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Abstract. Seismic vulnerability assessment of
existing reinforced concrete structures remains
a critical challenge in  earthquake-prone re-
gions, where uncertainties in material prop-
erties, structural capacity, and seismic de-
mand significantly influence decision-making
processes. This study introduces a Ttobust
Bayesian framework for the probabilistic seismic
assessment and retrofitting of reinforced con-
crete (RC) building and bridge foundations. The
methodology synthesizes prior information from
design codes, historical evidence, and expert in-
sight with in-situ measurement data to itera-
tively refine the probabilistic characterization of
vital structural parameters. Utilizing Markov
Chain Monte Carlo (MCMC) sampling tech-
niques, this study elucidates the derivation of
posterior distributions for foundational geotech-
nical parameters, motably soil bearing capac-
ity, fragility curve parameters, and peak ground
acceleration can inform risk-based retrofitting
strategies. A case study reveals that Bayesian
updating reduced the failure probability from
23.2% to 4.3% post-retrofit, with a benefit-cost
ratio of 7.58, validating the economic efficiency
of the proposed approach. The framework pro-
vides engineers with a rational, probabilistic
tool for continuously updating structural safety
assessments as mew data becomes available,
ultimately enhancing resilience in earthquake-
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prone communities. This research advances the
broader discourse in performance-based earth-
quake engineering (PBEE) by proposing an ap-
plicable framework that systematically incorpo-
rates both epistemic and aleatory uncertainty
into seismic Tisk quantification.

Keywords: Bayesian inference, seismic vulner-
ability, probabilistic assessment, retrofitting de-
cision, reinforced concrete structures, MCMC
sampling, fragility curves, earthquake engineer-
ing, uncertainty quantification, risk-based de-
sign.

1. Introduction

Earthquakes represent a persistent and
formidable hazard to wurban infrastructure
across the globe, particularly in regions of high
seismic activity that contain a large inventory
of aging reinforced concrete (RC) buildings.
Devastating events including the 2023 Turkey-
Syria, 2015 Nepal, and 2011 Japan earthquakes
have starkly highlighted the urgent demand for
advanced computational frameworks capable of
reliable seismic performance evaluation. These
methodologies must precisely evaluate struc-
tural vulnerability and explicitly incorporate
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the profound epistemic and aleatory uncertain-
ties inherent in seismic hazard modeling and
the prediction of structural performance [1,2].
The inherent simplicity of deterministic seismic
assessment methods often renders them inca-
pable of capturing the sophisticated interplay of
uncertainties present in physical structures and
real-world conditions [3]. These uncertainties
arise from multiple sources: variability in mate-
rial properties due to aging and deterioration,
incomplete knowledge of as-built conditions,
randomness in earthquake ground motions
and limitations in analytical models used to
predict structural behavior. Engineers and
decision-makers require tools that not only ac-
knowledge these uncertainties but also provide
a framework for rational decision-making under
conditions of incomplete information [4-6].

Bayesian analysis offers a potent alternative,
enabling a mathematically coherent synthesis of
prior engineering models and observational data
to iteratively refine probabilistic assessments of
structural performance [7-9]. Unlike frequen-
tist approaches that treat parameters as fixed
but unknown values, Bayesian methods treat pa-
rameters as random variables characterized by
probability distributions [10]. This transforma-
tion in methodology enables the systematic inte-
gration of expert insight, archival case histories,
and diverse empirical datasets, thereby advanc-
ing structural evaluation into a more compre-
hensive and data-driven discipline [11].

Over the past decade, the incorporation of
Bayesian methods in earthquake engineering has
progressed markedly fueled by breakthroughs in
computational capacity and the widening im-
plementation of sensor-based structural health
monitoring systems [12,13]. Progress in proba-
bilistic seismic hazard analysis (PSHA) has un-
derscored the efficacy of Bayesian techniques
for refining ground motion prediction models
and delineating site-specific risks [14-16]. At
the structural level, Bayesian fragility model-
ing has proven effective in incorporating exper-
imental data, numerical simulations, and mul-
tiple sources of uncertainty into the assessment
of damage probabilities for RC components and
systems [17,18].
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Despite these advances, the practical inte-
gration of Bayesian seismic assessment into
retrofit-oriented decision-support frameworks
for existing RC buildings remains limited.
Many current studies focus on hazard or
fragility modeling in isolation, without fully
coupling seismic demand, structural response,
and soil-foundation—structure interaction effects
within a unified probabilistic framework [19,
20]. This limitation is particularly critical in
earthquake-prone regions where economic con-
straints require prioritization of retrofitting in-
terventions based on quantifiable risk reduction
rather than deterministic safety margins. This
study addresses this gap by presenting a compre-
hensive Bayesian framework specifically tailored
for the probabilistic assessment of seismic vul-
nerability and retrofitting decisions for existing
RC structures. The proposed framework deliv-
ers a comprehensive and probabilistically rigor-
ous approach to uncertainty quantification, inte-
grating three fundamental aspects: (1) seismic
hazard assessment, which includes Gutenberg-
Richter recurrence statistics and ground mo-
tion prediction equations; (2) structural per-
formance analysis, encompassing probabilistic
fragility assessments and damping characteris-
tics; and (3) soil-foundation-structure interac-
tion behavior. This tripartite synthesis en-
ables consistent probabilistic inference across
multiple scales of seismic risk evaluation [16,
21]. This integrated approach enables con-
sistent uncertainty propagation across the en-
tire system, from seismic excitation to struc-
tural performance. Through the application of
Markov Chain Monte Carlo (MCMC) sampling,
the approach facilitates efficient probabilistic ex-
ploration of high-dimensional parameter spaces
without compromising computational feasibility
[12,13].

The significance of this research extends be-
yond methodological contributions. In many
earthquake-prone regions, resource constraints
necessitate prioritization of retrofitting inter-
ventions based on risk-informed criteria. The
proposed Bayesian methodology offers a ratio-
nal and data-driven foundation for prioritizing
retrofitting interventions by quantitatively as-
sessing the reduction in structural failure prob-
ability attributable to specific mitigation mea-
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sures [20, 22]. Moreover, the framework en-
ables rigorous cost-benefit appraisal to deter-
mine the fiscal viability of retrofitting invest-
ments. This analytical capability proves essen-
tial for infrastructure stewards responsible for
extensive portfolios of deteriorating assets, as
they are compelled to maximize seismic perfor-
mance within stringent fiscal limitations. In ad-
dition, the framework’s ability to continuously
update parameter estimates as new data be-
comes available aligns with emerging trends in
performance-based earthquake engineering and
structural health monitoring. The increasing af-
fordability and ubiquity of sensor technologies
are paving the way for a transformative shift
in vulnerability assessment. This progression
is fundamental to the advancement of adaptive
risk management protocols, as it enables the
seamless assimilation of live and near-live data
feeds into continuously evolving structural per-
formance models. [2,11,23].

2. Case Study: RC

Building in Rajshahi
(Sirajganj), Bangladesh

A representative four-story reinforced concrete
frame building located in Rajshahi (Siraj-
ganj), Bangladesh was analyzed. The build-
ing, constructed in the late 1990s was designed
per Bangladesh National Building code BNBC
(1993) with 20 MPa concrete and 415 MPa rein-
forcement. The structure is a moment-resisting
frame with a rectangular plan (18 m x 12
m) and column cross-sections of 350 mm x
350 mm. In-situ rebound hammer tests, core
samples, and visual inspections provided data
on concrete strength and reinforcement condi-
tions. In-situ compressive strength was deter-
mined via rebound-hammer testing, while soil
parameters were collected from nearby bore-
hole data (soft alluvium, Zone I per BNBC
2020). The retrofitting intervention involved
Fiber-Reinforced Polymer (FRP) jacketing of
columns and beam-column joints to enhance
shear and confinement capacity. The data
informed Bayesian updating of capacity and
fragility parameters.
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3. Methodology

In the field of Earthquake Disaster and Miti-
gation Engineering, one of the most meaning-
ful and impactful applications of Bayesian anal-
ysis is the probabilistic assessment of seismic
vulnerability and retrofitting decisions for exist-
ing reinforced concrete (RC) buildings or bridge
foundations in seismically active areas. This in-
volves estimating uncertain model parameters
(e.g., structural capacity, material strength, de-
mand levels) using a combination of prior knowl-
edge (codes, past studies, expert judgment) and
observed data (e.g., sensor outputs, inspection
reports). Bayesian inference is pivotal for up-
dating beliefs about critical parameters in seis-
mic engineering. Below are key parameters and
their significance:

3.1. Step-1. Seismic Hazard

Parameters

A. Gutenberg-Richter *a* and *b*-values

(i) Purpose:
rates.

Model earthquake recurrence

(ii) Prior: Beta distribution for *b*-value (*b*
~ Beta(2,2), constrained to [0.5, 1.5]).

(iii) Data: Historical earthquake catalog (mag-
nitudes > 4.0).

B. Peak Ground Acceleration (PGA) and
Spectral Acceleration (SA)

(i) Purpose: Predict ground motion for de-
sign retrofitting.

(ii) Prior: Log-normal distribution (mean
from attenuation models, e.g., Campbell-
Bozorgnia).

(iii) Data: Strong-motion records from seismic
stations.

C. Fault Slip Rates

(i) Purpose: Estimate earthquake recurrence
intervals.

(ii) Prior: Gamma distribution (shape=2,
rate=0.1) for positivity.
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3.2. Step-2. Structural

Response Parameters

I. Fragility Curve Parameters

e Median Capacity (¢): Normal distribu-
tion (mean = code-specified capacity, o =
20% of mean).

e Logarithmic Std. Dev. (f): Gamma
distribution (o = 2, 8 = 1) to ensure § > 0.

II. Damping Ratios

e Prior: Truncated normal (u =
1%, bounds : [2%,10%]).

3.3. Step-3. Soil-Foundation

Interaction

a. Soil Bearing Capacity

e Prior: Normal distribution (¢ = 150 kPa,
0=20 kPa).

e Likelihood: Normal (0=10 kPa for mea-
surement errors).

b. Liquefaction Potential

e Prior: Beta distribution (oo = 2,8 = 5) for
probability of occurrence.

3.4. Step-4. Define Prior

Distributions P(6)

Prior distribution = initial belief about pa-
rameters before seeing new data
Sources for priors:

e Design codes (BNBC)
e Previous studies
e Expert opinion

e Material test databases

Example priors:

(© 2025 Journal of Advanced Engineering and Computation (JAEC)

e 0 ~ N(25,3%) — Concrete strength (nor-
mal distribution)

e 04 ~ N(0.35¢,0.05%) — Median PGA for

major damage

e 0 ~ LogNormal(y,0) — Soil capacity
(skewed distribution)

3.5.  Step-5. Likelihood

Function (Probability
Distribution for Observed
Data) P(D|0)

The function f(f) in the likelihood expression
represents the nonlinear model prediction of
seismic response obtained from a simplified
pushover-based analysis calibrated using nonlin-
ear time-history results. This model links uncer-
tain parameters (f) such as concrete strength,
damping ratio and soil capacity to observed re-
sponses (Y) such as displacement and drift ra-
tio. The function captures the relationship be-
tween input parameters and structural demand
through:

Y =£()+7 (1)

where £ denotes normally distributed model and
measurement error (o2).

This approach balances computational effi-
ciency with realistic behavior modeling, particu-
larly suitable for existing RC buildings with lim-
ited information. The choice of likelihood func-
tion depends on the nature of the observed data:

3.6. Step-6. Bayesian Inference

Procedure

A. Define Prior Distributions

B. Set Prior Based on previous earthquakes or
engineering judgment: 6 ~ Normal(jg,03)

C. Define Likelihood Based on sensor read-
ings (accelerometer displacements follow Normal
distribution): p(y|f) = Normal(f(6), o2)

D. Apply Bayes’
p(ly) = [p(y[") x ()] /p(y)

Theorem
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3.7. Step 7: MCMC for

Sampling the Posterior

To perform Bayesian seismic vulnerability as-
sessment and retrofitting decision-making, the
following structured approach was adopted. The
probabilistic parameters were evaluated using
Markov Chain Monte Carlo (MCMC) sampling
under a Metropolis—Hastings algorithm with 4
independent chains and 50,000 iterations each.
A burn-in period of 10,000 samples was dis-
carded to ensure convergence, verified through
the Gelman-Rubin (R < 1.1) and trace plot di-
agnostics. The approach ensured posterior sta-
bility and reproducibility showed in Figure 1.

Interpreting Results

e Posterior Mean: If theta’s mean shifts to
~ 155 kPa (from prior 150 kPa), the data
suggests higher capacity.

e Credible Intervals: 95% HDI (Highest Den-
sity Interval) shows the range of plausible
values (e.g., [145, 165] kPa).

4. Results and Discussion

4.1.  Posterior Distributions
After MCMC convergence, the posterior mean-
ing of the soil capacity increased from 150 kPa
to 155 kPa. The fragility parameter 6 increased,
indicating improved strength and confidence, as
shown in the posterior update in Figure 2.

4.2.  Posterior Capacity vs.

Seismic Demand

The blue curve denotes the posterior capacity
distribution while the red curve represents the
seismic demand derived from site-specific haz-
ard analysis. The area of overlap represents
the probability of failure corresponding to cases
where demand exceeds capacity.

Before retrofitting, the posterior distributions
indicated a mean capacity of 148 KN versus a
seismic demand distribution centered at 152 KN
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yielding a probability of failure of 23.2%. Fol-
lowing retrofitting, the posterior capacity shifted
rightward to a mean of 168 KN and the overlap
reduced significantly corresponding to a failure
probability of 4.3%. The reduction in overlap-
ping region directly quantifies the improvement
in safety, confirming that retrofitting substan-
tially reduced structural vulnerability. This in-
terpretation aligns with performance-based de-
sign principles failure probability serves as a
quantitative safety index providing engineers
with a rational metric to justify retrofit necessity
and evaluate efficiency.

4.3. Economic and Risk-Based

Evaluation

A benefit—cost ratio (B/C = 7.58) was obtained,
confirming that the expected reduction in fail-
ure risk outweighs the retrofit cost. The pro-
posed framework thus supports rational invest-
ment prioritization for seismic risk mitigation
programs.

4.4. Decision Support Summary

The reduction in failure probability, combined
with a high benefit—cost ratio, demonstrates
that the Bayesian framework can effectively sup-
port risk-informed retrofit decisions even with
incomplete data.

Table 1. Comparative seismic performance
metrics before and after retrofit based on
Bayesian posterior analysis.

5. Conclusions

This study presents a Bayesian decision-support
framework for probabilistic seismic assessment
and retrofit prioritization of existing RC build-
ings, demonstrated using a Rajshahi (Sirajganj)
case study. The framework’s flexibility to in-
corporate observational data, prior engineering
judgment, and model uncertainty allows contin-
uous refinement of structural safety evaluation.
The posterior capacity—demand overlap provides
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Fig. 1: MCMC diagnostics and posterior inference for soil capacity parameters.

an intuitive and quantitative indicator of fail-
ure probability, enabling efficient and defensible
retrofit decisions. By continuously updating pa-
rameter estimates with new data we can enhance
structural safety, prioritize retrofitting, and op-
timize mitigation strategies in a rational, prob-
abilistic framework. In short, Bayesian analy-
sis allows engineers to continuously update their
understanding of structural behavior and uncer-
tainty which is particularly useful for retrofitting
decision-making in seismic areas.

6. Future Works

This study establishes Bayesian analysis as a
powerful methodology for seismic vulnerability
assessment and retrofitting optimization, while
identifying crucial research directions to ad-
vance its applicability. Several promising av-
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enues merit investigation to enhance the frame-
work’s robustness and practical implementation.

Future research should explore the integra-
tion of machine learning with Bayesian infer-
ence to improve computational efficiency. Deep
learning architectures could generate surrogate
models for complex finite element analyses,
enabling real-time parameter updating during
post-earthquake assessments. The development
of physics-informed neural networks that main-
tain structural mechanics principles while op-
timizing computational performance would be
particularly valuable.

e The framework should be extended to ad-
dress spatial correlations in regional risk as-
sessment. While current applications fo-
cus on individual structures, hierarchical
Bayesian models could capture multi-scale
uncertainties across interdependent infras-
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tructure networks, providing more compre-
hensive community resilience evaluation.

Incorporating time-dependent deterioration
processes represents another critical direc-
tion. Dynamic Bayesian networks that
model aging effects, environmental degrada-
tion, and cumulative seismic damage would
enable more accurate long-term vulnerabil-
ity projections and inform optimal mainte-
nance strategies.

The methodology should be expanded
to address multi-hazard scenarios, where
structures face combined seismic, wind,
flood, and other natural hazards. This re-
quires sophisticated probabilistic modeling
of hazard correlations and their interactive
effects on structural performance beyond
current single-hazard approaches.

T
200

220 240 260

Farce (kNY

e Research into optimal sensor placement

strategies using value of information anal-
ysis could maximize information gain while
minimizing monitoring costs. This would
significantly enhance the cost-effectiveness
of structural health monitoring programs.

The development of standardized protocols
for expert knowledge elicitation would im-
prove the reproducibility of Bayesian assess-
ments. Establishing best practices for en-
coding expert judgment into prior distribu-
tions while mitigating systematic biases is
essential for maintaining analytical credibil-

ity.

Finally, integrating social vulnerability in-
dicators and community resilience met-
rics would enable more holistic risk as-
sessment that considers both physical in-
frastructure performance and societal con-
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Tab. 1: Design strategy of 27 experimental runs which defines split proportions and hold composition (A-test)

Metric Before Retrofit | After Retrofit Interpretation
Failure Probability 23.2% 4.3% Significant improvement

(Indicates (Reduced below

unacceptably 5% threshold

high seismic post-retrofit)

risk)
95% Confidence 141.55-174.87 | 151.60-179.92 Higher reliability
Interval (Capacity) kN kN
Benefit-Cost Ratio - 7.58 Retrofitting justified
Risk Reduction 18.96% absolute reduction

in failure probability

Posterior Mean Capacity | 168 kN
sequences. This socio-technical perspec- [6] A. Der Kiureghian and O. Ditlevsen.

tive is essential for developing equitable
retrofitting strategies that prioritize vulner-
able populations and critical community fa-
cilities.

References

[1]

2]

3]

[4]

5]

(© 2025 Journal of Advanced Engineering and Computation (JAEC)

A. H. S. Ang and W. H. Tang. Probabil-
ity concepts in engineering: Emphasis on
applications to civil and environmental en-
gineering. John Wiley & Sons, 2007.

J. W. Baker. Efficient analytical fragility
function fitting using dynamic structural
analysis. FEarthq. Spectra, 31(1):579-599,
2015.

G. E. P. Box and G. C. Tiao. Bayesian
inference in statistical analysis. John Wiley
& Sons, 2011.

K. W. Campbell and Y. Bozorgnia. NGA-
West2 ground motion model for the average
horizontal components of PGA, PGV, and
5% damped linear acceleration response
spectra. Earthq. Spectra, 30(3):1087-1115,
2014.

C. A. Cornell and H. Krawinkler. Progress
and challenges in seismic performance as-
sessment. PEER Cent. News, 3(2):1-3,
2000.

17l

8]

19]

[10]

[11]

[12]

Aleatory or epistemic? Does it matter?
Struct. Saf., 31(2):105-112, 2009.

B. R. Ellingwood and K. Kinali. Quan-
tifying and communicating uncertainty in
seismic risk assessment. Struct. Saf.,
31(2):179-187, 20009.

P. Gardoni, A. Der Kiureghian, and K. M.
Mosalam. Probabilistic capacity models
and fragility estimates for reinforced con-
crete columns based on experimental obser-
vations. J. Eng. Mech., 128(10):1024-1038,
2002.

A. Gelman, J. B. Carlin, H. S. Stern,
D. B. Dunson, A. Vehtari, and D. B. Ru-

bin. Bayesian data analysis. Chapman Hal-
l/CRC, 2013.

B. Gutenberg and C. F. Richter. Seismic-
ity of the earth and associated phenomena.
Princet. Univ. Press, 1954.

W. K. Hastings. Monte carlo sampling
methods using markov chains and their ap-
plications. Biometrika, 57(1):97-109, 1970.

N. Jayaram and J. W. Baker. Efficient
sampling and data reduction techniques
for probabilistic seismic lifeline risk as-
sessment.  FEarthg. Eng. € Struct. Dyn.,
39(10):1109-1131, 2010.

233



VOLUME: 9 | ISSUE: 4 | 2025 | DECEMBER

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

22]

23]

P. S. Koutsourelakis.  Assessing struc-
tural vulnerability against earthquakes us-
ing multi-dimensional fragility surfaces: A
bayesian framework.  Probabilistic Eng.
Mech., 25(1):49-60, 2010.

S. L. Kramer. Geotechnical earthquake en-
gineering. Prentice Hall, 1996.

S. M. Lynch. Introduction to applied
bayesian statistics and estimation for social
scientists. Springer, 2007.

N. Metropolis, A. W. Rosenbluth, M. N.
Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast com-
puting machines. The J. Chem. Phys.,
21(6):1087-1092, 1953.

Y. Mori and B. R. Ellingwood. Method-
ology for reliability-based condition assess-
ment: Application to concrete structures in
nuclear plants. Nucl. Regul. Comm., 1993.

K. A. Porter. An overview of peer’s
performance-based earthquake engineering
methodology. In Proc. Ninth Int. Conf. on
Appl. Stat. Probab. Civ. Eng. (ICASP-9),
pages 973-980, 2003.

A. Singhal and A. S. Kiremidjian. Method
for probabilistic evaluation of seismic
structural damage. J. Struct. Eng.,
122(12):1459-1467, 1996.

D. Straub and A. Der Kiureghian. Im-
proved seismic fragility modeling from em-
pirical data. Struct. Saf., 30(4):320-336,
2008.

P. Morandi, L. Chiauzzi, and G. M. Calvi.
Cost—benefit-based seismic retrofit prioriti-
zation of existing reinforced concrete build-
ings. Bull. Earthq. Eng., 18:4931-4956,
2020.

Z. Wang and T. Takada. Bayesian updat-
ing of seismic fragility functions using struc-
tural health monitoring data. Struct. Saf.,
89:102051, 2021.

E. Zio. The future of risk assessment. Re-
liab. Eng. € Syst. Saf., 177:176-190, 2018.

234 "This is an Open Access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium provided the original work is

properly cited (CC BY 4.0)."



	Introduction
	Case Study: RC Building in Rajshahi (Sirajganj), Bangladesh
	Methodology
	Step-1. Seismic Hazard Parameters
	Step-2. Structural Response Parameters
	Step-3. Soil-Foundation Interaction
	Step-4. Define Prior Distributions P()
	Step-5. Likelihood Function (Probability Distribution for Observed Data) P(D|)
	Step-6. Bayesian Inference Procedure 
	Step 7: MCMC for Sampling the Posterior

	Results and Discussion 
	Posterior Distributions
	Posterior Capacity vs. Seismic Demand
	Economic and Risk-Based Evaluation
	Decision Support Summary

	Conclusions
	Future Works

