when using the
hybrid algorithm is 0.9286p.u., which is higher
than when using BFO (0.9253p.u.) and PSO
(0.928p.u.) separately. Also, the resulting min-
imum VSI with BFO-PSO is 0.74363, and it is
best compared to 0.73316 when using BFO and
0.74176 when using PSO. In addition to that,
the AVDI of the network when the EVCS are
placed using the proposed hybrid algorithm is
0.02113, which is best compared to 0.02293 when
BFO is used and 0.02135 when PSO is used. In
all, it is logical to substantiate the supremacy of
the BFO-PSO in looking for the finest buses for
the allocation of the five EVCS.

Tab. 6: Optimal location of the EVCS using the various
optimization algorithms

EVCS
rating
(kW)

Optimal location of the EVCS
under different algorithms

Hybrid
BFO-PSO BFO PSO

440 2 53 5
550 37 29 5
880 29 38 5
770 3 47 5
704 49 39 5
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Tab. 7: Network Parameters following the placement of EVCSs using various techniques

Algorithm Min. volt kW loss kVar loss Min VSI AVDI
BFO 0.9253 158.049 77.764 0.73316 0.02293
PSO 0.928 143.701 69.31 0.74176 0.02135

BFO-PSO 0.9286 142.99 73.22 0.74363 0.02113

Fig. 11: Network total power loss

4.0 Conclusions

The incorporation of EVCSs into the DN to ser-
vice the rising number of EVs in today’s trans-
port sectors needs to be done strategically to
reduce the adverse effect the EVCSs could have
on the electrical DN. This work proposed the
hybrid BFO-PSO, which used PSO’s potential
to interchange information amongst the parti-
cles as well as BFO’s capacity to search for novel
solutions for the strategic allocation of EVCSs

and compensating PV systems into the DN.
The optimization challenge was described as a
multi-objective one that maximized the volt-
age stability index while minimizing power loss
and the average voltage deviation index. The
proposed method was put to the test on the
standard IEEE 69-node test DN, considered a
purely commercial network. Using MATLAB
2019a, the simulation was done, and the pro-
posed method demonstrated its effectiveness in
looking for the finest positions for the EVCSs
and the best sizes and locations for the compen-
sating PV systems while observing the set op-
timization constraints. Minimal voltage drops
were noticed due to the EVCSs, and these were
adequately compensated by the PV systems.
Likewise, the rise in power losses as a conse-
quence of the EVCSs was sufficiently compen-
sated for by the PV systems. This work could
be a stepping stone to the strategic integration
of EVCSs into the DN, which is crucial for dis-
tribution network operators as it helps balance
electricity demand, avoids equipment overload,
and saves money on expensive infrastructure up-
grades. Furthermore, the operators may bet-
ter integrate renewable energy, spread out power
use, and preserve grid dependability. This will
help the network stay resilient and efficient as
EV usage increases. On the other hand, opti-
mal EVCS allocation benefits town planners as
it helps them maximise economic and sustain-
ability benefits, boosts local economies, while
seamlessly integrating with transportation and
urban development plans.

Given that this study does not take into
consideration dynamic parameters such as EV
charging time, amongst others, the next step
of this work envisages diving into the driving
pattern of EV users, the EV battery’s state of
charge, and the charging time. Also, the impact
of daily temperature variation on PV production
will be considered.
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